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Partial monoids and Dold-Thom functors ∗

Jacob Mostovoy 1

Abstract

Dold-Thom functors generalize infinite symmetric products, where
integer multiplicities of points are replaced by composable ele-
ments of a partial abelian monoid. It is well-known that for any
connective homology theory, the machinery of Γ-spaces produces
the corresponding linear Dold-Thom functor. In this note we con-
struct such functors directly from spectra by exhibiting a partial
monoid corresponding to a spectrum.
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1 Introduction

Let SP∞X be the infinite symmetric product of a pointed connected
cell complex X. Then, according to the Dold-Thom Theorem [4], the
homotopy groups of SP∞X coincide, as a functor, with the reduced
singular homology of X. Although there is no computational advantage
in this definition of singular homology, it is important since it can be
extended to the algebro-geometric context; in particular, the motivic
cohomology of [9] is defined in this way.

The construction of the infinite symmetric product can be general-
ized so as to produce an arbitrary connective homology theory. Such
generalized symmetric products were defined by G. Segal in [11]: essen-
tially, these are labelled configuration spaces, with labels in a Γ-space
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(see also [2, 3, 6]). If the Γ-space of labels is injective (see [13]) it gives
rise to a partial abelian monoid; it has been proved that in [13] that for
each connective homology theory there exists an injective Γ-space. In
this case Segal’s generalized symmetric product can be thought of as a
space of configurations of points labelled by composable elements of a
partial monoid. An explicit example discussed in [12] is the space of con-
figurations of points labelled by orthogonal vector spaces: it produces
connective K-theory.

We shall call the generalized symmetric product functor with points
having labels, or “multiplicities”, in a partial monoid M , the Dold-
Thom functor with coefficients in M . Certainly, the construction of
such functors via Γ-spaces is most appealing. However, if we start with
a spectrum, constructing the corresponding Dold-Thom functor using
Γ-spaces is not an entirely straightforward procedure since the Γ-space
naturally associated to a spectrum is not injective. The purpose of
the present note is to show how a connective spectrum M gives rise
to an explicit partial monoid M such that the homotopy of the Dold-
Thom functor with coefficients in M coincides, as a functor, with the
homology with coefficients inM. The construction is based on a trivial
observation: if Y is a space and X is a pointed space, the space of maps
from Y to X has a commutative partial multiplication with a unit.

2 Partial monoids and infinite loop spaces

2.1 Partial monoids.

Most of the following definitions appear in [10]. A partial monoid M
is a topological space equipped with a subspace M(2) ⊆ M ×M and
an addition map M(2) → M , written as (m1,m2) → m1 + m2, and
satisfying the following two conditions:

• there exists 0 ∈M such that 0 +m and m+ 0 are defined for all
m ∈M and such that 0 +m = m+ 0 = m;

• for all m1,m2 and m3 the sum m1+(m2+m3) is defined whenever
(m1 +m2) +m3 is defined, and both are equal.

We shall say that a partial monoid is abelian if for all m1 and m2 such
that m1 +m2 is defined, m2 +m1 is also defined, and both expressions
are equal.
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The classifying space BM of a partial monoid M is defined as
follows. Let M(k) be the subspace of Mk consisting of composable
k-tuples. The M(k) form a simplicial space, with the face operators
∂i : M(k) → M(k−1) and the degeneracy operators si : M(k) → M(k+1)

defined as

∂i(m1, . . . ,mk) = (m2, . . . ,mk) if i = 0
= (m1, . . . ,mi +mi+1, . . . ,mk) if 0 < i < k
= (m1, . . . ,mk−1) if i = k

and

si(m1, . . . ,mk) = (m1, . . . ,mi, 0,mi+1, . . . ,mk) if 0 ≤ i ≤ k.

The classifying space BM is the realization of this simplicial space. In
the case when M is a monoid, BM is its usual classifying space. If
M is a partial monoid with a trivial multiplication (that is, the only
composable pairs of elements in M are those containing 0), the space
BM coincides with the reduced suspension ΣM .

