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Sheaf of categories and categorical Donaldson

theory

Ludmil Katzarkov Yijia Liu

Abstract

In this paper we take a new look at categorical linear systems
applying the technique of sheaves of categories. We combine this
technique with the theory of categorical Kähler metrics in order
to build two parallels:

1) A parallel with Donaldson theory of Kähler-Einstein met-
rics.

2) A parallel with Donaldson theory of polynomial invariants.
As an outcome we introduce sheaves of categories which cannot

be connected to potentials and obstructions to that are the moduli
spaces of stable objects. Connections of sheaves of categories with
Homological Mirror Symmetry for non-complete intersections and
the procedure of arborealization are discussed as well.
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1 Introduction

The theory of linear systems is 2000 years old. Recently a new read of
this theory was suggested by the authors in [18]. Based on the recent
breakthrough made by Haiden, Katzarkov, Kontsevich, Pandit [15], who
introduced the theory of categorical Kähler metrics, we develop further
the theory of categorical linear systems.

In this paper we take a new look at the categorical linear systems
applying the technique of sheaves of categories (see section 3). We
combine this technique with the theory of categorical Kähler metrics in
order to build two parallels:

1. A parallel with Donaldson theory of Kähler-Einstein metrics - [9].
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2. A parallel with Donaldson theory of polynomial invariants - [8].

We briefly recall the theory of categorical Kähler metrics developed
in [15]. We represent this work in terms of a categorical Donaldson-
Uhlenbeck-Yau correspondence outlined in the table below. We start
with the classical GIT theory of the action of a group G with a unitary
subgroup K on a manifold X.

X/K X/G

Φ−1(0) Kempf-Ness
Functional

The categorical interpretation of the above classical GIT setup, as
followed in [15], can be presented as follows:

C0 C

D stable objects
stable Lagrangians

SC

The theory developed in [15] is based on the following correspon-
dences:

Table 1

C X/G G

C0 X/K

equivariant line bundle Φ : X → KV

Met(E) G/K

Flow pullback of grat Φ to G/K

Mass M Φ

M < |Z| Bogomolny condition

We briefly explain the above categorical setup in section 5.
In his seminal work [7] Donaldson used the non-rationality of Dol-

gachev surfaces in order to find examples of homeomorphic but non-
diffeomorphic surfaces. After developing the theory of sheaves of cat-
egories we propose a categorical interpretation of Donaldson’s results.
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We start with replacing the classical blow-up formulas in Donaldson
theory with a blow-up formula of semi-orthogonal decompositions.

Conjecture 1.1. Let C =< C1, C2 > be a semi-orthogonal decompo-
sition of a triangulated category C by admissible subcategories C1, C2.
(Typical examples we have in mind are the bounded derived categories
of coherent sheaves and Fukaya-Seidel categories - see e.g. [2].) Let Φ
be a categorical version of Donaldson polynomial invariants (see section
7). Then

(1) Φ(C) = Φ(C1)·Φ(C2)·T (C),

where T (C) is a standard term.

In section 7 we discuss wall crossing issues connected with the above
conjecture. We consider some far-going applications of this conjecture
in section 7. Using the categorical Kähler metrics we define canonical
categorical Kähler-Einstein degenerations. We formulate:

Conjecture 1.2. Let X0∪Xi be a canonical categorical Kähler-Einstein
degeneration. Then we have the following equality defining the soul of
polynomial invariants:

(2) (X0 ∪Xi) = Φ(X0)·T (C).

A major building block for applications is the following:

Conjecture 1.3. Let LG be a part of a four-dimensional LG model
which contains all vanishing cycles corresponding to all cohomologies
but h0,0, h4,4. Assume that these vanishing cycles produce b+2 ≥ 1 co-
homologies of a minimal symplectic fourfold. Then LG 6= LG1#LG2,
where each LGi is a LG model with b+2 ≥ 1 mirrors of minimal sym-
plectic fourfolds.

At the moment the conjectures formulated above are rather vague.
In section 7 we outline some possible applications in the case of Fukaya
categories. The considerations above suggest that we have a parallel:

Classical Categorical

Donaldson invariants categorical invariants

non-diffeomorphic manifolds non-rational varieties
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This parallel suggests that categorical Donaldson polynomial invari-
ants are very deep invariants which measure the gluing of categories. In
section 7 we spell out the connection between categorical basic classes
and gaps in Orlov spectra as well as the connection between basic classes
and dynamical spectra of the corresponding Fano manifolds.

We propose that categorical Donaldson invariants define new bira-
tional invariants and we develop two techniques for studying the theory
of categorical Donaldson invariants - categorical linear systems and the
theory of sheaves of categories. There might be better ways of doing
that. We discuss different applications of the idea of shaves of cate-
gories related to the proof of Homological Mirror Symmetry (HMS) for
non-complete intersections. An important outcome of this paper is the
following correspondence.

Classical Donaldson Theory Categorical Donaldson Theory

X 6= X1#CX2 sheaf of categories is not connected with a potential

nontrivial moduli spaces nontrivial moduli spaces of stable objects

wall crossing on metrics wall crossing recorded in sheaves of categories

The paper is organized as follows. In section 2 we recall the theory of
categorical linear systems. In section 3 we develop the theory of sheaves
of categories. In section 4 we introduce the notion of categorical Kähler
metrics. In section 5 we build the theory of categorical Okounkov bodies
and in section 6 categorical Kähler-Einstein metrics. In section 7 we
consider further applications.

2 Categorical linear systems

In this section we define two new notions - categorical linear systems
and categorical base loci. We try to indicate the potential of these new
notions for studying categories by connecting them with well-known
categorical notions - gaps of spectra and phantoms.

Let T be a saturated dg-category. Consider the endofunctors A, F
of T .

Definition 2.1. A noncommutative linear system is a collection of
morphisms s ∈ Hom(A,F ). A pair of morphisms, s1, s2 ∈ Hom(A,F ),
is a noncommutative pencil.



Sheaf of categories and categorical Donaldson theory 125

We may think of these morphisms as natural transformations si :
A→ F . We also define:

Definition 2.2. The scheme-theoretic base locus of a noncommu-
tative linear system C is the full subcategory of objects of T on which
all s ∈ C vanish in the homotopy category. The triangulated base
locus of C is the full subcategory of objects of T on which all s ∈ C act
nilpotently in the homotopy category.

Consider the case where X is an algebraic variety, T = Db(X) and F
corresponds to tensoring with a line bundle. In this case, a noncommu-
tative linear system abuts to the classical notion of a linear system by
taking the homotopy classes of these morphisms. The scheme-theoretic
base locus is precisely the full subcategory of complexes such that the
cohomology is scheme-theoretically supported on the base locus. This
is not a triangulated category. On the other hand, the triangulated
base locus is the full subcategory of objects on which the cohomology
is set-theoretically supported on the base locus. This is a triangulated
category.

Now, let L be any object of T . Consider

RL,F =
⊕
n=0

RHom(L,Fn(L)).

We consider every r in RHom(L,Fn(L)), n > 0 as a morphism of
graded bimodules r : RHom(L,Fn(L)) → RHom(L,Fn(L))[i]. We de-
fine Tors(RL,F ) to be the full subcategory consisting of all objects T in
grmod over RL,F such that for every r in RL there exists N >> 0 such
that rN (T ) = 0. Finally we define DGProj(RL,F ) = grmod over RL,F /
Tors(RL,F ).

