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Computations of hitting time densities for the

generalized Cox-Ingersoll-Ross diffusion

Jonathan Gutierrez-Pavón 1

Abstract

We give explicit formulæ for the density function of first hitting time of
the so-called generalized Cox-Ingersoll-Ross process. In fact, we treat the
several cases of the diffusion depending on the values of the parameters.
To find the density function we use the eigenvalues and eigenfunctions
associated with the infinitesimal operator. It turns out that a very im-
portant tool in this analysis is the so-called Kummer equation, where we
use the known solutions; this allows us to compute the eigenfunctions in
terms of the confluent hypergeometric functions.
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1 Introduction

As described in [8], the changes of the so-called membrane potential between
two neurons in the human brain can be modeled using an Itô’s diffusion

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt,

see also [4]. It turns out that this model can be a good approximation of a
real phenomenon, according to [8]. One of main interests in these applications
is what people in neuroscience call the interspike intervals, which can be seen
as random variable of the form

τ = inf{t : Xt ≥ f(t)},

where f is a deterministic time function. The importance of this random
variable relies on the hypothesis that the flow of information in the nervous

1This work is part of the Ph.D. dissertation of the author at the Mathematics Department
of Cinvestav in 2017. The research was partially supported by CONACYT.
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system is encoded in the timing of spikes. For this kind of phenomenon, a
model considered in the literature is the diffusion

dXt = (µ− aXt)dt+ σ
√
Xt − SdBt,

where µ, a, σ, S are constants.

Coincidentally, this model is also used in financial mathematics to model
interest rates. In fact, according to the theory of pricing, the price of a so-called
zero-coupon bond is give by the expectation

E
[
e−
∫ t
0
Xsds

]
,

see e.g. [2]. Again, knowing information of the first time when Xt surpasses
a function is of importance in this context. When S = 0, the process X is
called the Cox-Ingersoll-Ross process (CIR), see also [6] for more details. In
the context of financial mathematics, specifically in the so-called risk theory,
an important paradigm is modelling the time of default of a bond based on
the so-called intensity models, where it is used a function λ(x) to study the
random time

τ = inf{t :

∫ t

0

λ(Xs)ds ≥ E},

for some constant E, see e.g. [7].

These are some reasons that motivate us to work with a diffusion that is a
generalization of the CIR process. Precisely, the solution of

dXt = (µ− aXt)dt+ σ
√
Xt − SdBt.

In particular, we study the first hitting time of the process X, defined as

τy := inf{t > 0 : Xt = y},

where y is a given constant.

Such task of finding the density has been done before using theory of spec-
tral decompositions, in particular we use results in [10]. The case S = 0 is well
known and study, see e.g. [11] . Notice that when S is not zero one might try
to apply a space transformation and use Itô’s lemma to go back to the case
S = 0. However, in this paper we do not do that. Instead do that, we work
directly with the differential equations and the spectral decomposition, this
helps to see the connection with the so-called Kummer differential equation,
which is an important tool for the whole analysis. This way of work has the
benefit to see how the spectral theory works when dealing hitting times, and
can be applied to other diffusions.

Let us mention how the paper is organized. In the coming Section 2 we
present the basic theory that we use along the paper. Basic concepts such as
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the speed measure, the scale function and the killing measure are introduced.
We also recall the classification of the end-points in the state space.

In Section 3 we will state the result of V. Linetsky [10] and we present some
tables which summarizes our results. In the section 4 we study the classification
of the end-point S. Sections 5, 6 and 7 presents the solution ψ of the equation
Lψ + λψ = 0, and we provide the proofs of the results.

Finally, in Section 8 we study the first hitting time density of the process
Y that is solution of the stochastic differential equation

dYt = (β − bYt)dt+ σ
√
s− YtdBt.

Such process is the reflected analogous of X. To this end, we will apply the
Itô’s formula to recycle the formulas obtained for X. To finish, in the Section
9 we present a numerical illustration.

2 Preliminaries

Let {Xt : t ≥ 0} be a one-dimensional diffusion whose state space is some
interval I ⊆ R with end-points e1 and e2.

Every diffusion has three basic characteristics that determine the process:
speed measure, scale function and killing measure, see [3] for more details. We
consider the special case when the three basic characteristics are absolutely
continuous with respect to Lebesgue measure in the interior of I, i.e.

(1) m(dx) = m(x)dx, k(dx) = k(x)dx, s(x) =

∫ x

s′(y)dy, x ∈ (e1, e2).

Then the infinitesimal generator associated is the following

(2) Lf(x) =
1

2
a2(x)f ′′(x) + b(x)f ′(x)− c(x)f(x), x ∈ (e1, e2).

The functions a, b, c are called the infinitesimal parameters of X, and are
related to m, k, s through the following formulas

s′(x) = e
−

∫ x 2b(y)

a2(y)
dy
, m(x) =

2

a2(x)s′(x)
, k(x) =

2c(x)

a2(x)s′(x)
.

