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Parametrised collision-free optimal motion
planning algorithms in Euclidean spaces

Cesar A. Ipanaque Zapata 1 Jesús González 2

Abstract

We describe parametrised motion planning algorithms for systems
controlling objects represented by points that move without colli-
sions in an even dimensional Euclidean space and in the presence
of up to three obstacles with a priori unknown positions. Our
algorithms are optimal in the sense that the parametrised local
planners have minimal posible size.
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1 Introduction and main results

The design of explicit motion planners that are reasonably close to
optimal is one of the challenges in modern robotics (see for instance
Latombe [7] and LaValle [8]). As an answer to such a need, the concept of
parametrised topological complexity has recently been introduced in [1]
by Cohen, Farber and Weinberger in an attempt to increase the degree
of universality and flexibility a motion planning has when performing
under a variety of external conditions.

Let p : E → B be a fibration with path-connected fiber X. A
parametrised motion planning algorithm for p is a function A assigning,
to any pair of points (e1, e2) ∈ E × E with p(e1) = p(e2), a continuous
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8, São Paulo Research Foundation (FAPESP) for financial support.
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path γ = A(e1, e2) in E that starts at e1, ends at e2, and satisfies p◦γ =
p(e1), where b stands for the constant path at b ∈ B. Mathematically, A
is a (not necessarily continuous) section of the fibration γ 7→ (γ(0), γ(1))
defined on the fibered path space

E
[0,1]
B = {γ ∈ E[0,1] : p ◦ γ is a constant path}

and taking values in the fibered product

E ×B E = {(e1, e2) ∈ E × E : p(e1) = p(e2)},

where E[0,1] stands for the free-path space on E. In such a model, the
space B is meant to parametrise all possible external conditions for a
given system and, for any parameter b ∈ B, the fibre p−1(b) represents
the corresponding space of actual states of the system where motion is
to be planned.

For practical purposes, a parametrised motion planning algorithm
should depend continuously on the pair of points (e1, e2) ∈ E ×B E.
Indeed, if the autonomous system performs within a noisy environment,
then absence of continuity could lead to instability issues in the be-
havior of the parametrised motion planning algorithm. In other words,
continuous parametrised motion planning algorithms are robust to noise.
Unfortunately, a (global) continuous parametrised motion planning al-
gorithm for p can exist only for a contractible fiber X (see [1, Proposi-
tion 4.5]). Yet, if X is not contractible, we could care about finding local
continuous parametrised motion planning algorithms, i.e., parametrised
motion planning algorithms s defined only on a certain open set of
E ×B E, to which we refer as the domain of definition of s. In these
terms, a parametrised motion planner for p is a set of local continuous
parametrised motion planning algorithms whose domains of definition
cover E×BE. The parametrised topological complexity of p, TCB(X), is
then the minimal cardinality among parametrised motion planners for p,
while a parametrised motion planner for p is said to be optimal if its
cardinality is TCB(X). Note that the reduced version of this invariant
is presented in [1]. Because of our application minded goals, in this
work we use the unreduced version. Summarizing, the components in
the parametrised motion planning problem via topological complexity
are:

1. The fibration p : E → B with fiber X. Here, a choice of a point
b ∈ B in the base space corresponds to a choice of the external
conditions for the system.
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2. Query pairs e = (e1, e2) ∈ E ×B E. The point e1 ∈ E is the
initial configuration of the query. The point e2 ∈ E is the goal
configuration.

In the above setting, the goal is to either describe a parametrised motion
planning algorithm, i.e., describe:

3. An open covering U = {U1, . . . , Uk} of E ×B E.

4. For each i ∈ {1, . . . , k}, a parametrised motion planning algorithm,
i.e., a continuous map si : Ui → E

[0,1]
B satisfying si(e) (j) = ej+1

for any e = (e1, e2) ∈ Ui and any j ∈ {0, 1},

or, else, report that such system of sections does not exist.