Definition 2.3. We define Tors(RL,F ) to be the L-base locus of the
functor F .

The definition above is very complex and suggests that the categori-
cal base locus measures the complexity of the functor F for a reasonable
choice of the object L.

In the case where F is a twist by a very ample line bundle on a
smooth projective variety X and L is a line object (see e.g. [10]) in
Db(X), we get that DGProj(RL,F ) = grmod over RL,F /Tors(RL,F ) is
just Db(X). For Artin-Zhang twists we get some noncommutative defor-
mations of Db(X). But for more general functors some new phenomena
appear in this categorical setting.
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The approach we suggest records the categorical base loci via mark-
ing divisors at infinity of the LG model, where we take the point of
view that functors with high exts lead to bigger gaps in the Orlov
spectra. In some cases the last phenomenon is recorded by the mon-
odromy of the LG model. When working with mixed variations of
stability structures we note that nontrivial exts in DGProj(RL,F ) =
grmod over RL,F /Tors(RL,F ) are connected with ghost sequences of
length equal to the nontrivial exts.

The categories DGProj(RL,F ) = grmod over RL,F /Tors(RL,F ) and
Tors(RL,F ) behave well under the following operations:

1. Birational maps.

2. Taking invariant or anti-invariant parts or combining F with any
Schur functor.

3. We can modify Tors(RL,F ) to be defined as a full subcategory
consisting of all objects T such that for every r in RL,F there
exists N < ki such that rN (T ) = 0. So we have Tors(RL,F )k1 ⊂
Tors(RL,F )k2 for k1 < k2.

4. Pencils, nets as well as fibrations of categories can be defined by
choosing sections in

DGProj(RL,F ) = grmod over RL,F /Tors(RL,F ).

Using the ghost sequences of the base categories (Db(P1), Db(P2)
and so on) we obtain ghost sequences for

DGProj(RL,F ) = grmod over RL,F /Tors(RL,F ).

5. Assume that the functor F splits as a product of functors F =
Fm · · ·F1. then we have RL,F ⊂ RL,Fm · · ·RL,F1 . This formula
will be implemented as the main ingredient of the K-calculus.
Both formulas provide us with the opportunity to “glue” ghost
sequences in order to calculate Orlov spectra.

We give some simple examples.



Sheaf of categories and categorical Donaldson theory 127

Table 2

•
p

P2
p

(−KP2 − p)

•
B

F

B = (ImF )⊥

I8

Cat. Base Locus

1. Consider P2
p - the image of P2 by the anti-canonical system with one

base point p. Consider its mirror - an elliptic fibration with 4 fibers
with usual double points singularities and an I8 fiber - see Table
2. The category generated by the image of the thimble vanishing
in the fourth singular fiber in the generic open elliptic curve is the
categorical base locus for the functor rotation around infinity. This
is a simple consequence of Homological Mirror Symmetry - see e.g.
[2]. There are two ways we can think of the creation of this base
locus:

1) We localize FS category of the LG model for P2
p by one thimble

corresponding to the point p. (We return this singular fiber to
infinity.)

2) We mark the point on the circle configuration of rational curves
I9.

Both of these correspond to creating classical base loci of the linear
system −KP2 − p. So by analogy with the classical situation we will
think of this base locus as the marking of a point on the fiber at
infinity. This marked point (this localized thimble) becomes a base
point, categorical base locus, for the functor twist by −KP2 − p - the
rotation around the fiber at infinity with the marked point fixed. We
can think of this point as slightly moved from infinity but still close
to infinity. The rotation functor keeps it fixed.

2. The example above can be interpreted as a projection functor. In
general projection functors produce many examples of categorical
liner systems many of which are new non-classical examples. Partial
rotations in LG models also provide such examples.
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3. Noncommutative Lefschetz pencils:

a) Week notion - two natural transformations s, t from the identity
functor to the functor F . This does not give a functor from Db(P1)
to the category T , because there is no requirement that st =
ts. This notion produces a P1-family of noncommutative divisors
(the linear combinations of s and t) and the notion of base locus
(objects on which s and t both vanish).

b) The stronger notion requires a functor from Db(P1) to the cat-
egory T , which amounts to the requirement that all the natural
transformations considered must commute with each other.

c) An intermediate notion which does not require st = ts, but only
that st and ts agree up to some multiplicative factor - for 3 natural
transformations r, s, t we just ask that the 9 natural transforma-
tions r2, s2, t2, rs, st, tr, rt, ts, sr satisfy 3 linear relationships so
that their span has rank 6 (as in a noncommutative P2).

By analogy with the classical situation we will call the pencils from
c) topological and the pencils from b) algebraic. We will work with
algebraic noncommutative systems mainly. For a pictorial explana-
tion of categorical base loci for Fukaya-Seidel categories - see Table 3.
We can think of natural transformations of rotation functors and the
identity functor as paths around the fiber at infinity. Intersections
of these paths are the categorical base loci - the thimbles we have
localized by. The geometry of this marked set plays an important
role in our considerations.



Sheaf of categories and categorical Donaldson theory 129

Table 3: Categorical Base Loci

• • ∞

natural transformation

marking

localized thimble

Base Locit = ⊗(−KP2)

•
I9

localization

marking

|
0

• |
∞Functor

Blowing up this base locus corresponds to creating a fiber at the LG
model - see [2]. We move now to the definition of categorical multiplier
ideal sheaf. Classically multiplier ideal sheaf is defined as follows. For
a projective variety X and a linear system of the divisor D we define
Jλi(D) = µ′∗(OY (KY/X − bλiµ∗Σisi·Eic)), where si·Ei are divisors in
the exceptional loci. We obtain the classical multiplier ideal sheaf by
resolving singularities and taking the floor function, corresponding to
taking parts of these divisors. As a result Jλi(D) measure singularities
of the pair (X,D).

We define the categorical multiplier ideal sheaf based on the ap-
proach via

(3) DGProj(RL,F ) = grmod over RL,F /Tors(RL,F )

developed above. We consider categorically a sequence of functors λiF
acting on modified categories Ci defined as
(4)
J(Ci, λiF ) = DGProj(RLi,λiF ) = grmod over RLi,λiF /Tors(RLi,λiF ).
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If the functor F = Fλk · · ·Fλ1, then λiF = Fλi−1 · · ·Fλ1.

Definition 2.4. We define the sequence of categories J(Ci, λiF ) to be
a categorical multiplier ideal sheaf.

In the case of X being a smooth projective variety, L a line object
(e.g. OX) and F a twist by an ample line bundle RL,λiF we have an
analogue to the classical multiplier ideal sheaf situation. Indeed if F
is a twist by a divisor D = D1 + · · · + Dk = Σisi·Ei we get a functor
F = Fk · · ·F1. This observation suggests a generalization - the definition
of categorical multiplier ideal sheaf. Assume that Fi commute. We get
RL,F ⊂ RL,Fk···F1 with the corresponding sequence of categories. From
this prospective:

(5) F = Fk, λk−1F = Fk·Fk−1, . . . , λ1F = Fk · · ·F1.