The speed measure, the scale function and the killing measure determine
the behavior of the diffusion in the interior of the state space I. However the
behavior of the diffusion at the boundary points is characterized by boundary
conditions.

In [3] it is presented a classification of the end-points of I according to the
behavior of the diffusion in the neighborhood of these end-points. To explain
this, let z be fixed such that e1 < z < e2. According with (1) we have

(3) m((x, z)) :=

∫ z

x

m(y)dy, and s(x) :=

∫ x

z

s′(y)dy.
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Now define

A : =

∫ z

e1

[m((x, z)) + k((x, z))] s′(x)dx,

B : =

∫ z

e1

[s(z)− s(x)] (m(x) + k(x))dx.

Then the end-point e1 it is classified in the following manner (for e2 is similar,
see [12])

i. The end-point e1 is called exit if

(4) A <∞ and B =∞.

ii. The end-point e1 is called entrance if

(5) A =∞ and B <∞.

iii. The end-point e1 is called regular if

(6) A <∞ and B <∞.

In this case, one additionally has the following subclassification:

• if m({e1}) = k({e1}) = 0 then e1 is called regular reflecting,

• if m({e1}) <∞, and k({e1}) =∞ then e1 is called regular killing,

• if 0 < m({e1}) < ∞, and k({e1}) = 0 then e1 is called regular
sticky,

• if m({e1}) = 0, and k({e1}) > 0 then e1 is called regular elastic,

• if m({e1}) =∞, and k({e1}) ≥ 0 then e1 is called regular absorb-
ing.

iv. The end-point e1 is called natural if

(7) A =∞ and B =∞.

Remark 2.1. Since in this paper m, k are absolutely continuous with respect
to Lebesgue measure, then the boundary condition at a regular boundary can
only be reflecting or killing, for more details see [12]. Also, in this paper we
do not consider the case when e1 is natural, because in our examples this case
is not presented.
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Note that if k((e1, e2)) = 0, if we use the previous classification and the
sacle function s, it is known that for e1 < x < y

(8) Px (τy <∞) =


1, if e1 is entrance or regular reflecting;∫ x
e1
s′(z)dz∫ y

e1
s′(z)dz

, if e1 is exit or regular killing,

where τy := inf {t > 0 : Xt = y}; see for instance [10].

3 Spectral expansion for first hitting time den-
sity

Let us present the spectral decomposition theorem of V. Linetsky found in
[10]; see also [9]. Consider a diffusion X which is solution of the stochastic
differential equation

(9) dXt = (µ− aXt)dt+ σ
√
Xt − S dBt,

where µ, a, S ∈ R and σ > 0. It is known that the infinitesimal operator is

(10) Lf(x) =
σ2(x− S)

2
f ′′(x) + (µ− ax)f ′(x), x ∈ (S,∞),

acting on twice differentiable functions f : (S,∞)→ R. To specify completely
the process X, we also need to specify the behavior of X at S; this fact is
important for the following theorem.

Theorem 3.0.1. (Linetsky [10]) Let X be a diffusion that is solution of
dXt = µ(Xt)dt+ σ(Xt)dBt and whose state space I has the end-points e1 and
e2. Define Iy := [e1, y] if e1 is regular reflecting, and Iy := (e1, y] in any other
case. Fix X0 = x and y ∈ I such that e1 < x < y < e2, and suppose that e1 is
either regular, entrance or exit. For λ ∈ C and x ∈ Iy, let ψ(x, λ) be the unique
non trivial solution (up to a multiple independent of x) of the Sturm-Liouville
equation Lψ + λψ = 0,with boundary condition at e1 given by

(11) lim
x→e+1

ψ(x, λ) = 0 or lim
x→e+1

ψx(x, λ)

s′(x)
= 0.

Then the spectral expansion of Px(t < τy < ∞), with e1 < x < y takes the
form

(12) Px(t < τy <∞) = −
∞∑
n=1

e−λnt
ψ(x, λn)

λnψλ(y, λn)
,

where 0 < λ1 < λ2 < λ3 · · · are the simple positive zeros of ψ(y, λ), i.e.,
ψ(y, λn) = 0. Note that each λn depends on y.



Hitting time for generalized CIR 20

Remark 3.0.2. The function ψ(x, λ) appearing in the previous theorem is
square-integrable with respect to m in a neighborhood of e1; and ψ(x, λ) and
ψx(x, λ) are continuous in x and λ in Iy × C and entire in λ ∈ C for each
x ∈ Iy fixed. For more details see [9].

Remark 3.0.3. In our case the state space is (S,∞), this implies that using
the notation of the Theorem 3.0.1 we have that e1 := S and e2 :=∞.

