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Round twin groups∗

Jacob Mostovoy

Abstract

We study the fundamental group of the configuration space of
n ordered points on the circle no three of which are equal. We
compute it for n < 6 and describe its mod 2 homology for n = 6.
We also show how, for arbitrary n, this group can be assembled
from planar braid groups and relate it to the pure cactus group.
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1 Introduction

The pure braid group on n strands, defined as the fundamental group of
the space of configurations of n distinct points in C, has many general-
izations. The most straightforward way to produce other braid groups
is to replace the complex plane with another surface (a manifold of
real dimension 2). Configuration spaces on higher-dimensional simply-
connected manifolds are simply-connected; however, they also produce
braid-like groups if, instead of the fundamental groups one considers
other homotopy functors as in [4]. Configuration spaces in 1-dimensional
manifolds seem to be less appealing: indeed, the configuration space of n
distinct ordered points in R consists of n! contractible pieces. Neverthe-
less, this space has several naturally defined (partial) compactifications
whose fundamental groups turn out to be of interest.

Two of these “real versions of the braid groups” have been studied
in some detail. The planar braid group, also known as the twin group,
is the fundamental group of the space of n-tuples of particles in R no
three of which are allowed to coincide. Its elements can be represented
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by n-tuples of descending strands in a horizontal strip without triple
intersections. Planar braid groups appeared in various contexts; in par-
ticular, in the theory of so-called doodles [15], or in physics in the study
of three-body interactions [10].

Another closely related group is the cactus group [11]. Its “pure”
version is the fundamental group of the moduli space of stable real
rational curves with n marked points. Although elements of the cactus
group are not usually though of as braids, such a representation exists
and may be useful in some situations, see [17, 20].

In this note we observe that there is yet another group that de-
serves to be considered as the “real version” of the pure braid group
and fits between pure planar braids and pure cactus groups. It is the
fundamental group of the configuration space of n ordered points on the
circle S1 = R∪{∞} no three of which are allowed to coincide, and such
that the nth point lies at infinity. We call it the round twin group on n
strands. Here, we will identify the round twin groups on up to 5 strands
and describe the round twin group on 6 strands as the fundamental
group of a link complement in a certain 3-manifold. We also show how
round twin groups are assembled from pure planar braid groups and
exhibit a long exact sequence involving their cohomology.

1.1 Planar braids on a line

The twin group Bn, or the group of planar braids on n strands, has a
presentation with the generators by σ1, . . . , σn−1 and the relations

σ2i = 1 for all 1 ≤ i < n;
σiσj = σjσi for all 1 ≤ i, j < n with |i− j| > 1.

There is a homomorphism of Bn onto the symmetric group Sn which
sends the generator σi to the transposition (i i + 1). The kernel of
this homomorphism is called the pure twin group or the planar pure
braid group Pn. It is the fundamental group of the configuration space
Mn = Mn(R) of n ordered particles in R no three of which are allowed
to coincide.

The pure twin groups on 3, 4 or 5 strands are free on 1, 7 and 31
generators respectively, while the pure twin group on 6 strands is a
free product of 71 copies of the infinite cyclic group and 20 copies of
the free abelian group on 2 generators, see [18]. In general, the group
Pn has a minimal presentation whose relations are commutators. The
cohomology ring of Pn is known (see [1, 6]).
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1.2 On the terminology

The groups of planar braids were discovered independently several times
and were given various names: Grothendieck cartographical groups [21],
twin groups [14, 15], groups of flat braids [16], traid groups [10]. The
most descriptive of those, namely, “flat braids”, has become inoperative
after being used for a different object in the theory of virtual knots. The
term “planar braids” used in [18, 19] is an attempt to produce the clos-
est replacement to “flat braids”. Unfortunately, it does not generalize
too well to the situation considered in the present note, namely, that of
planar braids drawn in an annulus. One might want to call them “an-
nular braids”; as observed in [7], they form annular diagram groups in
the terminology of [8]. However, the term “annular braids” has already
been used for something entirely different, see [13]. For this reason, we
will mostly use Khovanov’s terminology of “twin groups” and refer to
the elements of the corresponding groups as “twins”.

1.3 Twins on a circle

One may consider configuration spaces of points on a circle rather than
a line. These lead to annular twin groups.

The annular pure twin group Pn(S1) is the fundamental group of the
configuration spaceMn(S1) of n ordered particles in S1 no three of which
may coincide. The space Mn(S1) is an open subset in the n-dimensional
torus (S1)n; its complement consists of the points (z1, . . . , zn) which
satisfy

zi = zj = zk

for some triple of distinct indices i, j, k.
The full annular twin group Bn(S1) has a presentation with the

generators by α1, . . . , αn and η and the relations

α2
i = 1 for all 1 ≤ i ≤ n;

αiαj = αjαi for all 1 ≤ i, j ≤ n with i 6≡ j ± 1 mod n;
αiη = ηαj ; where j = i+ 1 mod n.