So the categorical multiplier ideal sheaf is defined by
(6)
J(Ci, λiF ) = DGProj(RLi,λiF ) = grmod over RLi,λiF /Tors(RLi,λiF )

as a sequence of localizations which measure the complexity of the func-
tor F . Classically for the mixed Hodge structure (MHS) associated with
the function f defining D we have a spectrum of the MHS (see [5]). The
monodromy ei.λi of the MHS of f is connected with the classical mul-
tiplier ideal sheaf J(X,λiF ). By analogy with [5] we conjecture that
there exists a matrix factorization category MF so that the spectrum of
the mixed noncommutative Hodge structure associated with it produces
the jumping numbers of the categorical multiplier ideal sheaf. We give
as an example the following theorem - see [18].

Theorem 2.5. The multiplier ideal sheaf for the category An and the
localization functor - restricting to An−1 determine the Orlov spectrum
of An.

In this case the categorical multiplier ideal sheaf is a sequence of
localizations. We plan to compute more examples. One important case
is the so-called LG functor.

Definition 2.6. We will call F a LG functor of the Fukaya-Seidel
category if F is a functor of a rotation around the fiber at infinity
and some other fibers of the LG model associated with the mirror of a
smooth projective variety.

This means that these fibers are unchanged under the rotations -
see Figure 1.
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Figure 1: Canonical LG functors

F

•
0

• • •
∞

Examples of LG functors are the A side realizations of the Serre
functor. In most of the examples in this paper we will consider the
mirrors of smooth Fano manifolds. Most of the LG models associated
with the mirror of a smooth projective Fano manifold have a singular
fiber at infinity (this is certainly true for non-rational Fano manifolds).

Definition 2.7. We will call F a canonical LG functor of the Fukaya-
Seidel category of the mirror of a smooth Fano manifold if F is a functor
of a rotation around the fiber at infinity and all other nonzero singular
fibers.

In other words all fibers but the zero fiber is left fixed or this is a
rotation around the fiber at zero. Building the theory of categorical
multiplier ideal sheaves for LG functors and especially for canonical LG
functors is the main part of this project. The categorical multiplier ideal
sheaf

(7) J(Ck, λkF ) ⊂ · · · ⊂ J(C1, λ1F )

in the case of LG functors is a sequence of localizations J(Ci, λiF ). By
analogy with the An case we start with the localization by the biggest
thimble and we obtain J(Ck, λkF ) - this corresponds to marking the
whole singular fiber over zero. We start unmarking this singular fiber
so that the rank HP (T ) of the category T we localize by goes down by
one.

0

F

J(Ck, λkF )

J(Ck−1, λk−1F )

J(Ck−2, λk−2F )
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Similarly we can define the categorical multiplier ideal sheaf

(8) J(Ck, λkF ) ⊂ · · · ⊂ J(C1, λ1F )

for the derived category of singularities. In this case localizations are
nothing else but blowing-down components of the central fiber, A deeper
analysis of

DGProj(RL,F ) = grmod over RL,F /Tors(RL,F ) and Tors(RL,F )

supports these expectations.

3 Real blow-ups, sheaves of categories and lin-
ear systems

In this section we develop a connection between sheaves of categories
and LG models. We first define a sheaf of categories. Our treatment is
parallel to [17] but somewhat different.

Definition 3.1. Let Graph be the incidence category of a graph Γ. Let
F be a topological local system of categories. We call

(9) Sheaf(F) := lim−→
g

Func(Cgraph 7→ F), g ∈ Graph

a simple sheaf of categories, where g is the incidence graph of the
embedded in Cgraph.

g C•
g

Definition 3.2. Let Sheaf(F1) and Sheaf(F2) be two simple sheaves
of categories and BlowS1 be a real blow-up of C.

BlowS1

R S1

Sheaf(F1) Sheaf(F2)

Φ : Sheaf(F2)� Sheaf(F2)
functor of vanishing cycles

We call Sheaf(F1)
⋃
R Sheaf(F2) a perverse sheaf of categories

over C glued by the functor R.

Example 3.3.

1. 1-dim LG model
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1-dim LG model

Db(P2) −→ FS(C∗2, x+ y + 1
xy )

•
•
•
•

F (E)⊗A3

F (E) F (E)/C
•

•
•
•

•
F (E)

F (E)

S1P

real blow-up

• •

leads to the gluing procedure for a spherical functor

•

S1 F (E)

F (E)

spherical functor
Φ

gluing •O DS1 DO
φ

Φ

F (E)/Γ = F (E)/Kerφ

2. 2-dim LG model
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2-dim LG model

C2

L1 L2

•
O

•
O

gluing

S1 S1

L1 L2

D01 D11

D00 D10

D2 × S1

S1 × S1 S1 ×D

gluing

Example 3.4.
We give one more example of applications of sheaves of categories -

the example of stability Hodge structures.

•

Quiver

dual curve

C2 /(xy − 1)

C2

C

•

The general picture is:

• • •

Γ

Quiver

dual
curve

•
·

JCΓ

MΓ

Hn,d hyperplane
arrangements

The above MΓ can be used as a LG mirror of the category of repre-
sentations of the quiver Γ.

Conjecture 3.5. Ck /∪Hd,n is the moduli space of stability conditions.
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Definition 3.6. We call

JCΓH :

Cn

Ck / ∪Hd,n

a stability Hodge structure.

Theorem 3.7 (Torelli). H recovers category Γ.

Proof. It follows from the definition of sheaves of categories in multi-
dimensional LG models.

Corollary 3.8. H : JCΓ −→ Ck / ∪Hd,n recovers the Orlov spectrum
of Γ.

For An and An/ < Γ1, . . . ,Γp >, we checked this conjecture in [18],
where a detailed account of Orlov spectra and its gaps are given.

Hodge diamond

vanishing cycles

• •

LG2LG1

LG1 LG2

• •• •• •

•• •

•• •
•
•

•∞

The theory of sheaves of categories suggests the following:

Definition 3.9. Let LG1 be a part of a LG model which contains all
vanishing cycles corresponding to all cohomologies but h0,0, hn,n. We
call LG1#LG2 the min topological sum of LG models.

One of the most celebrated example of a LG model (non)stretching
is the example of Dolgachev surface worked out by Donaldson in [7]. We
interpret Donaldson’s result from the point of view of sheaf of categories.
We start with the change of the sheaf of categories structure on rational
elliptic surfaces to Dolgachev surface - see below.
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Table 4: Log transform

•

•

•
•

•

•

•
•∞

2 dim LG

log(2, 3)

•
• •

• ∞
4 dim LG••

12

We give some more examples of the splitting of LG models. We start
with the example of Hirzebruch surface F 1.

f : P1 −→ M̃st(CY )

•

LG1

LG2

•

Discr

LG1#LG2

Example 3.10 (LG(F 1)).

neck

. . . . . .

special
metric

stab condition

I8

M(CY )

LG1#LG2•••
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Example 3.11 (LG of F 1 = CP2#CP2).

• ∞•
•

•

•
Fuk(E)/Γ

A4 ⊗ Fuk(E)
• •

•
•∞

•

•
•

Fuk(E)A3 ⊗ Fuk(E)

• •
•
•

•

•
•

w → 0

stretching

P1

LG=LG1#LG2

LG1 LG2

w →∞w →∞
I8

An important observation is the following conjecture.

Conjecture 3.12. The sheaf of categories associate with Dolgachev
surface is not connected with a potential.