If we apply the identity

(13) Px(τy <∞) = Px(τy < t) + Px(t < τy <∞),

by Theorem 3.0.1 and (8) we obtain that for e1 < x < y

(14) Px (τy ≤ t) = Px(τy <∞) +

∞∑
n=1

e−λnt
ψ(x, λn)

λnψλ(y, λn)
.

An important ingredient for the methodology is solving the equation Lψ+
λψ = 0. It turns out that the boundary condition for ψ at e1 = S depends on
the classification of S (see [3] for details):

i. If e1 is exit or regular killing then the boundary condition is

lim
x→e+1

ψ(x, λ) = 0.

ii. If e1 is entrance or regular reflecting then the boundary condition is

lim
x→e+1

ψx(x, λ)

s′(x)
= 0,

where ψx(x, λ) := ∂
∂xψ(x, λ).

Remark 3.0.4. When e1 < y < x < e2, the first hitting time problem is
treated similarly. In this case we have Iy := [y, e2] if e2 is regular reflecting,
and Iy := [y, e2) in any other case. It is also known that

(15) Px (τy <∞) =


1, if e2 is entrance or regular reflecting;∫ e2
x
s′(z)dz∫ e2

y
s′(z)dz

, if e2 is exit or regular killing.

Then the spectral expansion of Px(t < τy <∞), with y < x < e2 is

(16) Px(t < τy <∞) = −
∞∑
n=1

e−λnt
φ(x, λn)

λnφλ(y, λn)
,

where the solution φ(x, λ) of Lu+ λu = 0 is square-integrable with respect to
m in a neighborhood of e2 and satisfying the appropriate boundary condition
at e2, i.e.
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i. lim
x→e−2

φ(x, λ) = 0 if e2 is exit or regular killing, or

ii. lim
x→e−2

φx(x, λ)

s′(x)
= 0 if e2 is entrance or regular reflecting.

Also, φ(x, λ) and φx(x, λ) are continuous in x and λ in Iy × C and entire in
λ ∈ C for each x ∈ Iy fixed. The λn are all the simple positive zeros of φ(y, λ).

Table 1. Nature of the end-point S

Parameters S Boundary Condition

I. −1 <
2aS − 2µ

σ2
< 0 Regular reflecting lim

x→S+

ψx(x, λ)

s′(x)
= 0

with a 6= 0

II.
2aS − 2µ

σ2
≥ 0 Exit lim

x→S+
ψ(x, λ) = 0

with a 6= 0

III.
2aS − 2µ

σ2
≤ −1 Entrance lim

x→S+

ψx(x, λ)

s′(x)
= 0

with a 6= 0
IV. a = 0 and Regular killing lim

x→S+
ψ(x, λ) = 0

−1 <
−2µ

σ2
< 0

Table 2. Solution ψ

Parameters Solution of Lψ + λψ = 0

I. −1 <
2aS − 2µ

σ2
< 0 ψ(x, λ) = F

(
−λ
a , 2µ−2aS

σ2
,
2a(x−S)

σ2

)
with a 6= 0

II.
2aS − 2µ

σ2
≥ 0 ψ(x, λ)=

(
2a(x−S)

σ2

)1− 2µ−2aS

σ2 F
(
−λ
a −

2µ−2aS

σ2
+1,2− 2µ−2aS

σ2
,
2a(x−S)

σ2

)
with a 6= 0

III.
2aS − 2µ

σ2
≤ −1 ψ(x, λ) = F

(
−λ
a , 2µ−2aS

σ2
,
2a(x−S)

σ2

)
with a 6= 0

IV. a = 0 and ψ(x, λ) =
(

2(x−S)

σ2

)( 1
2
− µ

σ2
)
· J

(1− 2µ

σ2
)

(
2
√

2λ(x−S)

σ2

)
−1 <

−2µ

σ2
< 0

We will apply Theorem 3.0.1 to find the first hitting time density of the
process X that is solution of (9). We summarize our results in the following
tables. Table 1 shows the nature of the end-point S (second column) and the
type of boundary condition (third column), both depending on certain regions
for the parameters µ, a, S and σ (first column).

Table 2 shows the solution of the equation (11) and Table 3 shows precisely
the formula (14). Note that in the end there are four types: I, II, III, IV. The
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proofs of the first two columns of Table 1 are give in Section 4. Section 5 deals
with cases I and III of these tables. Section 6 deals with the case II, and the
Section 7 presents the case IV.

Let us give the notation used in the tables:

• F (a, b, x) :=

∞∑
n=0

(a)n
(b)n

xn

n!
, where (a)n := a · (a+ 1) · · · (a+ n− 1).

• Fλ represents the derivative of F with respect to λ.

• Jv(x) :=

∞∑
n=0

(−1)n
(
x
2

)v+2n

n!Γ(v + n+ 1)
the Bessel function.

• Jv,n represents a positive zero of the Bessel function Jv.