Let X be a connected topological manifold of dimension at least 2.
Consideration of the collision-free motion planning problem for n la-
belled robots, each with state space X, in the presence of m obstacles
with a priori unknown positions, led Cohen, Farber and Weinberger to
study the Fadell-Neuwirth fibration πn+m,m : F (X,n+m)→ F (X,m),
given by

(1) πn+m,m(o1, . . . , om, x1, . . . , xn) = (o1, . . . , om),

with fiber F (X − { m points}, n), where F (Y, k) is the ordered configu-
ration space of k distinct points on Y (see [4]). Explicitly,

(2) F (Y, k) = {(y1, . . . , yk) ∈ Y k : yi 6= yj for i 6= j},

topologised as a subspace of the Cartesian power Y k. In such a model,
dynamics and other differential constraints are ignored, focusing pri-
marily on the translations required to move the robots. In other words,
robots and obstacles are represented by particles with infinitesimally
small mass and volume, i.e., points in a Euclidean space X = Rd. The
position of the i-th robot is determined by xi ∈ Rd in (1), while oj ∈ Rd

stands for the position of the j-th obstacle. In these terms, the con-
dition yi 6= yj in (2) reflects the collision-free and obstacle-avoidance
requirements. Thus, a (local) parametrised motion planning algorithm
for πn+m,m assigns to any pair of configurations (C1, C2) in (an open set
of) F (Rd, n+m)×F (Rd,m) F (Rd, n+m) a continuous curve of configu-
rations

Γ(t) ∈ F (Rd, n+m), t ∈ [0, 1],
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such that πn+m,m ◦ Γ = πn+m,m(C1) and Γ (i) = Ci+1 for i ∈ {0, 1}.

The parametrised topological complexity of πn+m,m when X = Rd

has been computed by D. Cohen, M. Farber and S. Weinberger in [1]
and [2]. The methods used therein are based on homotopy theory and,
in particular, do not yield explicit motion planning algorithms. Inspired
by our work in [10], we present an explicit parametrised motion planner
for πn+2,2 for any d ≥ 2 even and n ≥ 1. The planner has 2n + 1
regions of continuity and is optimal (in view of Theorem 2.6 below).
The hypothesis that d be even is essential for this planner. In fact, the
parametrised topological complexity is one unit larger when d is odd.
On the other hand, the harder cases are those with d even, for then the
calculation of the parametrised topological complexity in [2] is based on
non-constructive techniques of obstruction theory.

In Section 2 we recall well-known results about the homotopy in-
variance of parametrised topological complexity. In particular, in Re-
mark 2.5 we give explicit formulas describing how parametrised motion
planners can be carried over from one space to another by means of
a parametrised deformation. This allows us to construct in Section 3
the advertized parametrised motion planning algorithm for πn+2,2 for
any d ≥ 2 even and n ≥ 1. We emphasize that our algorithm works
for m = 2, that is, for two obstacles. Indeed, the line determined by
the pair of obstacles is key to our construction as it allows us to de-
fine desingularizations F i in (5), sets Ti,j in (7), deformations ϕi in (9),
parametrised homotopies σi,j in (10) and the algorithm Γ in (11).

The construction of optimal parametrised motion planners in the
presence of more obstacles is far from being obvious and apparently
calls for substantial adjustments. To better appreciate the complexity of
the problem, in Section 4 we construct an optimal parametrised motion
planner in the 2-D case of π4,3, specifically, we describe an algorithm
for motionplanning a single point-like robot moving in R2 so to avoid
collisions with three fixed point-like obstacles whose positions in R2 are
a priori unknown.

2 Preliminary results

After recalling from [1, 2] the basic properties of parametrised topolog-
ical complexity, we give explicit formulas describing how parametrised
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motion planners can be carried over from one space to another by means
of a parametrised deformation (Remark 2.5).

In the setting of the previous section, consider the evaluation fibra-
tion

(3) Π : E
[0,1]
B → E ×B E, Π(γ) = (γ(0), γ(1)) .

A parametrised motion planning algorithm is, by definition, a section
s : E ×B E → E

[0,1]
B of the fibration Π, i.e., a (not necessarily continu-

ous) map satisfying Π ◦ s = 1E×BE , where 1E×BE denotes the identity
map. When E×BE has the homotopy type of a CW complex, a contin-
uous parametrised motion planning algorithm for p exists if and only if
the fiber X is contractible (see [1, Proposition 4.5]), which forces the fol-
lowing definition. The parametrised topological complexity TCB(X) of a
fibration p : E → B with fiber X is the Schwarz genus of the evaluation
fibration (3). In other words the parametrised topological complexity
of p is the smallest positive integer TCB(X) = k for which the space
E ×B E is covered by k open subsets E ×B E = U1 ∪ · · · ∪Uk such that
for any i = 1, 2, . . . , k there exists a continuous section si : Ui → E

[0,1]
B

of Π over Ui (i.e., Π ◦ si = inclUi , where inclUi denotes the inclusion
map). Thus, as noted in the introduction, we are using an unreduced
notation for parametrised topological complexity.