This is an analogue of Donaldson’s statement that Dolgachev surface
is not a connected sum of two 4-dimensional manifolds.

Similarly we can introduce the stretching in a 2-dimensional LG
model too. The procedure of stretching the neck is the resolving of the
singularities of the curves in the base of the 2-dimensional LG model.
Creating obstructions to stretching as in the classical Seiberg-Witten
theory can be done with surgeries - changing the Alexander polynomials
- see [14]. We briefly describe the procedure below.

Example 3.13 (2-dim LG model).

C2

LG1

LG2

LG2LG1

w →∞

w → 0

LG w →∞

Observe that being a “stretched neck” is more than a semi-orthogonal
decomposition. So to measure this we take Donaldson’s point of view -
use moduli spaces of objects. We suggest the parallel in conjecture 1.3.
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A proof of this statement will lead to building an analogy between
Donaldson theory and categorical Kähler metric. We summarize the
analogy in the table below:

Table 5

Categorical Donaldson theory

Donaldson Theory

H2(B/ASD connections)
µ−→ H2(X)

B - moduli space of ASD connections

M - compact moduli space

Donaldson Γ-invariant
Γ() = 2µ(M) + c1(KX)

Categorical theory

Classical Categorical

B
H2(B) −→ H2(X)

Chamber structure
∪

Γ = µ(M) + c1

Met = {E , h}
Met −→ Stab(C)

Chamber structure
∪

Γ = µ(M) + c1

reducible metrizable object

limiting HN filtrations

We also build the parallel with Bridgeland’s theory of stability con-
ditions.
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Table 6: Example Dolg 2, 3

Y = P̂2
p1,...,p9

Γ() = c1(KY )

Z - Dolg 2, 3

Γ() = c1(KZ) + 7c1(KZ)

2 3

. . .

12

| |
| |
2

H2 = H10

H0 + H4

• Stab

Classical
Donaldson theory

Chamber structures and

reduced connections

Stab
H 2

+
H 0

+
H 4

chambers

reduced metrizable
object= phantom

Γ-invariant
non-rationality

for surfaces

Γ-invariant
non-rationality

in general

The approach with sheaves of categories can be useful in many direc-
tions. We give two applications connected with HMS. We start with the
following categorification of classical Enrique-Petri theorem, see [11].

Let C be a trigonal canonical curve, g(C) = g. In Pg−1, we have

(10) C ⊂ S =
⋂
c⊂Qi

,

here Qi are quadrics in Pg−1 and S is the ruled surface. We describe a
procedure of building HMS for genus g curve which is mod a complete
intersection.
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Step 1. We degenerate S to the union of P1 × P1.

S1 P1 × P1 Sn Sn−1

Step 2. Now we apply [1] to each S1. We get sheaves of categories.

FS(LG(S1)) FS(LG(S2))

S2

· · · · · ·

S1

Step 3. Then we regenerate gluing sheaves of categories and using [1].

• •

•

•

•

•

•

•

We get the HMS for C. Similarly we can do it for any canonical
curve using Enrique-Petri theorem.

Theorem 3.14. The procedure above proves HMS for canonical curves.

The procedure above can be seen as a part of a much more general
procedure of arborealization introduced by Nadler [22].

Let X be a 3-dim Fano and LG1(W → C) is 1-potential Landau-
Ginzburg model and LG2(W → C2) is Landau-Ginzburg with two po-
tentials.

Theorem 3.15. The transform from sheaf of categories LG1(W → C)
to LG2(W → C2) is a sheaf of categories version of arborealization.
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For more see [22] and [14].

C C2

Arborealization

4 Categorical Kähler metrics

In this section we briefly describe the categorical Kähler metric. The
notion was developed in [15]. We recall the definitions and explain Table
1 from the introduction.

The idea of Kähler metric of a category imitates the classical defi-
nition up to a point.

Let C be a triangulated category. We define a new category C0.

Object of C0 := E , h :
⊗OK

K
−−−−→ E , where h is a metric on E .

(11) Met(E , h) =
{
Ẽ ∈ Ob C0 + iso h : Ẽ ⊗OK

K ∼ E
}

We give a definition of categorical Kähler metric - it is a bit of cloud
which allows us to define moduli spaces of objects.

Definition 4.1. Let C be a triangulated category and let Z : K(C)→ C
be a central charge. We define the moduli space Met(E , h) as above.
We say that C is a categorical Kähler metric if C is enhanced with
the following data:

D(1) Function Mass : Met(E , h)→ R.

D(2) Flow F : Met(E , h)→ R.

D(3) Two other functions Amp− ≤ Amp+ : Met(E , h)→ R.

D(4) Potential function S : Ob(C0)→ C.

(additional care is needed to make data from different t-structures com-
patible and make Met(E , h) a nice space) satisfying the following ax-
ioms:
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A(1) The triangulated structure on C is recorded by the following ac-
tions: Z-shift, R>0-flow, R-rescaling. They form a group Z n
(R>0 × R).

A(2) These actions are compatible with the functions Mass, Amp−,
Amp+, S.

A(3) Additivity of all these functions on Met(E , h), namely:

Z((E , h), (F , h)) = Z + Z;

SC(⊕) = SC + SC;

Amp−(⊕) = min(Amp−,Amp−);

Amp+(⊕) = min(Amp+,Amp+).

A(4) Qualitative properties - fixed points of the flow.

Mass(E , h) > Z(E)

Mass= |Z(E)| ↔ ∃! θ ∈ R, F - θR = 0 on (E , h). Then E is stable.

∀(E , h), lim
t→∞

eFt(E , h), ∃ in the flag compactification

(E1, h1), . . . , (En, hn).

∀i,∃! θi, θ1 > · · · > θn, (F − θiR)|(Ei,hi) = 0. We call these fixed
points Harder–Narasimhan filtrations.

A(5) There exists a compactification of the moduli space of Z-stable
objects which consists of HN filtrations.

These axioms were used in [15] to prove the existence of compact
moduli spaces of stable objects. We will use these moduli spaces to
build categorical Donaldson invariants.

5 Categorical base loci and categorical Okoun-
kov bodies

In this section we introduce the notions of categorical linear systems and
categorical base loci. We connect these notions with gaps of spectra of
categories.

From what we have said it becomes clear that Okounkov bodies play
an important role in studying the complexity of functors. In order to
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make it suitable to our noncommutative birational approach we devise
a categorical analogue of the notion of Okounkov body ∆(D). Indeed,
the notions of divisors and their sections and multiplicities can be imme-
diately translated into categorical language. The flag of submanifolds
becomes a flag of subcategories. The sections become natural transfor-
mations between spherical and restriction functors, and valuations νi
correspond to how far along one can lift these natural transformations -
see the Figure 2 and Figure 3 below. In these figures S is the restriction
functor and t is a spherical functor of a twist by a divisor.

· · · {−3R1} {−2R1} {−R1} Id

{−D}

S S S S

t

Figure 2: Step 1 (ν1 = k1 = 2)

Definition 5.1. Following the figure above we define ν1 as the maximal
number of liftings of the natural transformation t.

· · · {−3R2} {−2R2} {−R2} IdR1

{−k1R1 −D}

S S S S

t

Figure 3: Step 2 (ν2 = k2 = 3)

Similarly we define ν2 as the maximal number of liftings in the fig-
ure above. In the same way we define νi using the flag of subvarieties
R1, ..., Rd or of subcategories.