A homomorphism f : M → N is a map such that whenever m1+m2

is defined, f(m1) +f(m2) is also defined and equal to f(m1 +m2). If f ,
considered as a map of sets, is an inclusion, we say that M is a partial
submonoid of N .

2.2 Partial monoids and spectra.

Given a pointed space X we shall write ΩX for the space all maps
R → X supported (that is, attaining a value distinct from the base
point of X) inside a compact subset of R. If ΩεX denotes the space of
all maps R→ X supported in [−ε, ε], with the compact-open topology,
ΩX is given the weak topology of the union ∪εΩεX. The usual loop
space can be identified with Ω1X and the inclusion Ω1X ↪→ ΩX is a
homotopy equivalence.

If X is an abelian partial monoid and Y is a space, the space of all
continuous maps Y → X is also an abelian partial monoid. Two maps
f, g are composable in this partial monoid if at each point of Y their
values are composable. In particular, if X is a pointed topological space,
then, considering X as a monoid with the trivial multiplication, we see
that ΩX is an abelian partial monoid; two maps in ΩX are composable
if their supports are disjoint.

The space ΩX as defined here is much better behaved with respect
to this partial multiplication than the usual loop space: while a generic
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element of the usual loop space is only composable with the base point,
each element of ΩX is composable with a big (in a sense that we need
not make precise here) subset of ΩX.

The partial multiplication on ΩnX for n > 1 can be defined induc-
tively for all the pairs of maps from R to the partial monoid Ωn−1X
whose values are composable at each point. This is, of course, the same
as treating the points of ΩnX as maps Rn → X and defining the com-
posable pairs of maps as those with disjoint supports in Rn.

Let nowM be a connective spectrum. We construct a partial abelian
multiplication on its infinite loop space as follows. First, let us replace
inductivelyM0 by a point and the spacesMi for i > 0 by the mapping
cylinders of the structure maps

ΣMi−1 →Mi,

obtaining a spectrum M′. This, in particular, allows us to assume
that all the structure maps are inclusions. As a consequence, we have
inclusion maps

Ωi−1M′i−1 → ΩiM′i,

which send composable k-tuples of elements to composable k-tuples for
all k. The union of all the spaces

M [i] = ΩiM′i

is the infinite loop space for the spectrum M and it naturally has the
structure of a partial abelian monoid.

2.3 Dold-Thom functors.

Let M be an abelian partial moniod and X a topological space with
the base point ∗. We define the configuration space Mn[X] of at most
n points in X with labels in M as follows. For n > 0 let Wn be the
subspace of the symmetric product SPn(X ∧M) consisting of points∑n

i=1(xi,mi) such that the mi are composable; W0 is defined to be a
point. The space Mn[X] is the quotient of Wn by the relations

(x,m1) + (x,m2) + . . . = (x,m1 +m2) + . . . ,

where the omitted terms on both sides are understood to coincide, and

(x, 0) = (∗,m)
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for all x and m. This quotient map commutes with the inclusions of
Wn into Wn+1 coming, in turn, from the inclusions SPn(X ∧M) →
SPn+1(X ∧M), and, hence, Mn[X] is a subspace of Mn+1[X].

The Dold-Thom functor of X with coefficients in M is the space

M [X] =
⋃
n>0

Mn[X].

The Dold-Thom functor with coefficients in the monoid of non-
negative integers is the infinite symmetric product. If M has trivial
multiplication, we have

M [X] = M1[X] = X ∧M.