Example 2.1. Suppose that the fibers of p : E → B are convex sets.
Given a pair of points (e1, e2) ∈ E×BE, we may move with constant ve-
locity along the straight line segment connecting e1 and e2. This clearly
produces a continuous parametrised algorithm for the parametrised mo-
tion planning problem for p. Thus we have TCB(X) = 1.

For the trivial fibration E = B × F → B, TCB(X) coincides with
Farber‘s topological complexity TC(X) of the fiber X, which is defined
in terms of motion planning algorithms for a robot moving between
initial-final configurations [5]. This means that trivial parametrisation
does not add complexity (see [1, Example 4.2]).

The definition of TCB(X) deals with open subsets of E ×B E ad-
mitting continuous sections of the evaluation fibration (3). Yet, for
practical purposes, the construction of explicit parametrised motion
planning algorithms is usually done by partitioning the whole space
E ×B E into pieces, over each of which a continuous section for (3)
is given. As discussed next, under mild conditions the resulting value of
the parametrised topological complexity remains unaffected.
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Recall that a topological space X is a Euclidean Neighbourhood Re-
tract (ENR) if it can be embedded into an Euclidean space Rd with an
open neighbourhood U , X ⊂ U ⊂ Rd, admiting a retraction r : U → X,
r |U= 1X . In addition, a subspace X ⊂ Rd is an ENR if and only if
it is locally compact and locally contractible, see [3, Chap. 4, Sect. 8].
This implies that finite-dimensional polyhedra, smooth manifolds and
semi-algebraic sets are ENRs.

Definition 2.2. Let E ×B E be an ENR. A parametrised motion plan-
ning algorithm s : E ×B E → E

[0,1]
B is said to be tame if E ×B E splits

as a pairwise disjoint union E×B E = F1 t · · · tFk, where each Fi is an
ENR, and each restriction s |Fi : Fi → E

[0,1]
B is continuous. The subsets

Fi in such a decomposition are called domains of continuity for s.

Proposition 2.3. ([9, Proposition 2.2]) For an ENR E×B E, TCB(X)
is the minimal number of domains of continuity F1, . . . , Fk for tame
parametrised motion planning algorithms s : E ×B E → E

[0,1]
B .

A tame parametrised motion planning algorithm s : E×BE → E
[0,1]
B

with continuity domains F1, . . . , Fk yields an obvious motion-planning
implementation. Namely, given a pair of initial-final configurations
(C1, C2) ∈ E ×B E, find the subset Fi such that (C1, C2) ∈ Fi and
take the path si(C1, C2) as output.

Remark 2.4. We say that a tame parametrised motion planning algo-
rithm s : E ×B E → E

[0,1]
B is optimal when it admits TCB(X) domains

of continuity. At the end of the introduction we noted that the goal of
this paper is the construction of optimal parametrised motion planners.
We can now be more precise: we actually construct parametrised tame
motion planning algorithms with the advertized optimality property.

The existence of a continuous parametrised motion planning algo-
rithm on a subset U of E×B E implies the existence of a corresponding
continuous parametrised motion planning algorithm on any subset V of
E ×B E deforming to U within E ×B E in the parametrised context.
Such a fact is argued next in a constructive way, extending Example 6.4
in [6] to the parametrised case (the latter given for the non parametrised
case). This of course suits best our implementation-oriented objectives.

Remark 2.5 (Constructing parametrised motion planning algorithms
via parametrised deformations). Let sU : U → E

[0,1]
B be a continu-

ous parametrised motion planning algorithm defined on a subset U of
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E ×B E. Suppose a subset V ⊆ E ×B E can be continuously deformed
within E × E into V in the parametrised context, i.e., there is a ho-
motopy H : V × [0, 1] → E × E such that H(v, 0) = v, H(v, 1) ∈ U

and h1(v,−), h2(v,−) ∈ E[0,1]
B for any v ∈ V , where h1, h2 denote the

Cartesian components ofH, H = (h1, h2). As schematized in the picture

h1(v, 1)

h1(v, 0)

h2(v, 1)

h2(v, 0)

(where H runs from top to bottom and sU runs from left to right),
the path sU (H(v, 1)) in E[0,1]

B connects in sequence the points hi(v, 1),
i ∈ {1, 2}, i.e.,

sU (H(v, 1)) (i) = hi+1(v, 1), i ∈ {0, 1},

whereas the formula

sV (v)(τ) =


h1(v, 3τ), 0 ≤ τ ≤ 1

3 ;
sU (H(v, 1))(3τ − 1), 1

3 ≤ τ ≤
2
3 ;

h2(v, 3− 3τ), 2
3 ≤ τ ≤ 1,

.

defines a continuous section sV : V → E
[0,1]
B of (3) over V . Summarizing:

a parametrised deformation of V into U and a continuous parametrised
motion planning algorithm defined on U determine an explicit continu-
ous parametrised motion planning algorithm defined on V .