Remark 5.2. Definition 5.1 is a categorification of the usual definition
of Okounkov body. Classically ki is the multiplicity with which D passes
through Ri.

We give several examples of flags of categories mainly coming from
derived categories of flags of subvarieties. The cube of categories below
is given by two quadrics Q1 and Q2 in P3 and their intersection - an
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elliptic curve E. As shown in Figure 4, derived categories of Qi and E
define a flag of categories R1, R2.

Db(X) Db(Q2)

Db(Q1) Db(Q1 ∩Q2)

Db(Q3) Db(Q2 ∩Q3))

Db(Q1 ∩Q3) Db(Q1 ∩Q2 ∩Q3)

Figure 4: B side

The Homological Mirror Symmetry defines equivalent Fukaya-Seidel
(FS) categories (see e.g. [2], [20]) with a mirror cube given below in
Figure 5 as well as the mirror of the flag of derived categories.

FS(Z,w) FS(Z2, w2)

FS(Z1, w1) FS(Z12, w12)

FS(Z3, w3) FS(Z23, w23)

FS(Z13, w13) Fuk(E)

Figure 5: A side

Definition 5.3. Consider a flag of categories R1, ..., Rd. For m ∈ Z>0,
denote t◦m by m· t. Now we can define the Im(m· t) as (ν1, ..., νd), where
every νi depends on m· t.

As a result we have:

Definition 5.4. We define δ(t) as the closed convex hull of

lim
m→∞

1

m
Im(m· t).
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δ(t) is a categorical notion. We start with two functors. δ(t) mea-
sures how these two functors interact asymptotically with respect to a
flag of subcategories. We will give more examples later. The categorical
Okounkov body will play an important role in classifying the base loci
of a category.

Remark 5.5. Observe that we get some modifications of Okounkov
body if we additionally twist divisor D by a multiplier ideal sheaf - test
configuration. In fact we get a sequence of Okounkov bodies associated
with the filtration on the sheaf of ideals. For more see [18].

6 Categorical multiplier ideal sheaves and cat-
egorical Kähler-Einstein metrics

In this section we present a scheme for building theory of categorical
Kähler-Einstein metrics. We start with examples of categorical multi-
plier ideal sheaves.

Categorical Multiplier Ideal Sheaf for An:
One of the main observations of [18] is that the spectra of An can be

interpreted from the point of view of categorical multiplier ideal sheaves
for the category An. We have a sheaf of generators (a sheaf of localized
categories) for which the jump numbers determine how many sides do
we take from the whole polygon in order to form the forbidden part.

We record our observation in the following theorem - see also Table
8.

Theorem 6.1. The multiplier ideal sheaf for the category An and the
localization functor - restricting an n-gon has jump numbers n−1

n , . . . , 1
n .

The multiplier ideal sheaf J(λ1, . . . , λk) determines the Orlov spectrum
of An.

The proof of this theorem is a direct consequence of the definition
of J(λ1, . . . , λk) - see Table 8.

In this case the categorical multiplier ideal sheaf is a sequence of
localizations J(Ck, λkF ) ⊂ · · · ⊂ J(C1, λ1F ). Marking a polygon corre-
sponds to localizing by a subcategory. The localization by the biggest
polygon produces the first non-trivial category J(Ck, λkF ) and by the
smallest J(C1, λ1F ). In the table below we represent the multiplier ideal
sheaf in this case as rotation by angles of λj of the localization functor
F .
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Table 7

The Mult. Ideal Sheaf Functor Localization by An

· · · (−2p) (−p) Id

−λjF

t t t

λjs

•

•
•

•

•

•
•

•

•

D

An j = n− 1
J(n−1

n , D)

•

•
•

•

•

•
•

•

•

D

j = n− 2
J(n−2

n , D)

As the proof of Theorem 6.1 shows obtaining Orlov spectra is moving
up on marking polygons - see the table below. This is the baby K-
calculus.

Table 8

Spectra
Sheaves and Jump

numbers

{bn−1
2 c} ∪ {n− 1} λn = n−1

n

{(bk−1
2 c), ..., b

n−1
2 c}

∪{k − 2, ..., n− 1} λk = k
n

{0, 1, . . . , n− 1} λ1 = 1
n

As we have seen the Okounkov body and the multiplier ideal sheaf
can be made totally categorical. (Showing that categorical valuations
we have defined satisfy the usual equalities requires additional work -
see [14].) Classically these two notions have been used to define:

1. Futaki invariants - integral of functions (defining testing configura-
tions) over Okounkov bodies for a line bundle L. If these integrals
over all these testing configurations are all positive we conclude
that the smooth projective variety X has a Kähler–Einstein met-
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ric.

2. The log canonical threshold - the smallest jump number. If a Fano
manifold X of dimension n has a log canonical threshold bigger
than n/(n + 1) then we conclude that smooth projective variety
X has a Kähler–Einstein metric (see [6], [23]).

The categorical interpretation of the Futaki invariant is an integral
over the categorical Okounkov body defined by a functor F (the categor-
ical version of a twist by L) and a testing configuration - an additional
twist by an ideal choosing faces of the categorical Okounkov body. We
will call these special functors Landau-Ginzburg testing functors.

We introduce the definition:

Definition 6.2. We will call a category a Kähler–Einstein category
if all categorical Futaki invariants for all Landau-Ginzburg testing func-
tors are positive.

Recall that:

Definition 6.3 (Testing LG functors). We call a family of LG functors
a testing configuration

C

LGt LGt LG0

0

f1

fk

f = f1 · · · fk

compatible with C∗-action iff

1. ∀t 6= 0, LGt are isomorphic;

2. LG0 consists of several LG models.

Example 6.4 (LG(P2)).
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•
t

•
0

•
• •

•
••

f

•
•

•

f1

f2 •

• I(f) function defining
test configuration

f = f1 · f2

Categorical Futaki invariant =
∫

∆(L) I(f)s

Mod(Object)= Mt

|
0

|
t

LGt

LG0
|
0

|
t

Mt

M3

M1

M2

φ(Mt)→ φ(M1)φ(M2)φ(M3)

We collect the Kähler–Einstein correspondences in Table 9 below.
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Table 9

Classical Kähler-Einstein
Categorical

Kähler-Einstein

X Fano, dim(X)= n

∃ Kähler-Einstein metric

Category

of Kähler-Einstein type

∀ fλ, testing family∫
∆(L)

fλ > 0

∫
∆(L)

I(F ) > 0

I - testing LG functor

λ1 >
dimX

dimX + 1

λ1 >
dimX

dimX + 1
?

or Orlov spectra?

Let X,KX be a maximal degeneration. We formulate the following
conjectures:

Table 10: Correspondences

Classical Categorical

X,KX → X0

maximal degeneration

Dn ⊂ · · · ⊂ D1 ⊂ D
sequence of Localizations

of LG models

HN Filtrations for X0

Categorical

HN Filtrations
for categories

X,KX → X0,Ext Orlov Spectra of Fuk(X)

We have:

Conjecture 6.5. Degenerations X,KX → X correspond to HN filtra-
tions for categorical KE metrics.