Here Γ is the Gamma function.

Table 3. Spectral decomposition

Parameters Spectral decomposition for the first hitting time density

I. −1 <
2aS − 2µ

σ2
< 0 Px (τy ≤ t) = 1 +

∞∑
n=1

e
−λnt

F
(
−λn
a , 2µ−2aS

σ2
,
2a(x−S)

σ2

)
λnFλ

(
−λn
a , 2µ−2aS

σ2
,
2a(y−S)

σ2

)
with a 6= 0

II.
2aS − 2µ

σ2
≥ 0 Px (τy ≤ t) =

∫ x
S
s′(z)dz∫ y

S
s′(z)dz

+

∞∑
n=1

e
−λnt ψ(x, λn)

λnψλ(y, λn)

with a 6= 0

III.
2aS − 2µ

σ2
≤ −1 Px (τy ≤ t) = 1 +

∞∑
n=1

e
−λnt

F
(
−λn
a , 2µ−2aS

σ2
,
2a(x−S)

σ2

)
λnFλ

(
−λn
a , 2µ−2aS

σ2
,
2a(y−S)

σ2

)
with a 6= 0

IV. a = 0 and Px(τy≤t)=
(
x−S
y−S

)v
−2
(
x−S
y−S

)v
2 ∑∞

n=0 e
−
σ2Jv,nt

8(y−S)
Jv

(
Jv,n

√
x−S
y−S

)
Jv,n·J1+v(Jv,n)

−1 <
−2µ

σ2
< 0

4 Classification of the end-point S

We consider the process X that is solution of (9) with state space give by the
interval I = [S,∞) if S is regular reflecting or I = (S,∞) in any other case.
We suppose that X0 = x > S and we consider y ∈ I fixed such that x < y. To
study this process we first classified the end-point S.

Proposition 4.0.1. The end-point S has the following classification:

i. If −1 <
2aS − 2µ

σ2
< 0 then S is regular.

ii. If
2aS − 2µ

σ2
≥ 0 then S is exit.
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iii. If
2aS − 2µ

σ2
≤ −1 then S is entrance.

Proof. We prove the first case, the other two cases are similar. Suppose that

−1 <
2aS − 2µ

σ2
< 0,

and let z be a fixed value such that S < z < ∞. To verify that S is regular,
we calculate the following integrals to see that they are finite:∫ z

S

m((x, z))s(x)dx

=

∫ z

S

(∫ z

x

2σ−2e
−2ay
σ2 (y − S)

2µ−2aS

σ2
−1dy

)
e

2ax
σ2 (x− S)

2aS−2µ

σ2 dx

≤M
∫ z

S

(∫ z

S

(y − S)
2µ−2aS

σ2
−1dy

)
(x− S)

2aS−2µ

σ2 dx

= M

∫ z

S

(y − S)
2µ−2aS

σ2
−1dy ·

∫ z

S

(x− S)
2aS−2µ

σ2 dx

<∞,

where M is a constant. In similar way we obtain∫ z

S

s(x)m(x)dx

=

∫ z

S

(∫ z

x

e
2ay

σ2 (y − S)
2aS−2µ

σ2 dy

)
2σ−2e

−2ax
σ2 (x− S)

2µ−2aS

σ2
−1dx

<∞.

We used, in both cases, the fact that −1 <
2aS − 2µ

σ2
< 0, to obtain that the

integrals are finite.

Corollary 4.0.2. If a = 0 and −1 < −2µ
σ2 < 0 then the end-point S is regular.

The condition a 6= 0 presented in tables shows up in the following sections.

5 First hitting time density for the cases I and
III

According to Theorem 3.0.1, for the cases I and III (in Tables 1, 2 and 3) we
have to find a function ψ(x, λ) such that it satisfies

(17)
σ2(x− S)

2
ψ′′(x)+(µ−ax)ψ′(x)+λψ(x) = 0, and lim

x→S+

ψx(x, λ)

s′(x)
= 0.

In turn we have the following proposition.
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Proposition 5.0.1. If a 6= 0, then the function

(18) ψ(x, λ) = F

(
−λ
a
,

2µ− 2aS

σ2
,

2a(x− S)

σ2

)
,

is solution of (17), with

F (a, b, x) :=

∞∑
n=0

(a)n
(b)n

xn

n!
,

where (a)n := a · (a+ 1) · · · (a+ n− 1).

Proof. Consider z = σ2(x−S)
2 , and define g(z) := f

(
2z
σ2 + S

)
. From (17) we

obtain the equation

zg′′(z) +

(
2µ

σ2
− 4az

σ4
− 2aS

σ2

)
g′(z) +

4λ

σ4
g(z) = 0.

Now consider w = 4az
σ4 and define h(w) := g

(
σ4w
4a

)
. Since a 6= 0, we arrive

at:

wh′′(w) + (
2µ− 2aS

σ2
− w)h′(w)−

(
−λ
a

)
h(w) = 0.