The final ingredient we need is the value of

TCF (Rd,m)(F (Rd − {m points }, n)),

computed by Cohen-Farber-Weinberger in [1] and [2].

Theorem 2.6. ([1],[2]) For any m ≥ 2 and n ≥ 1, the parametrised
topological complexity of the problem of collision-free motion of n robots
in the Euclidean d-space in the presence of m point obstacles with un-
known a priori positions is given by

TCF (Rd,m)

(
F (Rd − {m points }, n)

)
=

{
2n+m, if d ≥ 3 is odd;
2n+m− 1, if d ≥ 2 is even.
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3 Parametrised motion planning algorithm for
πn+2,2 with d ≥ 2 even

We present a parametrised motion planning algorithm for πn+2,2 under
the assumption (in force throughout this section) that d ≥ 2 is even.
The algorithm has 2n+ 1 domains of continuity.

0

eC

o1

o2

LCxi

pC(xi)

Figure 1: The line LC , its orientation eC , and the projection pC .

For a configuration C = (o1, o2, x1, . . . , xn) ∈ F (Rd, n+ 2), consider
the affine line LC through the points o1 and o2, oriented in the direction
of the unit vector

eC =
o2 − o1
| o2 − o1 |

,

and let L′C denote the line passing through the origin and parallel
to LC (with the same orientation as LC). Let pC : Rd → LC be
the orthogonal projection, and let cp(C) be the cardinality of the set
{pC(o1), pC(o2), pC(x1), . . . , pC(xn)}. Note that cp(C) ranges from 2 to
n+ 2. For i ∈ {2, . . . , n+ 2}, let Ai denote the set of all configurations
C ∈ F (Rd, n+ 2) with cp(C) = i. The various Ai are ENR’s satisfying

(4) Ai ⊂
⋃
j≤i

Aj .

3.1 Desingularization

For a configuration C = (o1, o2, x1, . . . , xn) ∈ Ai, set

ε(C) :=
1

n+ 2
min{| pC(xr)− pC(xs) | : pC(xr) 6= pC(xs)},
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here xi = oi for i = 1, 2. In addition, for C as above and t ∈ [0, 1], set

F i(C, t) =

{
(o1, o2, z1(C, t), . . . , zn(C, t)), if i < n+ 2;
C, if i = n+ 2,

where zj(C, t) = xj + tjε(C)eC for j = 1, . . . , n. This defines a continu-
ous “desingularization” deformation

(5) F i : Ai × [0, 1]→ F (Rd, n+ 2)

of Ai into An+2 inside F (Rd, n + 2) (see Figure 2). Note that neither
the lines LC and L′C nor their orientations change under the desingu-
larization, i.e., LF i(C,t) = LC , L′F i(C,t)

= L′C , and eF i(C,t) = eC for all
t ∈ [0, 1]. Indeed, we note that πn+2,2(F

i(C, t)) = πn+2,2(C) for all
t ∈ [0, 1].

eC
o1 o21 1

2 2

3 3

Figure 2: Desingularization.

3.2 The sets Tij

We recall the sets Aij and Bij from [10]. For i, j = 2, . . . , n+ 2 let

Aij := {(C,C ′) ∈ Ai ×Aj : eC 6= −eC′},
Bij := {(C,C ′) ∈ Ai ×Aj : eC = −eC′}.

The sets Aij and Bij are ENR’s (for they are semi-algebraic) covering
F (Rd, n+ 2)× F (Rd, n+ 2) that satisfy

(6) Aij ⊆
⋃

r≤i, s≤j
Ars ∪

⋃
r≤i, s≤j

Brs and Bij ⊆
⋃

r≤i, s≤j
Brs,
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in view of (4). Note that each Bij does not intersect the subspace
F (Rd, n+ 2)×F (Rd,2) F (Rd, n+ 2), i.e.,

Bij ∩
(
F (Rd, n+ 2)×F (Rd,2) F (Rd, n+ 2)

)
= ∅,

because (C,C ′) ∈ F (Rd, n+2)×F (Rd,2)F (Rd, n+2) implies that eC = eC′

and thus (C,C ′) /∈ Bij . Consider subsets

(7) Tij := Aij ∩
(
F (Rd, n+ 2)×F (Rd,2) F (Rd, n+ 2)

)
.