Conjecture 6.6. There exists a canonical degeneration X,KX → X
among HN filtrations for categorical KE metrics.
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Conjecture 6.7. There exists a categorical invariant Φ associated with
canonical degeneration X,KX → X.

Example 6.8 (Horikawa’s).

M1

OSpec1 OSpec2

→ (Fuk1) (Fuk2)

M2X0

•Ext2 Ext1

The categorical invariants Φ will be defined in the next section.

7 Applications

In this section we briefly introduce the moduli space of stable objects
of Fukaya-Seidel categories of Landau-Ginzburg models (and their de-
generations). We also introduce a categorical version of Donaldson’s
invariants. At the end we discuss some applications. We refer to [8] for
classical definitions.

7.1 Geometric applications

Assume that C is a triangulated category with stability conditions, e.g.
C is Db(X), Fuk(X), FS(X).

Conjecture 7.1. Donaldson theory of the chamber invariant Γ has an
analogue for compactified moduli spaces of stable objects for Stab(C).
We correspond conjecturally the chamber structure on H2(X) to the
chamber structure of Stab(C).

Here we use the wall structure for moduli spaces of stability condi-
tions. We look at some examples.

Example 7.2 (Dolgachev Surface).
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Stab Db(Dolg 2, 3)
Met(E , h)

phantom
•

Donaldson theory

H2

moduli spaces of stable objects + stability chamber invariant

Donaldson chamber invariant Γ Phantom invariant

∪ ∪

Example 7.3 (Godeaux surface).

Stab(Db(Godeaux))
Met(E , h)

• H2

Donaldson Γ invariant
Γ = 11c1(K)

Quasi-phantom

Invariants of Limiting stability conditions

Donaldson Γ invariants
on chambers H2(X)

Phantoms

∪ ∪

3-dimensional examples:

Example 7.4 (Artin-Mumford example).

Stab(Db(X))= compactified moduli
space of LG modelMet(E , h)

•
H3(X0,Z)

X  X0

Tor H3(X0) = Z2

||
Invariant of localized category

m
Gap in Orlov spectra

We first build a parallel between:

1. Classical Donaldson theory and theory of categorical Kähler met-
rics.
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2. Classical collapse for KE metrics and HN filtrations for KE metrics
for FS category.

Categorical metrics and categorical Donaldson theory
The theory of moduli spaces of objects is a consequence from the

categorical metrics. The moduli space Met(E, h)(c1, c2,Amp) is the
fixed point set of the Flow. We explore this moduli space and define
categorical Donaldson invariants. For more see [15].

M(C)

Γ(M(C))

# components

•

C H2(M)

Walls

Met(E, h)(c1, c2,Amp), Flow

Γ

# comp

•

C
Walls

Stab(C)

Conjecture 7.5.

{Met(Comp) 6= 0} {Voisin non-splitting on diagonal}∼=

∼=

∼ =

∼=

{Impossible to stretch the neck} {Gap in Orlov spectra}

We elaborate this table. Stretching the neck for Landau-Ginzburg
models is the novelty we propose in this paper. This is a phenomenon
stronger than Hodge theory. Stretching the neck and its obstructions
serve as a way of putting together categories.

Conjecture 7.6. If X is rational, then φ(LG1#LG2) = φ(LG1).

LG1

1

1

dim=2

dim=3

dim=4

If φ(LG1#LG2) 6= 0,

then X is not rational

φ(LG1#LG2) 6= φ(LG1)

This gives immediate possibilities.

| | |

φ(LG1#LG2) 6= φ(LG1)

• •
•

•
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1. Obstruction to splitting of the diagonal.

2. Gaps in the dynamical spectra.

3. Gaps in Orlov spectra.

We restrict ourselves to the case when X is a smooth projective
variety such that hp,q(X) 6= 0 iff p = q. In this case extensions of
Lagrangians L1 , L2 coming from LG1 and LG2 produce nontrivial
moduli spaces of Lagrangians Mod(L1, L2).

(12) 1 −→ L1 −→ E −→ ϕ(L2) −→ 1

HF(L1, ϕ(L2)) = C

More generally,

(13) dim Mod(L2) < dim Mod(L1, L2).

In the case of 3-dim Fano Db(Y ) =< BY ,OY ,OY (1) > we have an
acyclic instanton

(14) 1→ E → Ẽ → On−2
Y → 1,

where E ∈ (OY (1))⊥. Here L1 = E, L2 = On−2
Y .

Conjecture 7.7. Assume that BY 6= Db(C), then Don(Db(Y )) =
Don( ) sinh(t). So it is a basic class which does not correspond to a
blow-up.

Conjecture 7.8.

1. HF(L1, ϕ(L2)) 6= 0 is an obstruction to rationality.

2. dim Mod(L2) < dim Mod(L1, L2) is an obstruction to rationality.

This considerations suggest the following:

Conjecture 7.9. Let X be a smooth projective variety s.t. hp,q(X) 6= 0
iff p = q. If Mod(L1, L2) is not trivial then X is not rational.
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Idea of proof. Let us consider the case when X is 3-dimensional. Let X
be rational. Then X is a blow-up of a projective space in a curve. The
space Mod(L1, L2) is the mirror of the space of instantons - extensions of
the ideal sheaf of the exceptional curve. Such an instanton is non-stable
if rigid.

We have the opposite conjecture too. It comes from the theory of
KE categories and the HN filtrations.

Conjecture 7.10. Let X be a smooth projective variety such that
Db(X) =< E1, . . . , En >. Then X

bir
= PN .

Idea of Proof.

Classical Donaldson theory

X
⋃
Xi

KE Collapse - HN Filtr.
B side

A side LG(X) •• •
HN-Cat

Kähler
Metric

∪LG(Xi)

Proposition 7.11. We have the following two operations:

1.

1 2 2 1

Mutation - Change of Stability

2.
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1 2

projection

Change of HN → Change of Categories

Idea.

dim 2 NH for Categorical Kähler Metric.

deg

Mutation
· · ·

P2

Step 1 Via further degeneration

Cat As it follows from [12] this is P2.

Step 2

adding further

blocks - blow-ups

Step 3 Regeneration HN → Categorical Kähler Metric.
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The above observations lead to a general program. Let us concen-
trate on the B side. The stability condition is given by

∫
X

tr(e
iw
~ +F )Γ(TX)

~→0−−−−→(
1

n!

(
1

~

)dimX

wn rk E +
1

n− 1

(
1

~

)dimX−1

wn−1c1 + · · ·

)
Γ

(15)

We have the following correspondence between classical Donaldson
theory and categorical Donaldson theory:

Mod(Stab)
~→0−−−→Mod(c1, c2)

Don(Stab)
~→0−−−→ Don(c1, c2)

(16)

Recall that:

Log

transform

· · ·

Ell surface

• •
•

•

•

•

10
Dolg surface

(17) ∆e2[T ]

K Don(Ell) = Don(Dolg 2, 3),

where ∆K is an Alexander polynomial and T is a torus fiber.

We have similar examples in dimension 3.

• ••

LG

n : 1

• ••

LG′

F
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(18) Don(LG) −→ Don(LG′)·∆F (Db(K3)).

Here K3 is the fiber of the LG model and ∆F is the Alexander polyno-
mial of the functor F .

Here we apply several incarnations of conjecture 1.3 in the introduc-
tion.

Conjecture 7.12.