The previous equation is called the Kummer equation (see [15]), and ac-
cording with [15, p.2] the solution is

h(w) = F

(
−λ
a
,

2µ− 2aS

σ2
, w

)
.

Returning to the variable x we obtain the result.

Applying the Proposition 5.0.1 and the formula (14), we obtain the follow-
ing theorem.

Theorem 5.0.2. Let X be the process that is solution of (9) with S < x < y,
a 6= 0, such that S is regular reflecting or entrance. Then the first hitting time
distribution of the process X is

(19) Px (τy ≤ t) = 1 +

∞∑
n=1

e−λnt
F
(
−λn
a , 2µ−2aS

σ2 , 2a(x−S)
σ2

)
λnFλ

(
−λn
a , 2µ−2aS

σ2 , 2a(y−S)
σ2

) ,
where the derivative Fλ

(
−λn
a

,
2µ− 2aS

σ2
,

2a(y − S)

σ2

)
is

−1

a

∞∑
k=0

(−λn
a

)
k(

2µ−2aS
σ2

)
k

φ

(
−λn
a

+ k

) ( 2a(y−s)
σ2

)k
k!

(20)

+
1

a
φ

(
−λn
a

)
F

(
−λn
a

,
2µ− 2aS

σ2
,

2a(y − S)

σ2

)
,
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and φ(z) :=
Γ′(z)

Γ(z)
, where Γ is the Gamma function. See [10] for more details.

From the Theorem 5.0.2 we obtain a formula for the first hitting time
density for the cases I and III

Px (τy ∈ dt) = −
∞∑
n=1

e−λnt
F
(
−λn
a , 2µ−2aS

σ2 , 2a(x−S)
σ2

)
Fλ

(
−λn
a , 2µ−2aS

σ2 , 2a(y−S)
σ2

)(21)

=

∞∑
n=1

e−λntλncn,

where

(22) cn :=
−F

(
−λn
a , 2µ−2aS

σ2 , 2a(x−S)
σ2

)
λnFλ

(
−λn
a , 2µ−2aS

σ2 , 2a(y−S)
σ2

) .
Remark 5.0.3. To be able to carry out a numerical procedure we propose a
naive but effective approximation of λn and cn. First consider the following
formula found in [15],

F (a, b, x) = π
−1
2 Γ(b)e

x
2

[
x

(
b

2
− a
)] 1

4−
b
2

(23)

cos

(
2

√
x

(
b

2
− a
)
− bπ

2
+
π

4

){
1 +O

(
| a |

−1
2

)}
.

Since the λn are the zeros of ψ(y, λ), with y fixed, we will use the formula
(23) to find an approximation of λn for n large given by

(24) λn ≈

[
σ2

2a(y − S)

(
π(µ− aS)

2σ2
+
nπ

2
− 3π

8

)2

− µ− aS
σ2

]
× a.

Then applying again the formula (23) we obtain an approximation for cn
in (22) with n large given by

cn ≈
(−1)n+12π

(
n+ µ−aS

σ2 − 3
4

)
· e

2a(x−y)
σ2

π2
(
n+ µ−aS

σ2 − 3
4

)2

− 4µ−4aS
σ2 · 2a(y−S)

σ2

·
(
x− S
y − S

) 1
4−

µ−aS
σ2

× cos

(
π

(
n+

µ− aS
σ2

− 3

4

)√
x− S
y − S

− π(µ− aS)

σ2
+
π

4

)
.
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6 First hitting time density for the case II

For the case II, in the tables of section 3, we have to find a function ψ(x, λ)
such that

(25) Lψ + λψ = 0 and lim
x→S+

ψ(x, λ) = 0.

We have the following proposition:

Proposition 6.0.1. If a 6= 0, then the function ψ(x, λ) defined by the formula(
2a(x− S)

σ2

)1− 2µ−2aS

σ2

F

(
−λ
a
− 2µ−2aS

σ2
+ 1, 2− 2µ−2aS

σ2
,

2a(x−S)

σ2

)
,

is solution of (25).

Proof. The proof is similar to the Proposition 5.0.1. With the same changes
of variable we obtain the Kummer equation.