The composability of labels in a configuration is essential for the
functoriality of M [X]. A based map f : X → Y induces a map
M [f ] : M [X] → M [Y ] as follows: a point

∑
(xi,mi) is sent to the

point
∑

(yj , nj) where the label nj is equal to the sum of all the mi

such that f(xi) = yj .
Apart from the infinite symmetric products, Dold-Thom functors

generalize classifying spaces: for any partial monoid M its classifying
space BM is homeomorphic to M [S1]. To construct the homeomor-
phism, take the lengths of the intervals between the particles to be the
barycentric coordinates in the simplex in BM defined by the labels of
the particles. Similarly, the classifying space of an arbitrary Γ-space can
be constructed in this way (modulo some technical details), see Section 3
of [11]. The identification of BM with M [S1] also makes sense for non-
abelian monoids. The construction of a classifying space for a monoid
as a space of particles on S1 was first described in [8].

In the case when M is a partial abelian monoid coming from a
spectrumM it is convenient to consider a different topology on Mn[X].

Namely, we define Mn[X] as the the union of the spaces M
[i]
n [X] with the

weak topology. Then, as above, the Dold-Thom functor with coefficients
in M associates to a space X the space M [X] = ∪Mn[X]. The technical
advantage provided by this modification is that for any compact space

Y the map Y →M [X] factorizes through M
[i]
n [X] for some i and n.

We have the following generalization of the Dold-Thom theorem:

Theorem 2.3.1. Let M be partial abelian monoid corresponding to
a connective spectrum M. Then the spaces M [Sn] form a connective
spectrum weakly equivalent to M. The functor

X → π∗M [X]
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coincides with the reduced homology with coefficients in M.

2.4 Other partial monoids

The subject of this note are the partial monoids coming from spectra.
Nevertheless, it is worth pointing out that there are many examples of
partial abelian monoids, apart from infinite loop spaces, such that the
corresponding Dold-Thom functors are linear. It is not hard to prove
using the methods similar to those of Dold and Thom that if a partial
monoid M has a good base point and if the complement of the sub-
space of composable pairs has, in a certain sense, infinite codimension
in M ×M , then the corresponding Dold-Thom functor defines a homol-
ogy theory. We have already mentioned Segal’s partial monoid of vector
subspaces of R∞ defined in [12]. Among other examples we have:

1. The configuration space of several (between 0 and ∞) distinct
points in R∞, with the sum of two disjoint configurations being defined
as their union. For configurations with points in common the sum is not
defined. The unit is the point ∅ thought of as the configuration space of
0 points. More generally, one can consider the configuration spaces of
distinct particles in R∞, labelled by points of a fixed space M . This was
done in the paper [14] by K. Shimakawa; the homology theory produced
by this construction assigns to X the stable homotopy of X ∧M . (In
fact, Shimakawa considers a more general situation of configurations in
R∞ with partially summable labels belonging to some partial abelian
monoid. Such configuration space is then itself a partial abelian monoid
which, as Shimakawa proves, always gives rise to a homology theory.)

2. The space of all n-dimensional closed compact submanifolds of
R∞ with the sum being the union of the submanifolds, whenever they
do not intersect. This construction, however, adds nothing substan-
tially new to the previous example. Indeed, since the dimension of
submanifolds is finite and their codimension is infinite, their connected
components can be shrunk in size simultaneously (at least in a com-
pact family of submanifolds) and we see that the partial monoid of
n-submanifolds of R∞ is weakly homotopy equivalent to the labelled
configuration space of particles in R∞, with labels in ∪MBDiff(M), the
space of all connected n-submanifolds of R∞.

3. The space of all (piecewise smooth) spheres in R∞. The operation
is the join of two spheres inside R∞, and it is defined whenever any two
intervals connecting points of the two summands are disjoint.
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3 Properties of Dold-Thom functors coming
from spectra

Given a partial abelian monoid M , a subset Z ⊂M , and a homotopy

st : M →M,

with t ∈ [0, 1], we say that st is a deformation of M , admissible with
respect to Z if

• s0 = Id and st(0) = 0 for all t;

• for any set of composable elements mi ∈M , the set st(mi) is also
composable for all t;

• if a set of composable elements mi ∈M is composable with m′ ∈
Z, then the set st(mi) is composable with m′ for all t.