Annular twins can be drawn on a vertical cylinder (which, topolog-
ically, is an annulus) in the same way as the planar braids are drawn in
a plane, namely, as collections of descending strands, see Figure 1. It is
immediately clear that, with the help of the last relation, one can write
a presentation for Bn(S1) which only has two generators.
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Figure 1: Generators of B4(S
1): α2 on the left and η on the right.

There is a homomorphism Bn(S1) → Sn sending αi to (i i + 1)
for i < n and αn to (1 n), and η to (1 2 3 . . . n). The kernel of
this homomorphism is precisely the annular pure twin group Pn(S1).
Note that while the symmetric group Sn acts on Mn(S1) permuting the
labels of the particles, the full annular twin group Bn(S1) is not the
fundamental group of Mn(S1)/Sn, since this action is not free. (In fact,
Mn(S1)/Sn is easily seen to be simply connected).

Instead of the annular twin groups, it may be convenient to consider
their subgroups that consist only of those twins whose nth strand is
vertical. Then, if we think of S1 as R ∪ {∞}, this strand can be placed
at the infinity and the twin can be drawn in a plane as in Figure 2. We

Figure 2: The generator ζ of Υ5 ⊂ B6(S
1).

call such annular twins round twins. The subgroups of all round twins
in Bn(S1) and Pn(S1) will be denoted by Υn−1 and Πn respectively.
(The mismatch in the indices has its origin in the standard notation for
cactus groups, see Section 3).

A presentation for Υn is easy to obtain from the presentation for
Bn+1(S

1). For, instance, Υn can be given by the generators σ1, . . . , σn−1
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and ζ subject to the relations

(1)
σ2i = 1 for all 1 ≤ i < n;

σiσj = σjσi for all 1 ≤ i, j < n with |i− j| < 1;
σiζ = ζσi+1; for all 1 ≤ i < n− 1.

In terms of the generators of Bn+1(S
1), we have σi = αi for 1 ≤ i < n

and ζ = αnη. As in the case of Bn+1(S
1), one can also write a presen-

tation with two generators only. We do not have a good presentation
for the pure round twin group.

As mentioned in the introduction, it may be tempting to think of
twins and annular twins as “real versions” of usual braids, which are
paths of configurations of points in a complex plane. From this point of
view, the group Υn of round twins may be a good analogue of the braid
group Bn. Indeed, we can think of braids on n strands in C as braids
on n+ 1 strands in C∪{∞}, whose n+ 1st strand is vertical at infinity.

The relationship between the pure annular twin groups and pure
round twin groups is straightforward. For each n, the configuration
space Mn(S1) splits as a Cartesian product S1 × Qn, where Qn ⊂
Mn(S1) is the subspace consisting of the points with zn = ∞. As a
consequence, we have

Pn(S1) = Z×Πn

for all n since Πn = π1Qn.
For low values of n the pure round twin groups can be described

explicitly as follows:

Theorem 1.1. The group Π1 is trivial. We have

Π2 = Z,
Π3 = F2,

Π4 = F4,

Π5 = π1X4,

where X4 is the Riemann surface of genus 4 and Fk stands for the free
group on k generators.

When n ≤ 4 this statement is easy to verify directly from the defini-
tion. For n = 5, it can be deduced from the fact that Q5 is a disk bundle
over the orienting double cover of the moduli space M0,5(R) of stable
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real rational curves with 5 marked points; M0,5(R) is a connected sum
of 5 real projective planes.

The connection with the moduli spaces comes from the fact that
the space Qn is homotopy equivalent to the quotient Mn(S1)/SL(2,R),
with the natural action of SL(2,R) on S1 = RP 1. This connection also
gives us the following result:

Theorem 1.2. The group Π6 is the fundamental group of the comple-
ment of a 10-component link in the 3-manifold which is the boundary of
a 4-disk with five 1-handles.

This fact is a direct consequence of the known description ofM0,6(R)
as a blowup of a certain configuration of 5 points and 10 lines in RP3.
In principle, one might use it to compute the cohomology of Π6; we will
find the mod 2 Betti numbers of Π6 in Section 5 by other methods.

In general, we will show how to assemble Πn from the planar pure
braid groups P k with the tools of Bass-Serre theory.

Theorem 1.3. Πn is the fundamental group of a graph of groups with
n vertices: one vertex labelled with Pn−1 and n−1 vertices labelled with
Pn−2.

It follows from this statement that Qn is an Eilenberg-MacLane
space and, therefore, its cohomology coincides with that of Πn. The
description of Qn in terms of the groups P k, in principle, gives a way to
compute the cohomology of Qn, since the cohomology of P k is known
completely. Nevertheless, this is not a straightforward task and we
illustrate it on the example of Q6.

