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Abstract

We show how Serre’s interpretation of the algebras of distribu-
tions on a formal group can be used to construct the Chevalley-
Eilenberg resolution for a Lie algebra. This construction does not
require associativity; when applied to non-associative products, it
produces invariant differential forms on homogeneous spaces.

1 Introduction

The purpose of this, essentially, expository note is to show how to define
the Chevalley-Eilenberg resolution for a Lie algebra g without using the
Jacobi identity in g (or associativity in the universal enveloping algebra
of g). The approach that we take here is to consider the cohomology
of Lie algebras as an “infinitesimal cohomology of Lie groups”. The
idea behind it comes from Serre [1, 6] who showed that a Lie algebra
can be obtained from a Lie group in two steps. First one passes from a
Lie group G to the Hopf algebra D(G) of Schwartz distributions on G
supported at the unit of G. The Hopf algebra D(G) turns out to be the
universal enveloping algebra of the Lie algebra g; in particular, g is the
Lie algebra of the primitive elements in D(G). We have two functors

Lie groups → Hopf algebras → Lie algebras

G 7→ D(G) = U(g) 7→ g
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whose composition assigns to a Lie group G its tangent Lie algebra
g. One may also think of this construction as producing the universal
enveloping algebra of a Lie algebra in terms of the product in the cor-
responding Lie group. At no point it uses the associativity of G, so it
easily translates into the context of non-associative algebra, see [3, 4].

Serre’s approach suggests that the Hopf algebra of distributions
D(G) may be a more fundamental infinitesimal object than the Lie
algebra g. It turns out that replacing the distributions on G by more
general de Rham currents on G (that is, continuous linear functions
on differential forms, rather than just on functions), one obtains the
Chevalley-Eilenberg resolution of the Lie algebra of G which is used in
the definition of the Lie algebra cohomology. This definition can be
stated in a way that does not even mention Lie algebras.

The Chevalley-Eilenberg resolution obtained in this fashion is natu-
rally a cocommutative differential graded Hopf algebra. It can also be
thought of as the universal enveloping algebra of a certain differential
graded Lie algebra, namely the cone of the Lie algebra of G. This is
not surprising since currents are a differential graded version of distri-
butions.

In differential geometry one encounters unital, non-associative1 and,
possibly, locally defined, products. They arise naturally on homoge-
neous spaces; Loos [2] shows how the theory of symmetric spaces may
be developed in the framework of the non-associative algebra. The
construction described here produces a differential graded Hopf algebra
similar to the Chevalley-Eilenberg resolution for any non-associative lo-
cal product. For such products, the standard complex calculating the
cohomology of a Lie algebra is replaced by the complex of invariant
forms on the corresponding homogeneous space.

The approach we take in this note should be known to experts but,
for some reason, is hard to find in the literature. This note is based
on a talk given by the author at the LieJor Online Seminar: Algebras,
Representations, and Applications on September 3, 2020; this accounts
for the informal style of the exposition. We assume the knowledge of
basic facts about Lie algebras, Hopf algebras and chain complexes.

1meaning “not necessarily associative”.
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2 Distributions and universal enveloping alge-
bras

2.1 Distributions

Recall that a Schwartz distribution on Rn is a continuous linear function
on some given space of smooth functions (called test functions) on Rn.
A wide class of distributions is determined by compactly supported
continuous functions: for a fixed compactly supported function ρ : Rn →
R the distribution Tρ is defined as

Tρ(f) =

∫
Rn

ρf.

The partial derivatives of a distribution T are defined by

∂T

∂xi
(f) = T

(
∂f

∂xi

)
,

and the directional derivatives are defined in the same way. They are
defined whether or not the distribution is defined by a compactly sup-
ported function and only require the differentiability of the test func-
tions.

It is said that the distribution T is supported on a set A ∈ Rn
if T (f) = 0 for any function f such that f |A = 0. There is a class
of distributions whose support is a single point. The so-called Dirac’s
delta, defined by

δ(f) = f(0),

has support in the origin in Rn. The partial derivatives of the Dirac’s
delta are also supported at the origin and so are all their linear combi-
nations. We denote the vector space spanned by the Dirac’s delta and
its derivatives by D0 and refer to it as the space of distributions sup-
ported at 0. The space D0 is graded by the order of the derivatives: δ
has degree 0, its first derivatives are of degree 1, and so on. We will use
the following notation for the partial derivatives of the Dirac’s delta:

ξd11 . . . ξdnn =
∂ d1+...+dnδ

∂x1d1 . . . ∂xndn
.

