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Sequential motion planning in connected sums of

real projective spaces

Jorge Aguilar-Guzmán Jesús González

Abstract

In this short note we observe that the higher topological com-
plexity of an iterated connected sum of real projective spaces is
maximal possible. Unlike the case of regular TC, the result is
accessible through easy mod 2 zero-divisor cup-length considera-
tions.
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1 Introduction

It was proved in [7] that the topological complexity (TC) of the m-th
dimensional real projective space RPm agrees1 with Imm(RPm), the
minimal dimension d so that RPm admits a smooth immersion in Rd.
Cohen and Vandembroucq have recently shown in [4] that the fact above
does not hold for gRPm, the g-iterated connected sum of RPm with
itself, if g ≥ 2. Indeed, TC(gRPm) is maximal possible whenever g ≥ 2,
a result that contrasts with the currently open problem of assessing how
much TC(RPm) deviates from 2m.

Cohen and Vandembroucq’s result for TC(gRPm) extends their im-
pressive calculation in [5], using obstruction theory, of the topological
complexity of non orientable closed surfaces. In this short note we ob-
serve that a simple minded zero-divisor cup-length argument suffices

1This characterization holds as long as RPm is not parallelizable; for the three
exceptional cases the relation is TC(RPm) = Imm(RPm) − 1 = m for m = 1, 3, 7.
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to prove the analogous fact for Rudyak’s higher topological complexity
TCs:

Theorem 1.1. For g,m ≥ 2 and s ≥ 3, TCs(gRPm) = sm.

This is the same (but much simplified) phenomenon for TCs(RPm)
studied in [3, 6]. The case m = 2 is essentially contained in [8, Propo-
sition 5.1].

Remark 1.2. Since (higher) topological complexity is a homotopy in-
variant of spaces, Theorem 1.1 describes the corresponding invariant for
any space in the homotopy type class of an iterated connected sum of a
real projective space. This covers, for instance, manifolds classified up
to homeomorphism in [2] (the case g = 2 in Theorem 1.1).

2 Proof

We assume familiarity with the basic ideas, definitions and results on
Rudyak’s higher topological complexity, a variant of Farber’s original
concept (see [1]). In what follows all cohomology groups are taken with
mod 2 coefficients.

The first ingredient we need is the well-known description of the
cohomology ring of the connected sum M#N of two n-manifolds M
and N : Using the cofiber sequence

Sn−1 ↪→M#N →M ∨N

one can see that the cohomology ring H∗(M#N) is the quotient of
H∗(M ∨N) by the ideal generated by the sum [M ]∗ + [N ]∗ of the duals
of the (mod 2) fundamental classes of M and N . In particular, for the
g-iterated connected sum gRPm of RPm with itself, we have:

Lemma 2.1. The cohomology ring of gRPm is generated by 1-dimen-
sional cohomology classes xu, for 1 ≤ u ≤ g, subject to the three rela-
tions:

• xuxv = 0, for u 6= v;

• xm+1
u = 0;

• xmu = xmv .

The top class in H∗(gRPm) is denoted by t; it is given by any power
xmu with 1 ≤ u ≤ g.
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Corollary 2.2. The cohomology ring of the s-fold cartesian product of
gRPm with itself is given by

(1) H∗(gRPm × · · · × gRPm) ∼=
s⊗

j=1

(
Z2[x1,j , . . . , xg,j ]/Ig,j

)
.

Here xu,j is the pull back of xu ∈ H1(RPm) under the j-projection map
(RPm)×s → RPm, and Ig,j is the ideal generated by the elements xm+1

u,j ,
xmu,j + xmv,j and xu,jxv,j for u 6= v.

We let tj ∈ Hm((RPm)×s) stand for the image of the top class
t ∈ Hm(RPm) under the j-th projection map (RPm)×s → RPm. The
top class in (1) is then the product t1t2 · · · ts, which agrees with any
product xmu1,1

xmu2,2
· · ·xmus,s.

The second ingredient we need concerns with standard estimates for
the higher topological complexity of CW complexes:

Lemma 2.3 ([1, Theorem 3.9]). For a path connected CW complex X,

zcls(X) ≤ TCs(X) ≤ s dim(X),

where zcls(X) is the maximal length of non-zero cup products of s-th zero
divisors, i.e., of elements in the kernel of the s-iterated cup-product map
H∗(X)⊗s → H∗(X).

Note that any element xr,i+xr,j is a zero-divisor, so that Theorem 1.1
follows from:

Proposition 2.4. The product

(x1,1 + x1,2)
m(x1,1 + x1,3)

m · · · (x1,1 + x1,s)
m(x2,1 + x2,2)

m−1(x2,1 + x2,3)

is the top class in H∗((gRPm)⊗s) provided g,m ≥ 2 and s ≥ 3.

Proof. The case s = 3 follows from a direct calculation:

(x1,1 + x1,2)
m(x1,1 + x1,3)

m(x2,1 + x2,2)
m−1(x2,1 + x2,3)

=

(
m∑
i=0

xi1,1x
m−i
1,2

)(
m∑
i=0

xi1,1x
m−i
1,3

)(
m−1∑
i=0

xi2,1x
m−i−1
2,2

)(
x2,1 + x2,3

)
= (xm1,1 + · · ·+ xm1,2)x

m
1,3(x

m−1
2,1 + · · ·+ xm−1

2,2 )(x2,1 + x2,3)

= (xm1,1 + · · ·+ xm1,2)x
m
1,3(x

m−1
2,1 + · · ·+ xm−1

2,2 )x2,1

= xm1,2x
m
1,3(x

m−1
2,1 + · · ·+ xm−1

2,2 )x2,1

= xm1,2x
m
1,3x

m−1
2,1 x2,1 = xm1,2x

m
1,3x

m
2,1 = t1t2t3.
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Note that the second equality above holds because of the description of
the ideal Ig,s: the factor t3 in the top class t1t2t3 can only arise from
the summand xm1,3 in the second factor of the product on the right of
the first equality above. Likewise, the third equality above comes from
the relation x1,3x2,3 = 0, the fourth equality above comes from the re-
lation x1,1x2,1 = 0, and the fifth equality above comes from the relation
x1,2x2,2 = 0. The general case then follows easily from induction:

(x1,1+x1,2)
m(x1,1+x1,3)

m · · · (x1,1+x1,s+1)
m(x2,1+x2,2)

m−1(x2,1+x2,3)

= t1 · · · ts(x1,1 + x1,s+1)
m = t1 · · · tsxm1,s+1 = t1 · · · ts+1,

where the next-to-last equality holds because xm+1
1,1 = 0.
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jaguzman@math.cinvestav.mx
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