Applying the formula (14) and (8) we arrive at

(26) Px (τy ≤ t) =

∫ x
S
s′(z)dz∫ y

S
s′(z)dz

+

∞∑
n=1

e−λnt
ψ(x, λn)

λnψλ(y, λn)
,

where s′(z) = e
2az
σ2 (z − S)

2aS−2µ

σ2 . Therefore the first hitting time density
Px (τy ∈ dt) for the case II is

−
∞∑
n=1

e−λnt
(x− S)1− 2µ−2aS

σ2 F
(
−λn
a −

2µ−2aS
σ2 + 1, 2− 2µ−2aS

σ2 , 2a(x−S)
σ2

)
(y − S)1− 2µ−2aS

σ2 Fλ

(
−λn
a −

2µ−2aS
σ2 + 1, 2− 2µ−2aS

σ2 , 2a(y−S)
σ2

) .
To find an approximation of the λn (with n large), we use again the formula
(23), thus

λn ≈ −a×

[
y

(
1− µ− aS

σ2

)
−
{
π

8
− π

2

(
µ− aS
σ2

− n
)}2

+
2µ− 2aS

σ2
− 1

]
.

We apply again the formula (23) if we wish to approximate cn.

7 First hitting time density for the case IV

Note that in previous two sections we consider a 6= 0. Now we present an
example of a particular situation when a = 0. In this case the process X is
the solution of

dXt = µdt+ σ
√
Xt − SdBt.
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We consider only the case when −1 < −2µ
σ2 < 0 (The other cases in Propo-

sition 4.0.1 with a = 0 are similar). From Corollary 4.0.2 we have that the
end-point S is regular, and we now assume that S is killing. Therefore we have
to find a function ψ(x, λ) such that it satisfies

(27)
σ2(x− S)

2
ψ′′(x) + µψ′(x) + λψ(x) = 0 and lim

x→S+
ψ(x, λ) = 0.

Proposition 7.0.1. The function

(28) ψ(x, λ) =

(
2(x− S)

σ2

)( 1
2−

µ

σ2
)

· J(1− 2µ

σ2
)

(
2

√
2λ(x− S)

σ2

)
,

is solution of (27), where Jv(x) :=

∞∑
n=0

(−1)n
(
x
2

)v+2n

n!Γ(v + n+ 1)
.

Proof. It follows using the formula in Table 15 of [13].

Remark 7.0.2. For y fixed such that S < x < y, we find the λn such that
ψ(y, λn) = 0 in the following manner, let Jv,n be the positive zeros of the Bessel
function Jv, where v := 1− 2µ

σ2 . Then by (28) the values λn must satisfies the
equation

(29) 2

√
2λn(y − S)

σ2
= Jv,n.

Thus

(30) λn =
σ2J2

v,n

8(y − S)
.

Lemma 7.0.3. Let ψ be the function in (28), then

(31) ψλ(y, λn) = −
(

2(y − S)

σ2

) 3
4−

µ

σ2

· 2
√

2
√
y − S

σ · Jv,n
· J2− 2µ

σ2
(Jv,n) .

Proof. We first compute the derivative of ψ with respect to λ, where ψ is (28).
Then we arrive at the following expression for ψλ(x, λ):

(32)

(
2(x− S)

σ2

) v
2

√
2(x− S)

σ2
· 1

2
√
λ
·
∞∑
k=0

(−1)k(v + 2k)

(√
2λ(x−S)

σ2

)v+2k−1

k! · Γ(k + v + 1)
.

On the other hand, notice that

(33) J ′v(x) =
1

2

∞∑
n=0

(−1)n(v + 2n)
(
x
2

)v+2n−1

n!Γ(v + n+ 1)
.
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Then by evaluating function in (33) at
√

2λ(x−S)
σ2 , then (32) reads as

(34) ψλ(x, λ) =

(
2(x− S)

σ2

) v
2 + 1

2

· 1√
λ
· J ′v

(
2

√
2λ(x− S)

σ2

)
.

Now we use the following identity found in [10]:

(35) J ′v(z) = −Jv+1(z) +
v

z
Jv(z).

Applying the identity (35) we arrive at

ψλ(x, λ) =

(
2(x− S)

σ2

) v
2 + 1

2

· 1√
λ
· J ′v

(
2

√
2λ(x− S)

σ2

)

=

(
2(x−S)
σ2

) v
2 + 1

2

√
λ

[
σv

2
√

2λ(x− S)
· Jv

(
2

√
2λ(x− S)

σ2

)

− Jv+1

(
2

√
2λ(x− S)

σ2

)]
.

Using (30), and the fact that Jv(Jv,n) = 0, we obtain

ψλ(y, λn)

=

(
2(y − S)

σ2

)v
2 + 1

2 2
√

2(y − S)

σ · Jv,n

[
σv

2
√

2λn(y − S)
Jv (Jv,n)− Jv+1 (Jv,n)

]

=

(
2(y − S)

σ2

)v
2 + 1

2 2
√

2(y − S)

σ · Jv,n
· [−Jv+1 (Jv,n)] .

This completes the proof.

Note that applying the Lemma 7.0.3 we have

(36)
ψ(x, λn)

λnψλ(y, λn)
=
−2

Jv,n
·
(
x− S
y − S

) v
2

·
Jv

(
Jv,n

√
x−S
y−S

)
J1+v (Jv,n)

.

By joining everything, we obtain the following theorem.

