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A graph-theoretic viewpoint for discrete

Morse theory

Teresa Hoekstra Mendoza

Abstract

A well known theorem of discrete Morse theory states that a dis-
crete vector field is acyclic if and only if it is a gradient vector field
for a discrete Morse function f . In this paper we give a simple
proof using a well known theorem in graph theory. We do the
same for another well known result in discrete Morse theory that
states that in a simplicial complex endowed with a discrete gra-
dient vector field, if two critical cells of the same dimension are
such that there exists a unique gradient path between them, we
can find a new vector field for which these two cells are not critical
and every other critical cell remains critical in the new field.
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1 Introduction

In this paper we shall give a graph-theoretic view point of two well
known theorems in discrete Morse theory.

The first one is a characterization of discrete gradient vector fields.
This theorem has been proved in [1] (page 94), where this graph the-
oretic view point is also mentioned. This graph-theoretic view point
simplifies the proof considerably and uses a well known result in graph
theory which we also shall prove.

The second theorem gives a condition for cancelling two critical cells
in a discrete gradient vector field. It is also proved in [1] (page 110) but,
to the best of our knowledge, it has not been proved using graph-theory
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tools. This result is very useful since critical cells play an important
role in discrte Morse theory.

In both cases I will give proofs of abstract theorems in graph theory
and then apply them for discrete Morse theory. I will use the usual
graph-theory notation, given a digraph D, V (D) shall denote the set of
vertices and A(D) the set of arrows.

2 Graph theory

Definition 2.1. Given a digraph D, x, y ∈ V (D), an xy-path is a
sequence of vertices (x = x1, x2, ..., xn = y) such that for every i =
1, ..., n − 1 there exists an arrow (xi, xi+1) ∈ A(D). The length of the
path is n and a cycle is a closed path in the sense that x1 = xn

By an acyclic digraph we mean a digraph with no cycles. In partic-
ular an acyclic digraph has no loops and no symmetric arrows, as there
would be cycles of length one and two respectively.

Lemma 2.2. Let D be an acyclic digraph and suppose γ = (x0, ..., xn)
is the only x0xn-path in D. If W is the digraph obtained by inverting
every arrow in γ. Then W is acyclic.

Proof. Proceeding by contradiction, suppose that W has a cycle C. Let
Γ be the xnx0-path in W . Clearly C has at least one arrow in Γ. Let
(xm, xm−1, ..., xk) be a segment of C contained in Γ with the property
that neither of the two arrows (xm+1,m) and (xk, xk−1) are in A(C).

Let P be the segment of C disjoint from γ that starts at the vertex
xk and ends at a vertex xi for some i = 0, 1, ..., n.

1. If i < k then P ∪ (xi, xi+1, ..., xk) is a cycle in the digraph D, a
contradiction.

2. If i > k then (x0, x1, ..., xk) ∪ P ∪ (xi, xi+1, ..., xn is another x0xn-
path, a contradiction.

Hence W is acyclic. �

Lemma 2.3. A finite acyclic digraph D has at least one vertex v ∈
V (D) with δ+(v) = 0 where δ+(v) = |{x ∈ V (D) : (v, x) ∈ A(D)}|.

Proof. Since D is finite and acyclic there exists a longest path in D.
The last vertex of this path can not have any outward arrows. �
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Theorem 2.4. A finite digraph D is acyclic if and only if there exists
a function f : V (D)→ N ∪ {0} which decreases along directed paths.

Proof. Suppose D is acyclic. Given a vertex v, let p(v) denote the lenght
of the largest path in D starting from v. Define the sets Vi = {v ∈
V (D) : p(v) = i}. Since D is finite,

⊔n
i=0 Vi = V (D) for a suficiently

large n. From the previous lemma we know that V0 is non empty. We
define f : V (D)→ N ∪ {0} given by f(x) = i for all x ∈ Vi.

We must now prove that f decreases along paths. Suppose γ is a
path and let (x, y) be an arrow in γ. If p(x) ≤ p(y), denote the largest
path starting from y by Py and the largest path starting from x by Px.
Then Py is longer than Px but Py ∪ (x, y) is a longer path starting from
x, which is a contradiction.

If such a function f exists and {x0, x1, ..., xn = x0} is a cycle then
f(x0) > f(x1) > ... > f(xn) = f(x0) which is impossible. �

3 Discrete Morse theory

Definition 3.1. Let X be a set and K a collection of subsets of X.
We say that the pair (X,K) is a simplicial complex if τ ∈ K and
ν ⊂ τ implies ν ∈ P . The elements of K are called simplexes and the
dimension of a simplex τ is its cardinality minus one.

Given a simplicial complex we shall denote by σp that the dimention
of a simplex σ is p. We will denote that σ is a face of τ by σ < τ .