In what follows M = ∪iM [i] is a partial abelian monoid coming
from a connective spectrum.

Lemma 3.1. For each i and for any compact subset Z ⊂ M [i] there
exists a deformation

dit : M [i] × [0, 1]→M [i+1],

admissible with respect to Z, such that any element of di1(M
[i]) is com-

posable in M [i+1] with any element of Z.

Proof. Consider the points of Z and those of M [i] as maps of Ri+1 to
M′i+1; let x1, . . . , xi+1 be the coordinates in Ri+1. Since Z is compact
there exists a ∈ R such that f ∈ Z implies that the support of f is
contained in the half-space xi+1 < a.

Now, define dit for 0 ≤ t ≤ 1 by letting dit(f)(x1, . . . , xi+1) to be

f

(
x1, . . . , xi, xi+1 −

1

xi+1 − a− 1 + t−1

)
, if xi+1 > a+ 1− t−1;

base point in M′i+1 , if xi+1 ≤ a+ 1− t−1.

The support of each element of di1(M
[i]) is contained in the half-space

xi+1 > a, therefore each element of di1(M
[i]) is composable with each

element of Z in M [i+1]. Also, the deformation dit, as a deformation
of M [i], is admissible with respect to Z. Indeed, dit does not change
the support of f , and the composability of two elements of M [i] only
depends on whether their supports are disjoint or not.
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Lemma 3.2. Let I be the abelian monoid whose elements are points of
[0, 1] with the sum of two numbers being their maximum. For each i
there is homomorphism of partial monoids

hi : M [i] → I

which only vanishes at zero, and a deformation

ui : M [i] × [0, 1]→M [i],

which is constant on the set hi = 1, decreases the value of hi strictly
monotonically on the set hi < 1, at the value of the parameter t < 1 is a
homeomorphism and at t = 1 retracts the subspace hi < 1/4 into the base
point. Moreover ui and the restriction of ui+1 to M [i] are homotopic.

Proof. First we define inductively a collection of functions li : M′i →
[0, 1]. The space M′0 is a point and we set li to be equal to zero on it.
Assume that we have already defined the function lk. By construction,
the space M′k+1 is the mapping cylinder of the map ΣM′k → Mk+1

induced by the structure map of the spectrumM. Consider the reduced
suspension ΣM′k as the product M′k × [−1, 1] with the identifications

(∗, s) ∼ (x, 1) ∼ (x,−1)

for all x ∈ M′k and s ∈ [−1, 1], and let τ be the cylinder coordinate,
which is equal to 0 on ΣM′k and to 1 on Mk+1. Then we set lk+1 = 1
if τ = 1 and

lk+1((x, s), τ) = max (min (lk(x), 2− 2|s|), τ)

for (x, s) ∈ ΣM′k and τ < 1.

In the same vein, define a collection of retractions wi :M′i× [0, 1]→
M′i. Let qt with t ∈ [0, 1] be a continuous family of continuous mono-
tonic functions from [0, 1] to itself such that

• qt(0) = 0 and qt(a) = a for all t and a ≥ 1/2;

• qt is strictly monotonic for t < 1, and q1(a) = 0 for a < 1/4;

• qt(a) > qt′(a) for all 0 < a < 1/2 and t < t′.
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Also define r(τ, l) as

r(τ, l) =


0 if 0 ≤ τ ≤ 1/2, 0 ≤ l ≤ 1/2;

2τ − 1 if 1/2 < τ ≤ 1, 0 ≤ l ≤ 1/2;

2τ l − τ if 0 ≤ τ ≤ 1/2, 1/2 < l ≤ 1;

−2τ l + 3τ + 2l − 2 if 1/2 < τ ≤ 1, 1/2 < l ≤ 1.

Then, assuming that we have already defined wk, we set wk+1 to be
constant on Mk+1 and on the set τ < 1 we define

(wk+1)t((x, s), τ) =
(
((wk)t(x), 1− qt(1− s)), tr(τ, l) + (1− t)τ

)
if s ≥ 0, and

(wk+1)t((x, s), τ) =
(
((wk)t(x),−1 + qt(1 + s)), tr(τ, l) + (1− t)τ

)
for negative s.