(19) Don(P̂3
C) = Don(P3)·Don(Rul(C)),

where Rul(C) is the ruled surface over C.

Conjecture 7.13. In dimension 4,

(20) Don(P̂4
S) = Don(P4)·Don(Rul(S)).

Classical Categorical

u

mod ×X

Ch(u)

H(Mod) × H2(X)

u

mod ×Db(X)

Ch(u)

H(Mod) × HP(Db(X))

We have Db(X) =< A, E1, . . . , En > .

Conjecture 7.14.

(21) Don(Db(X)) = Don(A)·Don(E1, . . . , En).

This allows us to connect birational geometry of 4-dimensional Fano
with the theory of 2-dimensional categories.

Let X be a 4-dimensional Fano e.g. 4-dimensional cubic. The for-
mula is: ∫

X
tr e

iw
~ +FΓ =

1

n!

(
wdimX rk(E)

)
+

1

(n− 1)!

(
wdimX+1c1(E)

)
+

1

(n− 2)!

(
wdimX+2c2(E)

)
+ · · · .

(22)
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Serre2

11

8
line

χ(HH)
B
M

Y
lin

e

ca
teg

oric
al gen

era
l type

Noeth
er

lin
e

Conjecture 7.15.

(23) Don(X4
cubic) = Don(A)(cosh· l)3.

Here

(24) Don(A) = exp(QR)

3∏
i=1

sinh(Fi)

sinh(Fi/p) sinh(Fi/q)
.

The reason for this is

(25) Fuk(E × E/Z3) = Db(E(2)(1, 2, 1, 2, 1, 2)).

So p1 = p2 = p3 = 1, q1 = q2 = q3 = 2.

Conjecture 7.16. DonDb(X4
cubic) cannot be related to DonDb(P̂nS),

where S is a surface of general type.

The main idea behind this conjecture is the conjecture 1.3.
It will be interesting to define basic classes for LG models.
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Classical Categorical

Basic classes Vanishing cycles

gluing surfaces via Donaldson
invariants

gluing categories via
categorical Donaldson

invariants

Examples

Basic classes F

12 additional
fibers

Vanishing cycles

••
•

Question 7.17.

- Define categorical Bogomolov-Miyaoka-Yau inequalities.

- Noether inequalities.

-
11

8
conjecture.

Gluing of Donaldson invariants is parallel to CH0 (non)triviality in
Voisin theory.

Voisin theory Categorical theory

X
deg−−−→ X0

Br(X0) 6= 0

⇒ X is stably non-rational

Db(X) −−→ Db(X0)

Cat Br(X0) 6= 0

⇒ X is stably non-rational

Conjecture 7.18. Let Cb, b ∈ B be a flat family of categories s.t.
∃ U ⊂ B 3 0, Cb = Db(Xb) and Cat Db(X0) 6= 0. Then there exists
Zariski open U ⊂ B s.t. for very general b ∈ U , Xb is stably non-
rational.

Conjecture 7.19 (dim 4). If Don(Db(X0)) acquires three additional
basic classes then there exists Zariski open U ⊂ B s.t. for very general
b ∈ U , Xb is stably non-rational.
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As we have mentioned, the theory of sheaves of categories is a con-
venient way of computing Donaldson invariants.

Classically, Gompf and Mrowka perform 3 pairs of Log transforms.

S1 × S1 × S1 × S1

p3, q3

p2, q2p1, q1

(26) Don(E(2), p1, q1, p2, q2, p3, q3) = exp(
Q

2
)

3∏
i=1

sinh(Fi)
2

sinh(Fi
pi

) sinh(Fi
qi

)
.

In the case of 4-dim cubic, we have a LG model.

Log

Log

FS(4 dim cubic) C2

•
p1

•
q1

•

p2

•

q2

•

q3•

p3 Log

A

Db(X3) =

< A, E1, E2, E3 >

(27) Don(Db(X3)) = Don(A)eQi

(28) Don(A) = Don(E(2), p1, q1, p2, q2, p3, q3)

This is our most important application of sheaves of categories con-
struction.

1. Log transform p1, q1

− 1-basic class

− 1-phantom

− 1 additional generation time

2. Log transform

− 2-basic class
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− 2-phantom

− 2 additional generation times

3. Log transform

− 3-basic class

− 3-phantom

− 3 additional generation times

FSX3
FSX2

FSX4
(C4, w) FSX3

(C3, w)

FSX2
Fuk(E)

FSX3
(C3, w) FSX2

(C2, w)

The structure of sheaves of categories suggests the following proce-
dure of computing Donaldson invariants.

Conjecture 7.20.

(29) Don(FSX4) = DonX2()· (function of (t1, t2, t3))·Don(),

where t1, t2, t3 are basis classes.

The above considerations in connection with [18] suggest the follow-
ing correspondence.

{Basic classes} ←→ {Gaps in Orlov spectra}

Conjecture 7.21. The creation of 3 basic classes leads to non-rationality
of 4-dimensional cubic.

This conjecture suggests that the gap of the Orlov spectrum of
Db(X) > 3 if and only if X is non-rational.

Conjecture 7.22. We have the following conjecture:
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Dependence
of

basic classes

Noether
Lefschetz

loci

Divisors
of jumps of

the gaps

We develop further the connection with Voisin theory.
In the case dimX = 3, we have Voisin theory:

X
deg−−−−−→ X0

Tor H3(X0,Z)∈

K = ∧Hodd⊕SHeven

A(K) −→ Z

new basic class

=

gap in Orlov spectra

So we formulate:

Conjecture 7.23. Let Cb be a flat family of categories, where b ∈ B 3 0,
so that Don(Db(X0)) has an l additional basic classes for l = dim(X0)−
2. Then ∃ U ⊂ B s.t. for very general u ∈ U so that Cu = Db(Xu), Xu

is stably non-rational.

We move to dimX = 4. We start with E(2)(p1, q1, p2, q2, p3, q3).

Theorem 7.24.

(30) Db(E(2)(p1, q1, p2, q2, p3, q3)) 6=< Db(X1),Db(X2) >,

where X1 and X2 are algebraic surfaces.

Proof. It follows from [13].

We move to special families - conic and quadric bundles.
We consider a three-dimensional conic bundle:
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C1 C2

P2 Conic Bundle

We consider a degeneration of conic bundles:

X
deg−−−−−−−−−→ X0.

C1 C2 P2

Conic Bundle

C P2

Conic Bundle

0 6= Γ ∈ H1(C,Z2)
Γ1 ∈ H1(C1,Z2)
Γ2 ∈ H1(C2,Z2)

From the conjectures formulated above we get:

Theorem 7.25. Assume that Don(Db(X0)) acquires two additional ba-
sic classes. Then this implies Tor H3(X0,Z) 6= 1 and Xu is stably non-
rational.

Theorem 7.26. Let X be a 4-dimensional quadric bundle.

C1 C2C

Quadric BundleX X0

Assume that Don(Db(X0)) acquires three additional basic classes. Then
Xu is stably non-rational.

Proof. Both theorems follow from [16].

Similarly to 2-dimensional Fukaya categories the same approach ap-
plies. Consider two Horikawa surfaces:

(31) FS(X1/KX1)
Luttinger←−−−−→
surgery

FS(X2/KX2).
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Conjecture 7.27.

