Volumen 17 (2013) No. 1
Volumen 17 (2013) No. 1 
Partial monoids and Dold-Thom functors
Jacob Mostovoy
Resumen:
Dold-Thom functors generalize infinite symmetric products, where integer multiplicities of points are replaced by composable elements of a partial abelian monoid. It is well-known that for any connective homology theory, the machinery of Γ-spaces produces the corresponding linear Dold-Thom functor. In this note we construct such functors directly from spectra by exhibiting a partial monoid corresponding to a spectrum.
Álgebra C∗ generada por operadores de Toeplitz con símbolos discontinuos en el espacio de Bergman armónico
Maribel Loaiza and Carmen Lozano
Resumen:
Sea l una curva simple suave en el disco unitario complejo D. En este trabajo estudiamos el álgebra de Calkin del álgebra C∗ generada por operadores de Toeplitz que actuán en el espacio de Bergman armónico de D, cuyos símbolos son funciones continuas en ¯D∖l. El resultado principal e inesperado es que el espectro de un operador de Toeplitz cuyo símbolo es una función constante a trozos depende del ángulo de discontinuidad.
Ideals, varieties, stability, colorings and combinatorial designs
Javier Muñoz, Feliú Sagols, and Charles J. Colbourn
Resumen:
A combinatorial design is equivalent to a stable set in a suitably chosen Johnson graph, whose vertices correspond to all k-sets that could be blocks of the design. In order to find maximum stable sets of a graph G, two ideals are associated with G, one constructed from the Motzkin-Strauss formula and one reported by Lova ́sz in connection with the stability polytope. These ideals are shown to coincide and form the stability ideal of G. Graph stability ideals belong to a class of 0−1 ideals. These ideals are shown to be radical, and therefore have a strong structure.
Stability ideals of Johnson graphs provide an algebraic char- acterization that can be used to generate Steiner triple systems. Two different ideals for the generation of Steiner triple systems, and a third for Kirkman triple systems, are developed. The last of these combines stability and colorings.