It is verified directly that wi is constant on the set li = 1, decreases
the value of li strictly monotonically on the set li < 1, at the value of
the parameter t < 1 is a homeomorphism and at t = 1 deforms the
subspace li < 1/4 into the base point. Now, define the function hi on
M [i] on a map α : Ri → M′i as the maximal value of hi ◦ α and the
deformation ui of M [i] as that induced by the deformation wi. It is clear
that the conditions of the lemma are then satisfied.

Lemma 3.3. The set π0(M) is an abelian group with the addition in-
duced by the partial addition in M .

Proof. It is sufficient to notice that if points of M are thought of as
maps of R to Ωi−1M′i for some i, an inverse to a map γ in π0M will be
given by γ(C − t) for sufficiently big C.

For a space X let M<a>[X] ⊂M [X] be the subset of configurations
whose coefficients are composable with a ∈M .

Lemma 3.4. The inclusion of M<a>[X] into M [X] induces isomor-
phisms on all homotopy groups. Moreover, if

∑
(xi,mi) ∈ M<a>[X],

the map

M<a+
∑
mi>[X]→M<a>[X]

given by summing with
∑

(xi,mi), is also a weak homotopy equivalence.
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Proof. We first need to show that the image of any map f of a finite cell
complex Y into M [X] can be deformed into M<a>[X]. Assume that the
image of f is contained in M [i][X]. Then, applying the deformation dit
from Lemma 3.1, with Z = {a}, to all the labels of the configurations
f(y), where y ∈ Y , we get a homotopy of f to a map of Y into M<a>[X].

In order to establish the second claim, for each mi choose m̃i in such
a way that the class of m̃i is inverse to that of mi in π0M and so that
the sum a+

∑
mi +

∑
m̃i is defined.

It is then easy to see that adding
∑

(xi,mi) and then
∑

(xi, m̃i)
to a configuration in M<a+

∑
mi+

∑
m̃i>[X] is homotopic to the natural

inclusion

M<a+
∑
mi+

∑
m̃i>[X] ↪→M<a>[X].

Since all the natural inclusions between the spaces M<a>[X] for different
a are homotopy equivalences, it follows that the map in the statement
of the lemma is surjective on the homotopy groups. Replacing in this
argument a by a+

∑
mi we see that the map

M<a+
∑
mi+

∑
m̃i>[X] ↪→M<a+

∑
mi>[X],

given by adding
∑

(xi, m̃i), is also surjective on homotopy and this
proves the lemma.

4 Quasifibrations of Dold-Thom functors

The proof of Theorem 2.3.1 is based on the original argument of Dold
and Thom [4], see also [1, 5]. We have the following fact:

Proposition 4.1. Let M be a partial monoid coming from a connective
spectrum. If X is a cell complex and A ⊂ X is a subcomplex, the map
M [X]→M [X/A] is a quasifibration with the fibre M [A].

The rest of this section is dedicated to the proof of this statement.
Note that we do not require A to be connected.

We shall need the following criterion for quasifibrations. Let p :
E → B be a map which is quasifibration over B′ ⊂ B. Assume that
for any compact C ⊂ B there is a homotopy ft of the inclusion map
i : C ↪→ B to a map C → B′, which maps C∩B′ to B′ for all t. Further,
suppose that for any compact C̃ ⊆ p−1(C) there is a homotopy f̃t of the
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inclusion map C̃ → E to a map C̃ → p−1(B′) which maps C̃ ∩ p−1(B′)
to p−1(B′) for all t, and such that

p ◦ f̃t = ft ◦ p.