The note has the following structure. In the next section we prove
Theorems 1.1 and 1.2. We will not give any introduction to the moduli
spaces of stable rational curves referring the reader instead to [5, 11, 12].
In Section 3 we compare the round twin groups to the cactus groups,
that is, the fundamental groups of the moduli spaces of curves. Namely,
we show that the round twin group is a subgroup of the corresponding
full cactus group. In Section 4 we show that Πn is the fundamental
group of a certain graph of planar braid groups. Finally, in Section 5
we obtain a long exact sequence for the cohomology of Πn and compute
the groups H∗(Π6,Z2).
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2 Round twins with few strands

2.1 Π1, Π2 and Π3

The group Π1 is trivial and Π2 = Z since Q1 is a point and Q2 = S1.
The space Q3 is the punctured torus (z1, z2) 6= (∞,∞) and, therefore,
Π3 = F2.

2.2 The group Π4

As for Q4, it is the complement in the torus (S1)3 to the union of the
sets (∞,∞, t), (∞, t,∞), (t,∞,∞) and (t, t, t) with t ∈ S1. It is shown
in Figure 3 as a fundamental region in its universal cover; one has to
identify the opposite faces of the cube and remove the black lines. Q4

Figure 3: The space Q4.

can be retracted onto the 2-dimensional subcomplex of (S1)3 which is
an octahedron with two opposite faces removed and opposite vertices
identified; its fundamental group is F4.

2.3 Π5 and the moduli space of real stable rational curves
with 5 marked points

The group PSL(2,R) acts on S1 and, hence, on the space Mn(S1), by
real Möbius transformations. The quotient space Mn(S1)/PSL(2,R) is,
in fact, a subspace of the moduli space M0,n(R) of stable real rational
curves with n marked points. This space is very well-studied; we refer
to [5, 12] for a detailed description of its geometry and combinatorics.
A point in M0,n(R) is a tree of projective lines with n marked points,
whose components have no automorphisms, considered up to a Möbius
transformation on each component. A point in this moduli space lies
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in Mn(S1)/PSL(2,R) if it corresponds to a curve whose graph of com-
ponents is a star, that is, has all but one vertices univalent, and whose
every component represented by a univalent vertex has exactly 2 marked
points on it, see Figure 4.

Figure 4: A point in M0,10(R) coming from Q10.

In general, Mn(S1)/PSL(2,R) is the complement to a codimension
1 subset of M0,n(R). However, when n = 5, each point of M0,5(R)
comes from M5(S

1). In fact, the map

M5(S
1)→M0,5(R)

factors as

M5(S
1)→M5(S

1)/SL(2,R)→M5(S
1)/PSL(2,R) =M0,5(R),

where the first map, up to homotopy, is a trivial circle bundle and the
second map is the orienting double cover. SinceM0,5(R) is a connected
sum of five real projective planes, it follows that M5(S

1)/SL(2,R) is a
Riemann surface of genus 4. On the other hand, M5(S

1)/SL(2,R) is
homeomorphic to Q5.

Remark 2.1. The fact that Π5 = π1X4 can also be established by
means of Corollary 4.2 in Section 4.

2.4 Π6 and M0,6(R)

The complement to M6(S
1)/PSL(2,R) inM0,6(R) is the closure of the

subset of all curves with two components, with three marked points
on each component. The combinatorial types of all the curves in this
closure are shown in Figure 5. In fact, M0,6(R) is the blowup of RP 3

along the configuration of points and lines shown in Figure 6; first, one
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Figure 5: Points in M0,6(R) not coming from M6(S
1).

blows up RP 3 at the 5 points and then at the 10 lines connecting them.
The complement of M6(S

1)/PSL(2,R) is then precisely the exceptional
divisor of the blowup along the 10 lines, since this exceptional divisor
consists of the curves on Figure 5; see [5].

This means thatM6(S
1)/PSL(2,R) is a complement to a 10-component

link in the blowup of RP 3 at 5 points. The orienting double cover of the
blowup of RP 3 at 5 points consists of two 3-spheres with 6 punctures
connected by six 1-tubes; this is readily seen to be the boundary of a 4-
disk with five 1-handles. The 10 components of the exceptional divisor
lift to 10 circles in this manifold. The space M6(S

1)/PSL(2,R) can be
identified with the complement to these circles and Q6 is homeomorphic
to it. This establishes Theorem 1.2.

Figure 6: The configurations of points and lines in RP 3 whose blowup
is M0,6(R).

3 Relationship with the cactus groups

The group

Γn = π1M0,n(R)
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is known as the nth pure cactus group. The map

Qn 'Mn(S1)/SL(2,R)→M0,n(R)

gives rise to a homomorphism

Πn → Γn

for each n. While we do not have neat presentations for either of the two
series of groups, this homomorphism can be described very explicitly in
terms of the corresponding full groups.