The sets Tij are ENR’s (for they are semi-algebraic) covering F (Rd, n+
2)×F (Rd,2) F (Rd, n+ 2) that satisfy

(8) Tijrel ⊆
⋃

r≤i, s≤j
Trs,

in view of (6). Here, Tijrel denotes the closure relative to the space
F (Rd, n+ 2)×F (Rd,2) F (Rd, n+ 2), i.e.,

Tijrel = Tij ∩
(
F (Rd, n+ 2)×F (Rd,2) F (Rd, n+ 2)

)
.

We also consider subset X ofW := F (Rd, n+2)×F (Rd,2)F (Rd, n+2)
defined by

X := {(C,C ′) ∈W : with both C and C ′ colinear}.

Here a configuration C ∈ F (Rd, n + 2) is said to be colinear if in fact
C ∈ F (LC , n+ 2).

Remark 3.1. The map ϕ : An+2×[0, 1]→ F (Rd, n+2) with coordinates
ϕ = (ϕ1, . . . , ϕn+2) given by the formula

(9) ϕi(C, t) = yi + t(pC(yi)− yi), i = 1, . . . , n+ 2,

where C = (o1, o2, x1, . . . , xn) ∈ An+2, y1 = o1, y2 = o2 and yi+2 = xi
for each i = 1, . . . , n, defines a continuous deformation of An+2 onto
F (LC , n + 2) inside F (Rd, n + 2) depicted in Figure 3. Note that,
ϕi(C, t) = oi for any t ∈ [0, 1] and each i = 1, 2.
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eC
o1 o2

1

1

2

2 3

Figure 3: Deformation of An+2 onto F (LC , n+ 2) inside F (Rd, n+ 2).

3.3 Deformations σij

Next we define parametrised homotopies

(10) σij : Tij × [0, 1]→ F (Rd, n+ 2)× F (Rd, n+ 2),

deforming Tij into X, i.e., such that

1. σij((C,C ′), 0) = (C,C ′) and σij((C,C ′), 1) ∈ X.

2. πn+2,2 ◦ σ1ij((C,C ′),−) = πn+2,2(C) and πn+2,2 ◦ σ2ij((C,C ′),−) =

πn+2,2(C ′), where σ1ij , σ
2
ij denote the Cartesian components of σij ,

i.e., σij = (σ1ij , σ
2
ij). Recall that πn+2,2(C) = πn+2,2(C

′) for any
(C,C ′) ∈ Tij .

The deformation σij: Given a pair (C,C ′) ∈ Tij , we first apply the
desingularization deformations F i(C, t) and F j(C ′, t) in order to take
the pair (C,C ′) into a pair of configurations (C1, C

′
1) ∈ Tn+2,n+2 (recall

πn+2,2(C1) = πn+2,2(C) = πn+2,2(C
′) = πn+2,2(C

′
1)). Next we apply

the linear deformation (9), in order to take the pair (C1, C
′
1) into a pair

of colinear configurations (C2, C
′
2) ∈ X. The deformation σij is the

concatenation of the two deformations just described.

3.4 Section over X

Recall that X ⊂ F (Rd, n + 2) ×F (Rd,2) F (Rd, n + 2) is the set of pairs
(C,C ′) of colinear configurations. Note that, LC = LC′ =: LC,C′ . We
construct a continuous parametrised motion planning algorithm

(11) Γ: X → F (Rd, n+ 2)
[0,1]

F (Rd,2)

provided d is even (this is the only place where the hypothesis about the
parity of d is used).
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eC

ν(eC)

o1 o21 12 2 33

Figure 4: Section overX. Vertical arrows pointing upwards (downwards)
describe the first (last) third of the path Γ

C,C′
, whereas horizontal arrows

describe the middle third of Γ
C,C′

.