Moreover, assume that ft and f̃t are well-defined up to homotopy.
Take a point b ∈ B and b̃ ∈ p−1(b). Then we have two paths: from

b to b′ ∈ B′ and from b̃ ∈ p−1(b) to b̃′ ∈ p−1(b′), the latter covering the
former. This gives a map of the homotopy groups

πi(p
−1(b), b̃)→ πi(p

−1(b′), b̃′).

Lemma 4.2. Assume that all the above maps of homotopy groups of the
fibres are isomorphisms for all i ≥ 0. Then the map p is a quasifibration.

This lemma is a version of Hilfssatz 2.10 of [4] and the proof is,
essentially, the same.

We denote by p the projection map

X → X/A

and by π the induced map

M [X]→M [X/A].

We shall prove by induction on n that the map π is a quasifibration
over Mn[X/A]. This, by Satz 2.15 of [4] (or Theorem A.1.17 of [1]) will
imply that π is a quasifibration over the whole M [X/A].

Assume that π is a quasifibration over Mn−1[X/A]. According to
Satz 2.2 of [4] (or Theorem A.1.2 of [1]) it is sufficient to prove that π is
a quasifibration over Mn[X/A] −Mn−1[X/A], over a neighbourhood of
Mn−1[X/A] in Mn[X/A] and over the intersection of this neighbourhood
with Mn[X/A]−Mn−1[X/A].

It will be convenient to speak of delayed homotopies. A delayed
homotopy is a map ft : A × [0, 1] → B such that for some ε > 0 we
have ft = f0 when t ≤ ε. A map p : E → B is said to have the delayed
homotopy lifting property if it has the homotopy lifting property with
respect to all delayed homotopies of finite cell complexes into B. It is
clear that a map that has the delayed homotopy lifting property is a
quasifibration.

Lemma 4.3. Let B be an arbitrary subspace of Mn[X/A]−Mn−1[X/A].
The map π, when restricted to π−1(B), has the delayed homotopy lifting
property.
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Proof. Let
ft : Z × [0, 1]→ B

be a delayed homotopy of a finite cell complex Z into B, such that
ft = f0 for t ≤ ε, and let

f̃0 : Z → π−1(B)

be its lifting at t = 0.
Notice thatMn[X/A]−Mn−1[X/A] can be thought of as the subspace

of Mn[X] consisting of configurations of n distinct points, all outside
A and with non-trivial labels. Therefore, we can think of B as of a
subspace of Mn[X].

Define g : Z →M [X] as the difference

g(z) = f̃0(z)− f0(z).

The map g is well-defined, continuous and its image belongs to M [A].
Since Z is compact, the image of f̃0 belongs to M [i][X] for some i; it
follows that the coefficients of g(z) are composable with the coefficients
of f0(z) in M [i] for all z ∈ Z.

Lemma 3.1 guarantees the existence of a deformation dit of M [i]

inside M [i+1] such that each point in di1(M
[i]) is composable in M [i+1]

with each point in the image of Z × [0, 1] under ft. There is an induced
deformation of M [i][A] which we also denote by dit.

Define the homotopy gt : Z → M [A] as dktε−1 ◦ g for 0 ≤ t < ε and
as dk1 ◦ g for ε ≤ t ≤ 1. Lemma 3.1 implies that gt is well-defined and is
composable with ft for all t. Consider the map f̃t = ft+gt : Z →M [X].
By construction, it lifts ft.

It remains to see that the map π is a quasifibration over some neigh-
bourhood of Mn−1[X/A].

Recall from Lemma 3.2 that there is a homomorphism of partial
monoids

M [i] → I

which sends a map α to the maximal value of hi ◦ α. It gives rise to a
map

vi : M [i]
n [X]→ In[X].