The full cactus group Jn (see [11]) has a presentation with the gen-
erators sp,q, where 1 ≤ p < q ≤ n, and the following relations:

(2)

s2p,q = 1,

sp,qsm,r = sm,rsp,q if [p, q] ∩ [m, r] = ∅,
sp,qsm,r = sp+q−r,p+q−msp,q if [m, r] ⊂ [p, q].

There is a homomorphism Jn → Sn to the symmetric group: it sends
sp,q into the permutation τp,q of {1, . . . , n} which reverses the order of
p, p+ 1, . . . , q and leaves the rest of the elements unchanged. The pure
cactus group Γn+1 is the kernel of this homomorphism.

Consider the homomorphism

κ : Υn → Jn

defined by
κ(σi) = si,i+1,
κ(ζ) = s1,ns2,n.

with σi and ζ as in (1). This homomorphism is clearly well-defined and
sends Πn+1 ⊂ Υn to Γn+1. We will denote by the same letter the map
sending words in the generators of Υn to words in the generators of Jn.

In order to see that the restriction of κ to Πn is actually induced by
the map

Πn →M0,n(R),

one has to recall the geometric meaning of the generators of Jn: the
generator sp,q corresponds to a path inM0,n+1(R) in which the marked
points p, . . . , q collide and bubble off onto a new component and then
return to the original component in the reversed order (see [11]). This
shows that σi,i+1 map into si,i+1 and ζ must go to s1,ns2,n.

It is not hard to see that κ is not always injective; for instance,
Π4 = F4 while Γ4 is infinite cyclic.
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Proposition 3.1. The homomorphism κ : Υn → Jn is injective for
n ≥ 4.

Proof. If w is a word in the generators sp,q that defines the trivial ele-
ment of Jn, there exists a sequence w1, . . . , wm such that w1 = w, wn

is trivial, wi+1 is obtained from wi by applying one of the relations (2)
once and the length of wi+1 is not greater than the length of wi.

This follows from the proof of Proposition 2 in [17] where it is shown
that two words in the sp,q which represent the same element of Jn and
are locally reduced (their lengths cannot be decreased by applying the
relations (2)) must have the same length. Indeed, if w can only be taken
into the trivial word by a sequence of moves that increases the length
at some point, there exists a locally reduced word which represents the
trivial element in Jn, which is impossible.

The image of a word in the generators σi and ζ under κ is a word w
in the si,i+1, s1,n and s2,n. If it represents the trivial element of Jn, it
can be transformed into the trivial word by means of the relations that
involve only the generators si,i+1, s1,n, s2,n and s1,n−1 only, since the
appearance of any other generator of Jn in the sequence of the words
connecting w and 1 would imply that at some point the length of the
word increases.

Assume that n ≥ 4; under this condition neither of s1,n, s1,n−1 or
s2,n coincides with any of si,i+1. Let z be the word s1,ns2,n. For any
word in u in the generators si,i+1, s1,n, s2,n and s1,n−1, define the word
µ(u) in the s1,2, . . . , sn−1,n, z and s1,n inductively as follows.

For a word w in the generators sp,q, et w be the word in which each
sp,q is replaced by sn−q+1,n−p+1. Now:

• if u = 1 we set µ(u) = 1;

• if u = si,i+1v, we set µ(u) = si,i+1µ(v);

• if u = s1,nv, we set µ(u) = µ(v)s1,n;

• if u = s2,nv, we set µ(u) = z−1µ(v)s1,n;

• if u = s1,n−1v, we set µ(u) = zµ(v)s1,n.

For any word u in si,i+1, s1,n, s2,n and s1,n−1, the word µ(u) is of
the form µ′(u)sk1,n, where µ(u) is a word in si,i+1, and z only.

Assume v is a word in the generators σi and ζ such that κ(v) defines a
trivial element of Jn. Take the sequence of words w1, . . . , wn in the sp,q,
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such that w1 = κ(v), wm is trivial, wi+1 is obtained from wi by applying
one of the relations (2) once and the length of wi+1 is not greater than
the length of wi. Then, the sequence of words µ′(w1), . . . , µ

′(wn) in s1,2,
. . . , sn−1,n and z transforms κ(v) into the trivial word by means of the
relations (2). Replacing each si,i+1 with σi and z with ζ, we obtain a
sequence of words that transforms v into the trivial word by means of
the relations (1) in Υn. In particular, this means that v = 1 in Υn. 2

Remark 3.2. The fact that the twin groups inject into the cactus
groups has been observed in [2].

4 Round braids via graphs of groups

Let n > 2 and assume that the points of the configurations in Mn−1
are labelled by the natural numbers from 1 to n− 1. Denote by Mn−2,j
a copy of Mn−2 whose configurations are labelled by natural numbers
from 1 to n− 1 with the label j omitted.