The distributions in D0 can be defined for very wide classes of test
functions. In fact, one can take as test functions all formal power series
in the coordinates x1, . . . , xn, since they can always be evaluated at
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the origin, together with all their derivatives. An element of D0 is
completely determined by its value on the formal power series. One
can speak of the distributions supported at 0 in any finite-dimensional
vector space V : we denote the space of such distributions by D0(V ).

The space D0(V ) depends on V functorially: a linear map of vector
spaces V →W induces a map

D0(V )→ D0(W ).

Moreover,

D0(V ⊕W ) = D0(V )⊗D0(W ).

These two properties imply that D0(V ) is a commutative and cocom-
mutative Hopf algebra. The product · in D0(V ) is induced by the map

V ⊕ V → V

(u, v) 7→ u+ v,

and the coproduct ∆ by the diagonal map

V → V ⊕ V

u 7→ (u, u).

Explicitly, the product in D0 is given by

ξd11 . . . ξdnn · ξ
d′1
1 . . . ξd

′
n
n = ξ

d1+d′1
1 . . . ξdn+d

′
n

n .

In particular, D0 is generated by the ξi. Dirac’s delta is the unit, so we
will denote it simply by 1. The co-product is an algebra homomorphism,
so it is defined by its value on the generators:

∆(ξi) = ξi ⊗ 1 + 1⊗ ξi.

For an arbitrary V , the Hopf algebra D0(V ) is the symmetric algebra
on V .

All the above formulae are readily obtained by observing how formal
power series behave under linear maps.
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2.2 Formal products and the convolution of distributions

The spaces D0(V ) behave functorially not only under linear maps of
vector spaces but also under so-called formal maps (see, for instance,
[3]). The formal maps that are of importance for us here are the unital
formal products on Rn. A unital formal product F on Rn is an n-tuple
of formal power series in 2n variables x1, . . . , xn and y1, . . . , yn of the
form

Fi(x1, . . . , xn, y1, . . . , yn) = xi+yi+

n∑
j,k=1

xjyk·fijk(x1, . . . , xn, y1, . . . , yn),

where i = 1, . . . , n and fijk(x1, . . . , xn, y1, . . . , yn) are some formal power
series.

A unital formal product F on Rn induces a so-called convolution
product on D0. If h(x1, . . . , xn) is a formal power series, define a formal
power series F ∗(h) in x1, . . . , xn and y1, . . . , yn by

F ∗(h)(x1, . . . , xn, y1, . . . , yn)

= h(F1(x1, . . . , xn, y1, . . . , yn), . . . , Fn(x1, . . . , xn, y1, . . . , yn)).

Then for µ, ν ∈ D0, the convolution µ ? ν ∈ D0 is defined as

(µ ? ν)(h(x1, . . . , xn)) = (µ⊗ ν)(F ∗(h)(x1, . . . , xn, y1, . . . , yn)).

Here, µ⊗ν is thought of as a distribution on the euclidean space Rn⊕Rn
with the coordinates x1, . . . , xn, y1, . . . , yn.

The most basic unital formal product is given by Fi(x1, . . . , yn) =
xi+yi. In this case, the convolution product coincides with the product
D0. In general, D0 with the convolution product and the coproduct ∆
is a not necessarily associative bialgebra (in fact, a Hopf algebra, with
an appropriate definition of a non-associative Hopf algebra), see [3, 4].

Assume now that F is a formal group and the Fi are the power series
expansions of the product in a Lie group G in some fixed coordinates,
in a neighbourhood of the neutral element of G. Serre proves that, in
this case, D0 with the convolution product is the universal enveloping
algebra of the Lie algebra g of G. It has been observed in [3] that this
same construction can be used to define universal enveloping algebras
for arbitrary Sabinin algebras.
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3 De Rham currents and the Chevalley-Eilen-
berg resolution

3.1 Currents

In the same way as Schwartz distributions are defined as continuous
linear functions on spaces of test functions, de Rham currents are con-
tinuous linear functions on differential forms [5]. Those currents that
are only non-zero on differential p-forms are called p-dimensional. This
terminology comes from the fact that a compact oriented p-dimensional
submanifold M ⊂ Rn defines a linear function on p-forms by

φ 7→
∫
M
φ.