If X and A are cell complexes, let ∆ be the subspace of In[X] con-
sisting of configurations which either contain a point of A, or have less
than n points. It is not hard to show that In[X] is a cell complex and
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∆ is a subcomplex. In particular, ∆ is a strong deformation retract of
its neighbourhood U ⊂ In[X]. Let

dt : In[X]× [0, 1]→ In[X]

be the deformation that retracts U to ∆. We can assume that dt is a
homeomorphism for all t < 1. Then dt can be lifted to a deformation

D̃t : M [i]
n [X]× [0, 1]→M [i]

n [X],

that retracts the open subset v−1i (U) to the subspace v−1i (∆) ⊂M [i]
n [X],

which consists of configurations which either contain a point of A, or
have less than n points.

Now, by construction, there exists a deformation

Dt : M [i]
n [X/A]× [0, 1]→M [i]

n [X/A],

such that
Dt ◦ π = π ◦ D̃t

for all t. In particular, Dt retracts the open neighbourhood π(v−1i (U))

of M
[i]
n−1[X/A] onto M

[i]
n−1[X/A].

Let V be the union of all the neighbourhoods π(v−1i (U)) for all i in
M [X/A]. Then V is open in M [X/A] and it follows from Lemma 3.4
that the projection π−1(V )→ V satisfies the conditions of Lemma 4.2.

5 On the spectrum M [S]

5.1 The spectrum M [S] and the proof of Theorem 2.3.1.

Proposition 4.1 with X = Dn and A = ∂Dn gives the quasifibration

M [Sn−1]→M [Dn]→M [Sn].

The space M [Dn] is contractible, and therefore, we have weak homotopy
equivalences M [Sn−1] ' ΩM [Sn] and the spaces M [Si] for i ≥ 0 form
an Ω-spectrum which we denote by M [S].

More generally, given X, the cofibration X → CX → ΣX gives
rise to a weak homotopy equivalence M [X] ' ΩM [ΣX], and given an
inclusion map i : A ↪→ X, the cofibration A→ Cyl(i)→ X ∪i CA gives
rise to an exact sequence

. . . π∗M [A]→ π∗M [X]→ π∗M [X ∪i CA]→ π∗−1M [A]→ . . . .
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Here CX is the cone on X and Cyl(i) is the cylinder of the map i. Since
π∗M [X] is, clearly, a homotopy functor, this means that the groups
π∗M [X] form a reduced homology theory.

There is a natural transformation of the homology with coefficients
in M [Si] to π∗M [X], induced by the obvious map

M [Si] ∧X →M [Si ∧X]

that sends
(∑

mizi, x
)

to
∑
mi(zi, x):

lim
i→∞

πk+i
(
M [Si] ∧X

)
→ lim

i→∞
πk+iM [Si ∧X] = πkM [X].

If X is a sphere, the Freudenthal Theorem implies that this is an iso-
morphism. Hence, π∗M [X] coincides as a functor, on connected cell
complexes, with the homology with coefficients in M [S].

5.2 The weak equivalence of M [S] and M.

We shall first construct a weak homotopy equivalence between the infi-
nite loop spaces of the spectra M and M [S] and then show that there
exists an inverse to this equivalence, which is induced by a map of spec-
tra. This will establish Theorem 2.3.1.

Let I be the interval [−1/2, 1/2]. By Proposition 4.1 the map I → S1

which identifies the endpoints of I induces a quasifibration M [I] →
M [S1] with the fibre M ' Ω∞M∞.

Since M [I] is contractible, it follows that M is weakly homotopy
equivalent to ΩM [S1]; the weak equivalence is realized by the map ψ
that sends m ∈M to the loop (parameterized by I) whose value at the
time t ∈ I is the configuration consisting of one point with coordinate
−t and label m.

Let us now define the map of spectra Φ, inverse to the above weak
equivalence ψ.