For a configuration x ∈ Mn−2,j define ρj(x) ∈ Mn−1 by adding a
point xj with the label j to the right of all the points of x, Similarly,
λj(x) is defined by adding xj to the left of x. These concatenation
operations can be considered as maps

Mn−2,j →Mn−1.

Indeed, in both cases one can assume that all the points of each config-
uration in Mn−2,j lie in some fixed open interval and choose xj to be a
fixed point outside of this interval. Note that, in general, these maps
do not preserve the basepoints.

In the union

Mn−1 t
⊔

1≤j<n

Mn−2,j × [−1, 1],

identify, for each x ∈Mn−2,j , the point (x,−1) with λj(x) ∈Mn−1 and
the point (x, 1) with ρj(x) ∈Mn−1. Denote the resulting space by Q′n.

Theorem 4.1. The space Q′n is homotopy equivalent to Qn.

This result, which will be proved towards the end of this subsection,
allows us to express Πn as the fundamental group of a graph of groups
involving Pn−1 and Pn−2.

For each j between 1 and n − 1, choose a braid gj+ ∈ Bn−1 whose
permutation sends 12 . . . (n− 1) to 12 . . . ĵ . . . (n− 1)j, and a braid gj−
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which sends sends 12 . . . (n − 1) to j12 . . . ĵ . . . (n − 1). Let i : Pn−2 →
Pn−1 be the inclusion map which adds one disjoint strand on the right.
Define

(ρj)∗ : Pn−2 → Pn−1

as

x 7→ gj+xg
−1
j+

and, similarly, let

(λj)∗ : Pn−2 → Pn−1

be the map

x 7→ gj−xg
−1
j− .

Now, define the graph of groups Φn in the following manner. The un-
derlying directed graph of Φn has n vertices: one “central” vertex and
n− 1 “peripheral” vertices, with two edges from each of the peripheral
vertices to the central vertex. The central vertex is labelled by Pn−1
and the peripheral vertices by Pn−2. Enumerate the copies of Pn−2
from 1 to n− 1; then, the edges emanating from the jth copy of Pn−2
are labelled by (ρj)∗ and (λj)∗.

Figure 7: The graph of groups Φn for n = 6.

Corollary 4.2. The classifying space BΦn for the graph of groups Φn

is homotopy equivalent to Qn.

According to Theorem 1B.11 of [9], this implies that the spaces Qn

have the homotopy type of the Eilenberg-Maclane spaces K(Πn, 1).
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Proof of Theorem 4.1. Let Qn,I ⊂ Qn be the subspace consisting of the
configurations which have either one or two points outside of a finite
open interval I ⊂ R ⊂ S1; that is, zero or one points in R\I. We claim
that the inclusion of Qn,I into Qn is a homotopy equivalence. Indeed,
for any pair of finite open intervals I ⊆ I ′, the inclusion Qn,I → Qn,I′ is
a homotopy equivalence. Any compact subspace of Qn lies in Qn,I for
some finite interval I, and, therefore, the inclusion Qn,I → Qn induces
an isomorphism of homotopy groups. Since both Qn,I and Qn have
homotopy type of cell complexes, they are homotopy equivalent.

The space Qn,I is covered by n open subspaces: Uj with 1 ≤ j < n
and V . The subspace Uj consists of the configurations whose intersec-
tion with S1\I consists of the point zj and zn = ∞; the subspace V
consists of those configurations whose only point at ∞ is zn.

V is homotopy equivalent to Mn−1 while Uj is homeomorphic to
Mn−2 × [−1, 1]. The sets Uj are disjoint, while Uj ∩ V can be identified
with two copies of Mn−2. The inclusion map

Uj ∩ V → Uj

is equivalent to the inclusion

Mn−2 × {−1} tMn−2 × {1} →Mn−2 × [−1, 1]

of the bases into the cylinder. The map

Uj ∩ V → V

is equivalent to the concatenation

x 7→ ρj(x)

on one copy of Uj and to
x 7→ λj(x)

on the other copy. This establishes the Theorem.

Proof of Corollary 4.2. The construction of the space Q′n is very similar
to that of the graph of groups Φn. Indeed, Mk has the homotopy type
of K(P k). The mapping cylinders corresponding to the pair of edges
emanating from each peripheral vertex are glued together into a cylinder
of the form Mn−2 × [−1, 1].

The braids gj+ and gj− can be seen as paths from the basepoint of V
to the basepoints of the connected components of Uj ∩ V ; denote these
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path by γj+ or γj− respectively. Then, the maps (ρj(x))∗ and (λj(x))∗
are of the same form: they send the homotopy class of a path α to that
of γ−1j±αγj±. This shows that the fundamental group of Q′n is precisely
the fundamental group of BΦn.