Distributions are 0-dimensional currents.
We say that a current T is supported on a set A ∈ Rn if T (φ) = 0 for

each form φ that vanishes on A. We will be interested in the currents
supported at the origin of Rn. As for the test forms, we will consider
“formal p-forms” of the form∑

i1<...<ip

fi1,...,ip(x1, . . . , xn) dxi1 ∧ . . . ∧ dxip ,

where the fi1,...,ip are formal power series in x1, . . . , xn.
Let dξi1∧ . . .∧dξip ∈ Λp(Rn) be the p-multivector dual to dxi1∧ . . .∧

dxip . Define Dp to be the vector space of the p-dimensional currents of
the form ∑

i1<...<ip

µi1,...,ip dξi1 ∧ . . . ∧ dξip ,

where µi1,...,ip ∈ D0. In other words,

Dp = D0 ⊗ Λp(Rn).

The value of the current µdξi1 ∧ . . . ∧ dξip on the p-form

f(x1, . . . , xn) dxi1 ∧ . . . ∧ dxip

is equal to µ(f) if ik = jk for k = 1, . . . , p and 0 otherwise.
The space

D∗ = D∗(Rn) =
⊕
p

Dp
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of all currents supported at the origin is, actually, a chain complex whose
boundary map ∂ is dual to the differential d on the forms. An explicit
computation shows that

∂
(
µdξi1 ∧ . . . ∧ dξip

)
=

p∑
k=1

(−1)k+1µ ξik dξi1 ∧ . . . d̂ξik . . . ∧ dξip ,

where, as usual, d̂ξik indicates an omitted term.
The complex (D∗, ∂) is acyclic since the same is true for the complex

of the formal differential forms on Rn.

3.2 D∗ as a differential graded Hopf algebra

The space of currents enjoys the same functorial properties as the space
of distributions. A choice of coordinates in a vector space V allows one
to speak about the space D∗(V ). A linear map V → W induces a map
D∗(V ) → D∗(W ) and there is an isomorphism of differential graded
vector spaces

D∗(V ⊕W ) = D∗(V )⊗D∗(W );

as a consequence, D∗(V ) is a commutative and cocommutative differen-
tial graded Hopf algebra.

The coproduct ∆ in D∗ is induced by the diagonal map and is de-
termined by

∆(ξi) = ξi ⊗ 1 + 1⊗ ξi and ∆(dξi) = dξi ⊗ 1 + 1⊗ dξi.

The (graded) commutative product is induced by that of D∗ and that
of Λ∗(Rn).

A unital formal product F on Rn induces a pullback map from the
space of formal p-forms on Rn ⊕ Rn to the p-forms on Rn. Dually, we
obtain a convolution product

∗F : D∗ ⊗D∗ → D∗.

For φ ∈ Dp and ψ ∈ Dq, the current φ ∗F ψ ∈ Dp+q is defined by its
values on r-forms with r = p+ q:

(φ ∗F ψ)(f(x1, . . . , xn) dxi1 ∧ . . . ∧ dxir)

= (φ⊗ ψ)(f(F1, . . . , Fn) dFi1 ∧ . . . ∧ dFir),

where, on the right-hand side, Fi = Fi(x1, . . . , xn, y1, . . . , yn) and the
tensor product φ ⊗ ψ acts by φ on the x-coordinates and by ψ on the
y-coordinates.
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Theorem 3.1. The convolution product ∗F together with the coproduct
∆ endows D∗ with the structure of an acyclic differential graded bialge-
bra. When F is a formal group with the Lie algebra g, ∗F is associative
and D∗ coincides with the Chevalley-Eilenberg resolution CE(g).

The first part of the theorem is a straightforward check using the
definitions. It is also clear that the associativity of F implies that of ∗F .
As for the comparison with the Chevalley-Eilenberg resolution, it follows
from a relatively little-known description of CE(g) which is, apparently,
due to Cartier2.

Consider the two-term differential graded Lie algebra (the cone on g)

. . .→ 0→ g
id−→ g

with differential of degree -1 and copies of g in degrees 0 and 1. It is
acyclic and, therefore, its universal enveloping algebra is also acyclic (see
[7, Appendix B, Proposition 2.1]). The Chevalley-Eilenberg resolution
CE(g) is precisely this universal enveloping algebra.