Theorem 7.0.4. Let X be the process that is solution of

dXt = µdt+ σ
√
Xt − SdBt.

Suppose that X0 = x and S < x < y, for y fixed. If −1 < −2µ
σ2 < 0 and S is

killing, then

(37) Px(τy ≤ t) =

(
x− S
y − S

)v
−2 ·

(
x− S
y − S

) v
2

·
∞∑
n=0

e−
σ2Jv,nt

8(y−S)

Jv

(
Jv,n

√
x−S
y−S

)
Jv,n · J1+v (Jv,n)

.
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Remark 7.0.5. When σ = 2, µ = 2v + 2 and S = 0, then the process X is
the Squared Bessel process. Also note that if τRy :=inf{t > 0 : Rt = y} where
R represents the Bessel process, then

Px
(
τRy ≤ t

)
= Px2

(
inf{s > 0 : R2

s = y2} ≤ t
)

= Px2

(
inf{s > 0 : Xs = y2} ≤ t

)
= Px2

(
τXy2 ≤ t

)
.

Therefore using the formula (37), we can recover the formula for the first
hitting time density of the Bessel process when S = 0 is killing. Indeed, in [10,
p.391] one can see such formula:

Px(τRy ≤ t) =

(
x

y

)2v

− 2

(
x

y

)v ∞∑
n=0

e
−J2
v,nt

2y2

Jv

(
x
yJv,n

)
Jv,nJ1+v(Jv,n)

.

8 Spectral expansion for the reflected general-
ized Cox-Ingersoll-Ross process

In this section we will consider another process Y that is solution of

(38) dYt = (β − bYt)dt+ σ
√
S − Yt dBt,

with state space I = (−∞, S] if S is regular reflecting, or I = (−∞, S) if S
is not regular reflecting. The infinitesimal generator is given by

(39) Lf(x) =
σ2(S − x)

2
f ′′(x) + (β − bx)f ′(x).

We want to find the density of ζy :=inf {t > 0 : Yt = y}. To this end, we
will use the formula of the first hitting time density of the process X that is
solution of (9). We first present three tables with the results of this section.
Similar to the Tables 1, 2, and 3, Table 4 shows the nature of the end-point
S and the type of boundary condition, Table 5 shows the solution of equation
(11), and Table 6 shows the formula (14).

Table 4. Nature of the end-point S

Parameters S Boundary Condition

I′. −1 < 2β−2bS
σ2 < 0 Regular reflecting lim

x→S+

ψx(x, λ)

s′(x)
= 0

with b 6= 0

II′. 2β−2bS
σ2 ≥ 0 Exit lim

x→S+
ψ(x, λ) = 0

with b 6= 0

III′. 2β−2bS
σ2 ≤ −1 Entrance lim

x→S+

ψx(x, λ)

s′(x)
= 0

with b 6= 0
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Table 5. Solution ψ

Parameters Solution of Lψ + λψ = 0

I′. −1 < 2β−2bS

σ2
< 0 ψ(x, λ) = F

(
−λ
b ,

2β

σ2
,
2b(x−S)

σ2

)
with b 6= 0

II′. 2β−2bS

σ2
≥ 0 ψ(x, λ)=

(
2b(x−S)

σ2

)1− 2bS−2β

σ2 F
(
−λ
b −

2bS−2β

σ2
+1, 2− 2bS−2β

σ2
,
2b(x−S)

σ2

)
with b 6= 0

III′. 2β−2bS

σ2
≤ −1 ψ(x, λ) = F

(
−λ
b ,

2β

σ2
,
2b(x−S)

σ2

)
with b 6= 0

Table 6. Spectral decomposition

Parameters Spectral decomposition for the first hitting time density

I′. −1 < 2β−2bS
σ2 < 0 Px (ζy ≤ t) = 1 +

∞∑
n=1

e−λnt
F
(
−λn
b
, 2bS−2β

σ2 , 2b(S−x)
σ2

)
λnFλ

(
−λn
b
, 2bS−2β

σ2 , 2b(S−y)
σ2

)
with b 6= 0

II′. 2β−2bS
σ2 ≥ 0 Px (ζy ≤ t) =

∫ 2S−x
S

s′(z)dz∫ y
S
s′(z)dz

+

∞∑
n=1

e−λnt
ψ(2S − x, λn)

λnψλ(y, λn)

with b 6= 0

III′. 2β−2bS
σ2 ≤ −1 Px (ζy ≤ t) = 1 +

∞∑
n=1

e−λnt
F
(
−λn
b
, 2bS−2β

σ2 , 2b(S−x)
σ2

)
λnFλ

(
−λn
b
, 2bS−2β

σ2 , 2b(S−y)
σ2

)
with b 6= 0

In order to analyze process Y , we use the Itô’s formula to contruct a new
process Z, which will allow us to use the results of previous sections. Suppose
that Y0 = x and let y be fixed such that S > x > y. Consider the function
g(x, t) := −x+ 2S. Applying the Itô’s formula we arrive at

(40) dZt = (2bS − β − bZt)dt+ σ
√
Zt − S dBt, where Zt = −Yt + 2S.