5 The mod 2 cohomology of Π6

In this section we compute the mod 2 cohomology groups of Π6. Al-
though the method that we use is, in principle, applicable to round twin
groups on any number of strands, it does not produce the cup product
and the combinatorial problem involved appears hard for n > 6. We
use mod 2 coefficients for simplicity.

5.1 The cohomology of Mn(R)

The Betti numbers of Mn were found by Björner and Welker [3] and
the cohomology ring was computed by Baryshnikov in the unpublished
preprint [1]; a brief exposition of his work can be found in [6]. Here, for
simplicity, we work with the mod 2 cohomology. Baryshnikov described
the cohomology of Mn in terms of certain partially ordered sets that he
called string posets. We will follow Baryshnikov’s description although
with a somewhat different terminology.

Define a k-crossing type on n strands as a partition of the set
{1, . . . , n} into 2k+ 1 disjoint subsets I0, . . . , I1, . . . , I2k with |I2i−1| = 2
for all 1 ≤ i ≤ k. We will denote this crossing type by (I0, . . . , I2k)
or simply by (I); the subsets I2i−1 will be called crossings. Each con-
figuration in Mn defines a crossing type: the crossing I2i−1 consists of
the labels of the ith (from left to right) pair of coinciding points of
the configuration, and the subset I2i consists of the labels of the points
lying between the ith and the i + 1st pair of coinciding points. This
term “crossing type” has the following explanation: a planar pure braid
is a path in Mn and each value of the parameter along this path that
defines a k-crossing type with k > 0 corresponds to a crossing point of
the strands of the braid. The number k here is the number of crossings
that the braid has at this value of the parameter.

A k-crossing type (I) defines a submanifold ζ(I) without boundary
in Mn, of codimension k. A configuration x ∈Mn lies in ζ(I) if and only
if

(a) xp = xq whenever p, q ∈ I2i−1, and
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(b) xp < xq whenever p ∈ Ii and q ∈ Ij with i < j.

The intersection number with ζ(I) determines a cohomology class in

Hk(Mn,Z2) which we denote simply by (I). The classes (I) are not
linearly independent. In degree 1, all the relations are of the following
form. For each partition of {1, . . . , n} into three disjoint subsets I0, I1, I2
with I1 = {q}, where 1 ≤ q ≤ n, we have

(3)
∑
p∈I0

(I0\{p}, {p, q}, I2) =
∑
p∈I2

(I0, {p, q}, I2\{p}).

In a k-crossing type on n strands, the crossing I2i−1 can be resolved
so as to obtain a k − 1-crossing type on n strands. Namely, given a
k-crossing type (I), we say that the k − 1-crossing type (J) defined as

Jp = Ip, if p ≤ 2i− 3,
J2i−2 = I2i−2 ∪ I2i−1 ∪ I2i,
Jp = Ip+2, if p ≥ 2i− 1,

is obtained by resolving the ith crossing of (I).
For any two crossing types (I) and (J), the intersection of the cor-

responding submanifolds ζ(I) ∩ ζ(J) is either empty or corresponds to
a crossing type which we denote by (I) ∩ (J). The intersection of a
k-crossing type and an m-crossing type is a k + m-crossing type; (I)
and (J) can be obtained from (I)∩ (J) by resolving two complementary
sets of crossings.

Theorem 5.1. The cohomology H∗(Mn,Z2) is additively generated by
the crossing types on n strands; as a ring, it is generated by the 1-
crossing types with the intersection product, modulo the relations (3).

Call a k-crossing type (I) essential if for any i between 1 and k the
maximal element of the set I2i−1 ∪ I2i lies in I2i.

Theorem 5.2. Essential crossing types on n strands are linearly inde-
pendent and span the mod 2 cohomology of Mn.

5.2 The long exact sequence for the cohomology of Qn

The inclusion map Mn−1 → Qn can be deformed so as to obtain a
cofibration

Mn−1 → Qn → Σ

∗ t ⊔
1≤j<n

Mn−2,j

 ,
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where * is a one-point space and Σ denotes the suspension. This cofi-
bration gives rise to a long exact sequence in cohomology

. . .← H̃k+1

Σ

∗ t ⊔
1≤j<n

Mn−2,j

 ,Z2

← Hk(Mn−1,Z2)

← Hk(Qn,Z2)← H̃k

Σ

∗ t ⊔
1≤j<n

Mn−2,j

 ,Z2

← . . . ,

which, in view of the suspension isomorphism, translates into

. . .←
⊕

1≤j<n

Hk(Mn−2,j ,Z2)
d←− Hk(Mn−1,Z2)

← Hk(Qn,Z2)←
⊕

1≤j<n

Hk−1(Mn−2,j ,Z2)← . . .

The connecting map d sends a class c to

(λ∗1(c) + ρ∗1(c), . . . , λ
∗
n−1(c) + ρ∗n−1(c)).