For n > 0 identify Sn with the n-dimensional cube

In = [−1/2, 1/2]n ⊂ Rn,

modulo its boundary. Fix a homeomorphism of the interior of In with
Rn, say, by sending each coordinate uk to tanπuk. Think of a point in
M [Sn] as of a sum

∑
(xα,mα) where xα ∈ In and mα are maps from In

toM′n. Assume that the maps mα(−xα) are composable as maps from
some Ri to M′n+i. Then their sum is a well-defined point of M′n which
does not depend on i. We set Φn(

∑
(xα,mα)) to be equal to this sum.
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The map Φn : M [Sn] → M′n is only partially defined, but this
problem can be circumvented as follows. Let M∗[Sn] ⊂ M [Sn] be the
subspace consisting of the configurations

∑
(xα,mα) such that for some

i the points mα(qα) ∈ Ω′iM′n+i are composable (that is, have disjoint
supports in Ri) for any choice of the qα ∈ In.

The spaces M∗[Sn] form a sub-spectrum M∗[S] of M [S]. Indeed,
the structure map of M [S] sends

∑
(xα,mα) ∈ M [Sn] to the loop t →∑

((xα, t),mα), where t ∈ I. The map Φn is well-defined on M∗[Sn]. If
we define the map Φ0 simply as ΩΦ1, it is clear from the construction
that Φ0 ◦ ψ is the identity map on M0. The proof will be finished as
soon as we prove the following

Proposition 5.2.1. The inclusion map M∗[Sn] → M [Sn] is a weak
homotopy equivalence for all n > 0.

Proof. Define M∗k [Sn] as M∗[Sn] ∩Mk[S
n]. It sufficient to prove that

the inclusion M∗k [Sn]→Mk[S
n] is a weak homotopy equivalence for all

k.
For k = 1 this inclusion is the identity map. Also, for k > 1 the map

(1) M∗k [Sn]/M∗k−1[S
n]→Mk[S

n]/Mk−1[S
n]

is a weak homotopy equivalence. Indeed, take a map

f : Sj →Mk[S
n]/Mk−1[S

n]

and let us show that the labels of the points in each configuration in
the image of f can be pushed away from each other, thus deforming the
image of f into M∗k [Sn]/M∗k−1[S

n].
By forgetting the labels in the configurations we get a map

(Sj − f−1(∗))→ Bk(S
n)

to the configuration space of k distinct particles in Sn. Without loss
of generality we can assume that the boundary of Sj − f−1(∗) is a
collared (for instance, smooth) hypersurface in Sj , so that this map
gives rise to a bundle ξ of k-element sets over the compactification C of
Sj − f−1(∗). In turn, this bundle of sets gives rise to a k-vector bundle
η whose fibre is spanned by the elements of the corresponding fibre of ξ.
Since C is compact, η can be considered as a subbundle of some trivial
bundle. What this means is that there exists an N such that given a
configuration in the image of f we can assign a unit vector in some RN
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to each of its points so that the vectors assigned to all the points are
mutually orthogonal.

Now, the image of f is contained in M
[i]
k [Sn]/M

[i]
k−1[S

n] for some
i. We can treat the labels of the configurations in the image of f as
elements of

M [i+N ] = ΩiΩNM′i+N ,

and write them as functions m(x, y) with x ∈ Ri and y ∈ RN . For z ∈ C
write f(z) =

∑
(qα,mα) where qα ∈ Sn and mα ∈ M [i+N ], and define

ft(z) as

ft(z) =
∑

(qα,mα(x, y + tvα)),

where vα are the orthogonal vectors associated to the points qα of the
configuration f(z). Then for t sufficiently large, the image of ft will lie
in M∗k [Sn]/M∗k−1[S

n].

The subspacesMk−1[S
n] ⊂Mk[S

n] andM∗k−1[S
n] ⊂M∗k [Sn] are not,

strictly speaking, neighbourhood deformation retracts, but each of these
subspaces has a neighbourhood such that the map of any compact into
this neighbourhood can be retracted onto the subspace. This is sufficient
to claim that the fact that the maps (1) are weak homotopy equivalences
implies that the inclusion M∗k [Sn] → Mk[S

n] induce isomorphisms in
homology. The fundamental groups of these two spaces are easily seen to
be abelian for k > 1, just as in the case of the usual symmetric products,
and, hence, this inclusion is a weak homotopy equivalence.
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