This process is (9) with µ := 2bS − β and a := b. Note that Z0 = 2S − x
and define y := 2S − y. Then using the Proposition 4.0.1 for the end-point S,
we obtain the following proposition.

Proposition 8.0.1. The end-point S obeys the following classification

i. If −1 <
2β − 2bS

σ2
< 0 then S is regular.

ii. If
2β − 2bS

σ2
≥ 0 then S is exit.

iii. If
2β − 2bS

σ2
≤ −1 then S is entrance.
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Proof. Notice that the nature of the end-point S for process Y is the same as
for process Z. Then we can use Proposition 4.0.1.

For the cases I′ and III′ in Proposition 8.0.1 we have to find a function
ψ(x, λ) such that

(41)

σ2(x− S)

2
ψ′′(x) + (2bS − β − bx)ψ′(x) + λψ(x) = 0, and

lim
x→S+

ψx(x, λ)

s′(x)
= 0.

In turn we have the following proposition.

Proposition 8.0.2. If b 6= 0, then the function

(42) ψ(x, λ) = F

(
−λ
b
,

2bS − 2β

σ2
,

2b(x− S)

σ2

)
,

is solution of (41).

Proof. Is similar to Proposition 5.0.1. With the same changes of variable to
obtain the Kummer equation.

If we define ηy := inf{t > 0 : Zt = y}, then

(43) Px(ζy ≤ t) = P2S−x(ηy ≤ t).

Then applying the formula (14) we arrive at

Px (ζy ≤ t) = P2S−x(ηy ≤ t)(44)

= 1 +

∞∑
n=1

e−λnt
F
(
−λn
b , 2bS−2β

σ2 , 2b(S−x)
σ2

)
λnFλ

(
−λn
b , 2bS−2β

σ2 , 2b(S−y)
σ2

) .
Remark 8.0.3. To find an approximation for λn (with n large), we use the
formula (23)

(45) λn ≈

[
σ2

2b(y − S)

(
π(bS − β)

2σ2
+
nπ

2
− 3π

8

)2

− bS − β
σ2

]
× b.

Remark 8.0.4. For the case II′ in the Proposition 8.0.1, we have to find a
function ψ(x, λ) such that Lψ + λψ = 0 and

lim
x→S+

ψ(x, λ) = 0.

If b 6= 0, we obtain that the solution ψ(x, λ) is given by the expression(
2b(x− S)

σ2

)1− 2bS−2β

σ2

F

(
−λ
b
− 2bS − 2β

σ2
+ 1, 2− 2bS − 2β

σ2
,

2b(x− S)

σ2

)
.
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Then applying the formula (14) and (8) we arrive at

(46) Px (ζy ≤ t) = P2S−x(ηy ≤ t) =

∫ 2S−x
S

s′(z)dz∫ y
S
s′(z)dz

+

∞∑
n=1

e−λnt
ψ(2S − x, λn)

λnψλ(y, λn)
,

where s′(z) = e
2bz
σ2 (z − S)

2β−2bS

σ2 . To find an approximation for λn (with n
large), we use again the formula (23). Then we have

(47) λn ≈ −b×

[
y

(
1−bS−β

σ2

)
−
{
π

8
−π

2

(
bS−β
σ2
−n
)}2

+
2bS−2β

σ2
−1

]
.

9 Numerical example

In this section, using the package Wolfram Mathematica 10.1, we give a il-
lustration of a numerical approximation for the case III of Tables 1, 2 and 3.
Consider the process X that is solution of

(48) dXt = (3− 2Xt)dt+
√
Xt − 1 dBt.

Suppose that X0 = x = 9
8 and y = 5

4 . In this case, applying the Proposition
4.0.1, we have that the end-point S = 1 is entrance because

(49)
2aS − 2µ

σ2
=

2 · 2 · 1− 2 · 3
1

= −2 < −1.

Then the function ψ that we consider is

(50) ψ(x, λ) = F (−4λ, 1, 2x− 1) .

Using the formula (23) we obtain an approximation for the function ψ, and
we also have approximations for the eigenvalues λn (ψ(y, λ) ≈ 0 with y = 5

4 )
for n = 1, 2, 3.... The approximation of the graph of ψ is drawn in Figure 1.

Figure 1: Approximation graph ψ.

Now we give an approximation for cn using the formula (25) to have one
picture of an approximation the first hitting time density. For our estimation,
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Figure 2: Approximation first hitting time density.

we have truncated the serie (21) at the first 100 terms. The graph of this
approximation is presented in the Figure 2.
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