It follows from the description of the cohomology classes in terms of
crossing types that a crossing type (I) ∈ Hk(Mn−1,Z2) is sent by the
induced map λ∗j to zero if j /∈ I0; when j ∈ I0, it is sent to the crossing
type obtained from (I) by erasing j from I0. Similarly, ρj erases j from
I2k whenever j ∈ I2k and sends (I) to zero if j /∈ I2k.

Although we have an exact description of the cohomology of the
spaces Mk, it does not seem to be a straightforward task to compute the
cohomology of Qn in general. In the following subsection we compute
the mod 2 cohomology of Q6.

5.3 Six strands

Here, we will prove the following

Theorem 5.3. The non-trivial mod 2 cohomology groups of Q6 are
H0(Q6,Z2) = Z2, H1(Q6,Z2) = (Z2)

15 and H2(Q6,Z2) = (Z2)
14.

The computation that proves this statement occupies the rest of this
section.
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Proof. The space M4 is a one-point union of 7 circles, and M5 of 31
circles, so the only degree where the connecting map d is nontrivial is
i = 1. It is the sum of 5 maps

d(j) : H1(M5,Z2)→ H1(M4,j ,Z2)

and
ker d = ∩ ker d(j).

One may compute the dimensions of these kernels using the explicit
bases for the first cohomology, that consist of essential crossing types.
It is easy to describe ker d(1) since d(1) maps each essential crossing type
either to zero or to another essential crossing type. The space ker d(1)
is defined by 7 linearly independent equations (4) below.

In order to find the equations for ker d(j) for j > 1 we make use of the
fact that the action of the symmetric group S5 on M5 interchanges these
spaces. So we obtain the equations for ker d(j) from those for ker d(j−1)
by applying the permutation (j − 1 j). The action of the symmetric
group may send essential crossing types to non-essential crossing types
and the laborious part of the computation is to describe this action.
Direct calculation shows that

dim(ker d1) = 24,

dim(ker d1 ∩ ker d2) = 18,

dim(ker d1 ∩ ker d2 ∩ ker d3) = 13,

dim(ker d1 ∩ ker d2 ∩ ker d3 ∩ ker d4)

= dim(ker d1 ∩ ker d2 ∩ ker d3 ∩ ker d4 ∩ ker d5) = 10.

Therefore,

dimH1(Q6,Z2) = dim ker d+ 5 dimH0(M4,Z2) = 10 + 5 = 15.

From the exact sequence of the previous subsection we also see that

dimH2(Q6,Z2) = 5 dimH1(M4,Z2)−dim im(d) = 5 ·7−(31−10) = 14.

Now, we provide the details of the computation. We will write a
crossing type (I) by listing first the elements of I0, then, in parentheses,
the elements of I1 and then the elements of I2. So, for instance, 1(23)45
denotes the crossing type with I0 = {1}, I1 = {2, 3} and I2 = {4, 5} and
(12)345 is the crossing type with I0 = ∅, I1 = {1, 2} and I2 = {3, 4, 5}.
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The kernel of the map d(1) is spanned by the elements of two types:
the crossing types (I) such that 1 ∈ I1 and sums of the following form:

1(23)45 + (23)145 1(24)35 + (24)135 12(34)5 + 2(34)15
14(23)5 + 4(23)15 15(23)4 + 5(23)14 1(34)25 + (34)125
13(24)5 + 3(24)15

The space of equations satisfied by ker d(1) is the dual subspace to

ker d(1) in (H1(M5))
∗; it is spanned by the elements

(4)
1(23)45∗ + (23)145∗ 1(24)35∗ + (24)135∗ 12(34)5∗ + 2(34)15∗

14(23)5∗ + 4(23)15∗ 15(23)4∗ + 5(23)14∗ 1(34)25∗ + (34)125∗

13(24)5∗ + 3(24)15∗

where (I)∗ is dual to the crossing type (I). Interchanging the symbols 1
and 2 in an essential crossing type we obtain another essential crossing
type. Therefore, the dual to the kernel of d(2) is spanned by

(13)245∗ + 2(13)45∗ (14)235∗ + 2(14)35∗ 1(34)25∗ + 12(34)5∗

4(13)25∗ + 24(13)5∗ 5(13)24∗ + 25(13)4∗ (34)125∗ + 2(34)15∗

3(14)25∗ + 23(14)5∗

The permutation (2 3) sends the kernel of d(2) to the kernel of d(3).
The essential crossing types are sent to essential crossing types with
one exception: the crossing type 45(12)3 is sent to

45(13)2 = 45(12)3+4(12)35+4(13)25+5(12)34+5(13)24+(12)345+(13)245.