Let ν be a fixed unitary tangent vector field on Sd−1, say

ν(x1, y1, . . . , x`, y`) = (−y1, x1, . . . ,−y`, x`)

with d = 2`. Given two configurations C = (o1, o2, x1, . . . , xn) and
C ′ = (o1, o2, x

′
1, . . . , x

′
n) in F (LC,C′ , n+ 2), let Γ

C,C′
be the path in the

fiber π−1n+2,2(o1, o2) ⊂ F (Rd, n + 2) from C to C ′ depicted in Figure 4.
Explicitly, if C = (o1, o2, x1, . . . , xn) and C ′ = (o1, o2, x

′
1, . . . , x

′
n), then

the path Γ(C,C ′) in the fiber π−1n+2,2(o1, o2) ⊂ F (Rd, n + 2) from C to

C ′ has components (o1, o2,Γ
C,C′

1 , . . . ,Γ
C,C′

n ) defined by

Γ
C,C′

i (t) =


xi + (3ti)v(eC), for 0 ≤ t ≤ 1

3 ;
xi + iv(eC) + (3t− 1)(x′i − xi), for 1

3 ≤ t ≤
2
3 ;

x′i + i(3− 3t)v(eC), for 2
3 ≤ t ≤ 1.

3.5 Repacking regions of continuity

As explained in Remark 2.5, we can combine the continuous parame-
trised motion planning algorithm Γ with the concatenation of the param-
etrised deformations discussed so far to obtain continuous parametrised
motion planning algorithms

(12) Ti,j → F (Rd, n+ 2)
[0,1]

F (Rd,2),

for i, j = 2, . . . , n+ 2. The corresponding upper bound

TCF (Rd,2)

(
F (Rd − { 2 points }, n)

)
≤ (n+ 1)2

is improved by repacking these regions of continuity. Set

W` =
⋃

i+j=`

Tij
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for ` = 4, . . . , 2n + 4. In view of (8), the sets assembling each W`

are topologically disjoint in the sense that Tijrel ∩ Ti′j′ = ∅, provided
i + j = i′ + j′ and (i, j) 6= (i′, j′), so the sets W` are ENR’s covering
F (Rd, n + 2) ×F (Rd,2) F (Rd, n + 2) on each of which the corresponding
algorithms in (12) assemble a continuous parametrised motion planning
algorithm. We have thus constructed a tame parametrised motion plan-
ning algorithm for πn+2,2 : F (Rd, n+2)→ F (Rd, 2) having 2n+1 regions
of continuity W4,W5, . . . ,W2n+4 (see Figure 5).

eC

ν(eC)

o1 o21

1

2

2

3

3

Figure 5: The motion planning algorithm for πn+2,2.

4 Parametrised motion planning algorithm for
π4,3 with d = 2

We present a parametrised motion planning algorithm for π4,3 in the
2D case. The algorithm has four domains of continuity, so its optimality
follows from Theorem 2.6. As in Section 3, we consider a unitary tangent
vector field ν on S1, say the one given by ν(x1, y1) = (−y1, x1).

For a configuration C = (o1, o2, o3, x) ∈ F (R2, 4), consider the affine
line LC through the points o1 and o2 oriented in the direction of the unit
vector

eC =
o2 − o1
| o2 − o1 |

,

and let L⊥C denote the affine line perpendicular to LC that passes through
the point o1 and is oriented in the direction of the unit vector ν(eC).

• •
o1 o2

LC

L⊥C
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Let pC : R2 → LC and p⊥C : R2 → L⊥C be the orthogonal projections,
and set

cp⊥o (C) = | {p⊥C(o1), p
⊥
C(o2), p

⊥
C(o3)} |,

cp⊥(C) = | {p⊥C(o1), p
⊥
C(o2), p

⊥
C(o3), p

⊥
C(x)} |,

cpo(C) = | {pC(o1), pC(o2), pC(o3)} |,
cp(C) = | {pC(o1), pC(o2), pC(o3), pC(x)} |,

where | S | denotes the cardinality of the set S. Note that

cp⊥o (C) ∈ {1, 2}, cp⊥(C) ∈ {1, 2, 3}, cpo(C) ∈ {2, 3}, cp(C) ∈ {2, 3, 4},

although not all combinations are achievable for a point (C,C ′) in the
fibered product F (R2, 4)×F (R2,3)F (R2, 4). To be precise, for i, j ∈ {1, 2},
r, s ∈ {2, 3} and k, l ∈ {3, 4}, consider the subsets T 1

i,j , T
2,2
r,s and T 2,3

k,l of
F (R2, 4) ×F (R2,3) F (R2, 4) consisting of the pairs (C,C ′) satisfying the
following list of conditions:

In T 1
i,j : cp⊥o (C) = 1, cp⊥(C) = i and cp⊥(C ′) = j.

In T 2,2
r,s : cp⊥o (C) = 2, cpo(C) = 2, cp(C) = r and cp(C ′) = s.