Definition 3.2. A discrete Morse function on a simplicial complex X
is a function f : K(X) → R, where K(X) denotes the set of simplexes
of X, such that given a simplex σ,

|{τ ∈ K(X) : σp > τp−1, f(σ) ≤ f(τ)}| ≤ 1

and

|{ν ∈ K(X) : σp < νp+1 : f(σ) ≥ f(ν)}| ≤ 1.

A discrete Morse function can be defined on an CW-complex but for
our purposes we shall only consider simplicial complexes.

Definition 3.3. A discrete vector field on a simplicial complex X is a
collection of pairs of simplexes {(σ, τ) : σ < τ, dimτ − dimσ = 1} such
that every simplex is in at most one pair.
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Given a discrete Morse function f , we can obtain a discrete vector
field called the gradient vector field of f .

Definition 3.4. The gradient vector field of a discrete Morse function
is the vector field consisting precisely of the pairs σp < τp+1 for which
f(τ) ≥ f(σ).

In general we say that a discrete vector field is gradient if it is the
gradient vector field of a discrete Morse function.

Definition 3.5. Given a simplicial complex X, we can associate a di-
graph to it called the Hasse diagram. The veritices are the simplexes of
X. The set of arrows is {(τ, σ) : σp < τp+1}.

When X has a discrete vector field we can indicate which pairs
belong to the vector field in the Hasse diagram by inverting the corre-
sponding arrow. We call this the modified Hasse diagram.

Definition 3.6. The simplexes that do not belong to any pair of the
discrete vector field V are called the critical simplexes of V .

We shall now make an observation about the modified Hasse diagram
D of a discrete vector field. When we have a gradient vector field V
associated to the discrete Morse function f , notice that (α, β) ∈ A(D)
if and only if |dimα− dimβ| = 1 and one of the following holds:

• β > α, with f(β) ≤ f(α).

• α > β, with f(α) > f(β).

This means that a discrete Morse function does not increse along paths
in the modified Hasse diagram. We shall use this observation in the
following theorem.

Definition 3.7. Given a discrete vector field W , a W -path of dimention
p is a sequence of p-simplexes ν1, ν2, ..., νk such that νi < W (νi−1) for
i = 1, ..., k, where (νi,W (νi)) ∈ W . We say that the lenght of the path
is k and that the path is closed if ν1 = νk.

Theorem 3.8. A discrete vector field W on a finite simplicial complex
X is gradient if and only if it has no closed paths.

Proof. Note that in particular a closed W -path is a cycle in the modified
Hasse diagramD. By theorem 2.4, the modified Hasse diagram is acyclic
if and only if there exists a funcion f : X → N ∪ {0} which decreases
along paths. We thus only need to show that the function we constructed
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in 2.4 is indeed a discrete Morse function with gradient vector field W .
Suppose σp−1 < τp and νp−1 < τp are simplexes such that f(σ) > f(τ)
and f(ν) > f(τ). Since f does not increase along paths, in particular
it can not increase along arrows. Recalling the construction of f in
theorem 2.4 we see that f decreases along arrows. This means that
(σ, τ), (ν, τ) ∈ A(D) but this implies that τ would belong to two pairs
in W which is a contradiction since W is a discrete vector field.

Similarly if τp < αp+1 and τp < βp+1 are simplexes such that f(τ) ≥
f(α) and f(τ) ≥ f(β) we reach a contradiction. Hence f is a discrete
Morse function.

Consider the pairs (ν, τ) such that | dim(ν) − dim(τ)| = 1 and one
of the following holds:

• ν < τ , with f(ν) ≥ f(τ).

• τ < ν, with f(ν) ≤ f(τ).

Note that these are precisely the pairs of W and therefore f has discrete
gradient vector field W . �

Theorem 3.9. Let V be a discrete gradient vector field. Let α and β
be two critical simplexes such that dimα = dimβ − 1. Suppose there
exists a unique path from β to α in the modified Hasse diagram. Then
there exists a discrete gradient vector field W on X for which the set of
critical simplexes is: {τ ∈ X − {α, β} : τ is critical for V }.

Proof. Let γ be the unique path from β to α in the modified Hasse
diagram G of V . We shall define W by constructing its modified Hasse
diagram D. Let D be the digraph obtained from G by reversing every
arrow in γ. From lemma 2.2 we know that no cycles are created in D.
This means that W is also a discrete gradient vector field. Now let us
look at the critical simplexes of W . Notice that every simplex outside of
γ is critical for W if and only if it is critical for V . For the simplexes in
γ different from α and β, which were all non-critical for V , they remain
non-critical for W . As for α and β, since in D one of their incident
arrows has been reversed they are not critical for W . �
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México, D.F. CP 07360.
idskjen@math.cinvestavmx



16 Teresa Hoekstra Mendoza

References

[1] Kevin P. Knudson. Morse theory: Smooth and discrete. World Scientific Pub-
lishing Co. Pte. Ltd., Hackensack, NJ, 2015.