The space (ker d(3))
∗ is spanned by

(12)345∗ + 3(12)45∗ + 45(12)3∗ (14)235∗ + 3(14)25∗

4(12)35∗ + 34(12)5∗ + 45(12)3∗ 2(14)35∗ + 23(14)5∗

5(12)34∗ + 35(12)4∗ + 45(12)3∗ (24)135∗ + 3(24)15∗

1(24)35∗ + 13(24)5∗.

Now, consider ker d(4). There are 4 essential crossing types that are
sent to non-essential crossing types by the permutation (3 4): 5(13)24,
25(13)4, 5(23)14 and 15(23)4. They are sent to the following types:

5(13)24 7→ 5(14)23 = (12)345 + (14)235 + (13)245 + 5(12)34 + 5(13)24,
25(13)4 7→ 25(14)3 = (12)345 + 5(12)34 + 2(13)45 + 2(14)35 + 25(13)4,
5(23)14 7→ 5(24)13 = (12)345 + (24)135 + (23)145 + 5(12)34 + 5(23)14,
15(23)4 7→ 45(23)1 = (12)345 + (23)145 + 4(12)35 + 4(23)15 + 5(12)34

+5(23)14 + 45(12)3,
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respectively. We see that (ker d(4))
∗ is spanned by

4(23)15∗ + (23)145∗ + 5(12)34∗ + 35(12)4∗ + 45(12)3∗ + 5(13)24∗ + 25(13)4∗

+15(23)4∗

4(12)35∗ + (12)345∗ + 5(12)34∗ + 45(12)3∗

14(23)5∗ + 1(23)45∗ + 15(23)4∗

34(12)5∗ + 3(12)45∗ + 35(12)4∗

5(23)14∗ + 5(12)34∗ + 35(12)4∗ + 45(12)3∗ + 5(13)24∗ + 25(13)4∗ + 15(23)4∗

4(13)25∗ + (13)245∗ + 5(13)24∗

24(13)5∗ + 2(13)45∗ + 25(13)4∗

Finally, let us compute (ker d(5))
∗. There are 12 essential crossing types

that are sent to non-essential crossing types by the permutation (4 5):

(14)235 7→ (15)234 = (12)345 + (13)245 + (14)235,
2(14)35 7→ 2(15)34 = (12)345 + 2(13)45 + 2(14)35,
3(14)25 7→ 3(15)24 = (13)245 + 3(12)45 + 3(14)25,
23(14)5 7→ 23(15)4 = 2(13)45 + 3(12)45 + 13(14)5,
(24)135 7→ (25)134 = (12)345 + (23)145 + (24)135,
1(24)35 7→ 1(25)34 = (12)345 + 1(23)45 + 1(24)35,
3(24)15 7→ 3(25)14 = (23)145 + 3(12)45 + 3(24)15,
13(24)5 7→ 13(25)4 = 1(23)45 + 3(12)45 + 13(24)5,
(34)125 7→ (35)124 = (13)245 + (23)145 + (34)125,
1(34)25 7→ 1(35)24 = (13)245 + 1(23)45 + 1(34)25,
2(34)15 7→ 2(35)14 = (23)145 + 2(13)45 + 2(34)15,
12(34)5 7→ 12(35)4 = 1(23)45 + 2(13)45 + 12(34)5.

As a consequence, (ker d(5))
∗ is spanned by

(23)145∗ + (24)135∗ + (34)125∗ + 2(34)15∗ + 3(24)15∗ + 4(12)35∗

+4(13)25∗ + 5(23)14∗ + 14(23)5∗ + 24(13)5∗ + 34(12)5∗ + 45(12)3∗,
(12)345∗ + (14)235∗

+(24)135∗ + 1(24)35∗ + 2(14)35∗ + 4(12)35∗ + 5(12)34∗ + 45(12)3∗,
1(23)45∗ + 1(24)35∗ + 1(34)25∗ + 13(24)5∗ + 12(34)5∗ + 14(23)5∗ + 15(23)4∗,
3(12)45∗ + 3(14)25∗ + 3(24)15∗ + 13(24)5∗ + 23(14)5∗ + 34(12)5∗ + 35(12)4∗,
4(23)15∗ + 4(12)35∗ + 34(12)5∗ + 45(12)3∗ + 4(13)25∗ + 24(13)5∗ + 14(23)5∗,
(13)245∗ + (14)235∗ + (34)125∗ + 1(34)25∗ + 3(14)25∗ + 4(13)25∗ + 5(13)24∗,
2(13)45∗ + 2(14)35∗ + 2(34)15∗ + 12(34)5∗ + 23(14)5∗ + 24(13)5∗ + 25(13)4∗.

Computation show that there are 21 linearly independent equations
in 31 variables, which gives the dimension of ker d1 ∩ ker d2 ∩ ker d3 ∩
ker d4 ∩ ker d5 equal to 10.



Round Twin Groups 21

Jacob Mostovoy
Departmento de Matemáticas, CINVESTAV,
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