In T 2,3
k,l : cp⊥o (C) = 2, cpo(C) = 3, cp(C) = k and cp(C ′) = l.

Thus, for (C,C ′) ∈ T 1
i,j , the three common obstacles in C and C ′ lie in

LC , whereas the non-obstacle in C (respectively C ′) lies in LC if and
only if i = 1 (respectively, j = 1). Likewise, for (C,C ′) ∈ T 2,2

r,s , the four
relative positions of the three common obstacles in C and C ′ can be
depicted as

• •
o1 o2

LC

L⊥C L
⊥
C

◦o3◦o3

◦o3 ◦o3

whereas the non-obstacle in C (C ′, respectively) lies on

L⊥C ∪ L
⊥
C

if and only if r = 2 (s = 2, respectively). Lastly, for (C,C ′) ∈ T 2,3
k,l , the

third common obstacle o3 lies outside

LC ∪ L⊥C ∪ L
⊥
C ,
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while the non-obstacle in C (C ′, respectively) determines a fourth pro-
jection on LC if and only if k = 4 (l = 4, respectively). We thus have:

Corollary 4.1. The various ENR’s T 1
i,j, T

2,2
r,s and T 2,3

k,l give a partition
of the fibered product F (R2, 4)×F (R2,3) F (R2, 4).

Continuous parametrized motion planning algorithms on the various
T ∗,∗∗,∗ are described next. In each case, motion is meant to be performed at
constant speed along the indicated path. The following conventions are
in force in the next pictures: (i) The obstacle o3 is sometimes omitted
when it lies in LC and is not relevant. (ii) The auxiliary dashed oriented
lines LC and L⊥C are drawn without specifying their names. (iii) The
positive (negative, respectively) hemiplane HC,+ (HC,−, respectively)
determined by LC is the one located in the positive (negative, respec-
tively) L⊥C-direction, likewise we have positive and negative hemiplanes
H⊥C,+ and H⊥C,− determined by L⊥C , where signs are determined by the
LC-direction. (iv) We set C = (o1, o2, o3, x) and C ′ = (o1, o2, o3, x

′), and
let d(u, v) stand for the Euclidean distance between the points u, v ∈ R2.

• •
o1 o2

•
x′

•
x

1 • •• •
o1 o1o2 o2

•x′

• x′
•
x

•
x

o3• o3•
1

1 1

Figure 6: T 1
1,1 (left), T 2,2

3,3 (center) and T 2,3
4,4 (right)

Parametrised motion planning in T 1
1,1, T

2,2
3,3 and T 2,3

4,4 uses the paths
in HC,+ depicted in Figure 6 and constructed in terms of three lines,
namely, the L⊥C-parallel lines through x and x′, and the LC-parallel line
having pC projection 1 + max{pC(o1), pC(o2), pC(o3)}.

As depicted in Figure 7, parametrised motion planning in T 1
1,2 and

T 1
2,1 uses straight lines. Parametrised motion planning in T 1

2,2 and T 2,2
2,2

uses the paths depicted in Figure 8 and constructed in terms of the LC-
parallel lines through x and x′ and the L⊥C-parallel line in H⊥C,+ whose
distance to o1 is δ1 = 1

2 min{d(o1, o2), d(o1, o3)}, in the case of T 1
2,2, and

δ2 = 1
2d(o1, o2), in the case of T 2,2

2,2 .
Parametrised motion planning in T 2,2

2,3 and T 2,2
3,2 uses the paths de-

picted in Figure 9 and constructed in terms of four lines `1, . . . , `4. For
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• •
o1 o2

•x′
•
x

• •
o1 o2

•
x′

•x

Figure 7: T 1
1,2 (left) and T 1

2,1 (right)

• •
o1 o3

•
o2
•x′

•x
δ1

• •o1 o2

•o3

•x′

•x
δ2

Figure 8: T 1
2,2 (left) and T 2,2

2,2 (right)

• •
o1 o2

•o3

•x

x′
•

• •
o1 o2

•o3

•x
′

x
•

Figure 9: Parametrised motion planning in T 2,2
2,3 (left) and T 2,2

3,2 (right)

instance, in the case of T 2,2
2,3 , `1 is the LC-parallel line through x; `2 is the

L⊥C-parallel line through the middle point between o1 and o2; `3 is the
LC-parallel line through the middle point between o3 and the obstacle oi
having i ∈ {1, 2} and pC(o3) = pC(oi); `4 is the L⊥C-parallel line through
x′.