On the other hand, D∗ with the product ∗F is a cocommutative
bialgebra in the category of differential graded vector spaces, generated
by its primitive elements ξi and dξi. These primitive elements form a
differential graded Lie algebra which is precisely the cone on g. By the
Milnor-Moore theorem, D∗ with the product ∗F is then isomorphic to
the universal enveloping algebra of the cone on g, that is, to CE(g).

Another way to think of this proof is to observe that the algebra
of currents D∗ with the convolution corresponding to a product in a
Lie group G may be thought of as the algebra of distributions on the
tangent bundle to G considered as a graded Lie group. On the other
hand, the cone on g is the Lie algebra tangent to this graded Lie group.
In this way, the construction of the Chevalley-Eilenberg resolution via
currents is just the graded version of Serre’s result on D0.

4 Distribution algebras for non-associative prod-
ucts

One may ask what is gained by allowing non-associative products in
the construction of the algebra of the de Rham currents. It turns out
that non-associative products exist naturally on homogeneous spaces;

2I am indebted to Olivier Mathieu for this information.
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we will see here how the complex of invariant forms on a homogeneous
space arises from the “non-associative Chevalley-Eilenberg resolution”.

4.1 Non-associative products and invariant forms

Let M be a manifold with an analytic unital non-associative product.
The left multiplication

La : M →M

y 7→ ay

is bijective for a in some neighbourhood U of the unit. A differential
form ω on M is left-invariant if L∗a(ω) = ω for a ∈ U .

The complex of left-invariant forms on M can be recovered from the
algebra D∗ of the de Rham currents with the convolution product. Let
D0 be the kernel of the counit of D0; it consists of distributions “with
no constant term”. Consider the cochain complex

HomD0
(D∗,R)

of linear functions on D∗ that vanish on the elements of the form µ ∗ φ
where φ ∈ D∗ and µ ∈ D0.

Proposition 4.1. HomD0
(D∗,R) is the complex of the left-invariant

forms with respect to the product on M .

Sketch of the proof. Consider a linear function on currents given by a
p-form ω on the manifold M .

The pullback of ω from M to M ×M via the multiplication map
can be written as

L∗x(ω(y)) +
∑

ωik(x)⊗ ωjk(y),

where each ωik(x) is a q-form with q > 0. In particular, if ω is left-
invariant

(µ ∗ φ)(ω) = (µ⊗ φ)(L∗x(ω(y))) = (µ⊗ φ)(ω(y)) = 0.

On the other hand, if (µ⊗ φ)(L∗x(ω(y))) = 0 for all φ ∈ D∗ and µ ∈ D0,
this means that L∗x(ω(y)) = ω(y).

The construction of the algebra of currents supported at the unit
is, by definition, local. Therefore, the above proposition remains true if
the product on M is defined only on some neighbourhood of the unit in
M : in this situation left-invariant differential forms should be replaced
by germs of left-invariant forms.
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4.2 Non-associative products on homogeneous spaces

Let H ⊂ G be a closed subgroup of a Lie group G and let π : G→ G/H
be the projection map. Let s : G/H → G be a section of the projection
map, that is, a map with the property that π ◦ s = Id. Then, the
homogeneous space G/H carries a non-associative product

(1) x ∗ y = π(s(x)s(y))

whose unit is the image of the unit e ∈ G.
The section s : G/H → G may fail to exist for topological reasons.

Nevertheless, one can always find a section of π over some neighbour-
hood U ⊂ G/H of π(e). In this case, (1) defines a local product

U × U → G/H.

The construction of the algebra of currents supported at the unit is, by
definition, local, and we see that any homogeneous space gives rise to a
non-associative differential graded algebra of currents D∗(G/H). Note
that the product in this algebra depends on the section s.

Proposition 4.2.

HomD0(G/H)(D∗(G/H),R) = Λ∗(g/h)g,

where g and h are the Lie algebras of G and H respectively.

Sketch of the proof. We have to verify that the left-invariant forms on
G/H are the ones that are left-invariant with respect to the product
(1). For simplicity, assume that the left products by the elements in the
image of s generate G.

Consider a form, defined on the image of the section s, left-invariant
with respect to (1). Such forms are in one-to-one correspondence with
the forms ω on G, right-invariant with respect to H and such that

ω = L∗aω

for a in the image of s. Since for any g ∈ G we have

L∗g = L∗a1 . . . Lak∗

for some k, we see that ω is left G-invariant.
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