Parametrised motion planning in T 2,3
3,3 is best pictured in terms of

the grid depicted in Figure 10, where vertical (horizontal, respectively)
dashed lines represent the three (two, respectively) different values in
{pC(o1), pC(o2), pC(o3)} ({p⊥C(o1), p

⊥
C(o2), p

⊥
C(o3)}, respectively) deter-

mined by an element in T 2,3
3,3 . Solid lines are then constructed to be

right in between two consecutive dashed lines, except for the right-most
vertical solid line that is chosen to be one unit to the right of the right-
most dashed vertical line. In such a setting, obstacles are located at the



Parametrised motion planning algorithms 17

intersections of dashed lines (there are only six possibilities), whereas
x and x′ are located along vertical dashed lines. Parametrised motion
planning from x to x′ then uses the simple path constructed in terms
of the three solid lines in Figure 10 together with the LC-parallel lines
connecting x and x′ to the first solid vertical line on their right.

Figure 10: Grid for T 2,3
3,3

Parametrised motion planning in T 2,3
3,4 and T 2,3

4,3 uses the strategy in
the previous paragraph, with a single modification. Namely, in the case
of T 2,3

3,4 (T 2,3
4,3 , respectively), so that x′ (x, respectively) does not lie on

some of the vertical dashed lines of Figure 10, the corresponding LC-
parallel line through x′ (x, respectively) is replaced by the L⊥C-parallel
line connecting x′ (x, respectively) to the solid lines in Figure 10.

The discussion above is still not enough to get the desired opti-
mal parametrised motion planner with 4 domains. We need a suitable
repacking of the various T ’s. Explicitly, we consider the partition of
F (R2, 4)×F (R2,3) F (R2, 4) given by the ENR’s

W1 = T 1
1,1 ∪ T

2,2
3,3 ∪ T

2,3
4,4 ,

W2 = T 1
2,2 ∪ T

2,2
2,2 ,(13)

W3 = T 1
1,2 ∪ T 1

2,1 ∪ T
2,2
2,3 ∪ T

2,2
3,2 ∪ T

2,3
3,3 and(14)

W4 = T 2,3
3,4 ∪ T

2,3
4,3 .(15)

Proposition 4.2. The parametrised motion planning algorithms on the
various T ’s assemble a parametrised motion planner with domains of
definition Wi for 1 ≤ i ≤ 4.

Proof. Continuity of the parametrised motion planning algorithm forW1

follows by direct inspection of Figure 6. We prove continuity in the other
three cases by observing that the unions in (13)–(15) are topological. In
W2 we have

T 1
2,2 ∩ T

2,2
2,2 = ∅
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because the condition cp⊥o (C) = 1 defining T 1
2,2, which is inherited by

T 1
2,2, is incompatible with the defining condition cp⊥o (C) = 2 in T 2,2

2,2 .
Likewise, the equality

T 1
2,2 ∩ T

2,2
2,2 = ∅

holds since the condition cpo(C) = 2 defining T 2,2
2,2 , which is inherited by

T 2,2
2,2 , is incompatible with the condition cpo(C) = 3 forced in T 1

2,2. On
the other hand, the equalities

T 2,3
3,4 ∩ T

2,3
4,3 = ∅ = T 2,3

3,4 ∩ T
2,3
4,3

in W4 follow by looking at conditions cp(C) and cp(C ′), respectively.
Finally, the fact that the first four T -pieces of W3 are topologically
separated from the rest of the pieces comes by looking at:

• cp⊥(C) for the T 1
1,2 piece;

• cp⊥(C ′) for the T 1
2,1 piece;

• cp(C) for the T 2,2
2,3 piece;

• cp(C ′) for the T 2,2
3,2 piece.

The topologically-separated condition for the last piece T 2,3
3,3 of W3 is a

bit more elaborated:

• T 2,3
3,3 ∩ T 1

1,2 = ∅ because of the respective conditions on cp(C);

• T 2,3
3,3 ∩ T 1

2,1 = ∅ because of the respective conditions on cp(C ′);

• T 2,3
3,3 ∩ T

2,2
2,3 = ∅ as pC(x′) ∈ {pC(o1), pC(o2), pC(o3)} holds in T 2,3

3,3

but not in T 2,2
2,3 ;

• T 2,3
3,3 ∩ T

2,2
3,2 = ∅ as pC(x) ∈ {pC(o1), pC(o2), pC(o3)} holds in T 2,3

3,3

but not in T 2,2
3,2 .
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