(32) Don(FS(X2/KX2)) = Don(FS(X1/KX1))·S(F ),

where S is a function of an additional basic class F .

Here Don are SU(n) bundles for n > 2. This suggests that gaps of
Orlov spectra change from FS(X1/KX1) to FS(X2/KX2).

We also conjecture:

Conjecture 7.28. The creation of additional basic classes creates gaps
in dynamical spectra of smooth projective varieties.

This suggests that the dynamical spectrum is a birational invariant.
Conjecture 7.19 suggests that we have a correspondence:

(33) Don((Ell Surf) log tr) = Don(Ell Surf)∆(et)

(34) Ell Surf
log transforms−−−−−−−−−→ Dolg 2, 3

log transforms−−−−−−−−−→ Dolg p, q · · ·

Similarly in the case of 3-dim Fano.

= Db(P3)

C3

C2

wFS

• 2-dim log transform= Db(X3)

We have

(35) Don(Db(X3)) = Don(Db(P3))·∆1(et1)·∆2(et2).

So we have a 3-dim analogue:

(36) P3 log transform−−−−−−−−→ X1
log transform−−−−−−−−→ X2.

Conjecture 7.29. The categorical Donaldson invariants of 3-dimensional
Fanos are connected by the formula

(37) Don(X1) = Don(X2)∆1(et1)∆2(et2),

where ∆1 and ∆2 correspond to 2 log transforms.

Similarly the same should be true for 4-dimensional Fanos.
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Elliptic Surfaces Don(X) = Don()∆(et) t is not a blow-up basic class

3-dim Fanos Don(X) = Don ∆1(et1 )∆2(et2 ) t1, t2 are not blow-up classes

4-dim Fanos Don(X) = Don ∆1(et1 )∆2(et2 )∆3(et3 ) t1, t2, t3 are not blow-up classes

This leads to a parallel between the theory of elliptic fibrations and
Fano 3-folds of Pic = 1.

Elliptic Fibrations 3-dim Fanos

E1 E2

rational
blow-ups

surgeries
Log transforms

rational
blow-downs

X1

degeneration
X ′tor

X2

degeneration
X ′′tor

bir

In the case of Elliptic surfaces, the Donaldson invariants depend on
the vanishing classes of blow-downs. Indeed we start with P2 blown up
in 9 points - intersection of 2 smooth cubics in P2

Surfaces
P2 P̂2

p1,...,p9

t1, . . . , t9

Dolg 2,3
Log 2

Log 3

Sheaf of
Categories

· · ·

12
9 basic classes

• •
spectral network
new basic class

and end with one basic class which is represented by a spectral network.
See [19].

Consider the degeneration and regeneration of 3-dimensional Fanos.

(38) X1
deg−−→ X ′tor

bir−−→ X ′tor
bir←−− X2

Conjecture 7.30. The degeneration of MHS associated with degen-

erations X1
deg−−→ X ′tor, X2

deg−−→ X ′′tor of 3-dimensional Fanos leads to a
connection Don(X1) = Don(X2) (Don(MHS)).
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Conjecture 7.31. For 3-dim Fanos X1, X2, Pic(X1) = Pic(X2),

Don(MHS)

is connected with the Bardelli invariant ψ(α1, α2). (See [3]).

Idea of Proof. As before basic classes are obtained via change of sheaf
category construction.

change of
monodromy

C|

K3

C
new spectral network

Change of monodromy leads to

- new spectral network.

- new moduli space of a new basic class.

- change of Bardelli form.

We need to mention that there is an issue with wall crossing. In
order to compare Donaldson invariants we need wall crossing formulas
for moduli spaces of objects with wall crossing formulas in Donaldson
theory.

Conjecture 7.32. In the case of Dolgachev surface we have a wall
crossing formula on the Donaldson invariants for moduli spaces of ob-
jects which in limit produces the classical Donaldson formula Don(C) =
Don(C ′) + Σiei.

In dim 4 we have also (4-dim cubic)

(39) LG(X1)
log transform−−−−−−−−−→ LG(X2).

This log transform changes the basic classes. In the case of X1 being
rational 4-dim cubic and X2 being generic 4-dim cubic, we lose OK3 as
a basic class (see [21] and [14]).

We arrive at several correspondences with classical Donaldson the-
ory.
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Classical Donaldson Theory Categorical Donaldson Theory

X = X1#CX2

sheaf of categories is not
connected with a potential

local sheaf of categories does
not split in two sheaves which

are not connected with
potentials

We recall two examples.

1. Dolgachev surface.

X = X1#X2

•
• •

• ••
•

•••

No function on these sheaves of categories.

2. 4-dim cubic.

6=
SC1 SC2

SC

∞

SC1

W1 SC2

W2

Obstructions to such splitting are the moduli spaces of stable ob-
jects.

The following theorem could lead to a new approach to irrationality.

Theorem 7.33. Let X be a rational manifold. Then SC(X) - the sheaf
of categories associated with the LG mirror of X can be connected with
a potential.

We conjecture that the sheaves of categories SC(X) are determined
by moduli spaces of objects.
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Conjecture 7.34. The sheaves of categories SC(X) are determined by
moduli spaces of objects and sheaves on dg-algebras on them.

The Donaldson invariants (if properly defined) determine if SC(X)
are sheaves of categories given by a function.

Clearly constructing sheaves of categories not coming from poten-
tials could have an important application in studying rationality ques-
tions. Before giving several procedures of constructing sheaves of cat-
egories SC(X) not connected with potentials we return to our basic
example - the 2-dimensional LG model for Dolgachev surface.

Theorem 7.35. The sheaves of categories SC(X) associated with the
2-dimensional LG model for Dolgachev surface is not connected with a
potential.

Indeed in this case the sheaf of categories does not come form the
push-forward of the structure but from a gerb. The 4-dimensional LG
model for Dolgachev surface produces a sheaf of categories which is
connected with a potential. This observation suggests the following:

Theorem 7.36. The following procedure could lead to sheaves of cate-
gories SC(X) not connected with a potential:

1. Changing the structure sheaf of the initial sheaf of categories com-
ing from a potential to a gerb.

2. Taking a covering of a sheaf of categories.

3. Taking a part of a sheaf of categories.

This observation suggests that sheaves of categories coming from
potentials play the role of simple 4-manifolds in Donaldson’s theory and
the procedure of splitting these sheaves is the analogue of the procedure
of stretching the neck.

Question 7.37. Consider SC(X) - the sheaf of categories of LG
model of a Fano threefold X. Assume that SC(X) = (SC1, SC2)
i.e. we split SC(X) to two sheaves of categories and one of
them SC2 is not connected with a potential. Can we then
claim that X is not rational?

A positive answer to this question will build a categorical parallel to
Voisin’s theory of CH0- trivial Fano varieties.
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The splitting SC1, SC2 as sheaves of categories can be interpreted
as limited stability conditions and as testing configurations. These are
more general than just to split LG models - which produces more op-
portunities for applying Voisin’s techniques.

7.2 More on sheaves of categories.

In this subsection we will try to summarize our observations.

Definition 7.38. Let f : Y → C be a regular map. Then f∗(DOY
) is a

sheaf of categories connected with a function (with a potential)
. (Here DOY

is the category of OY -D modules.)

We can also consider Fukaya - Seidel category with coefficients in a
stack Z - FS(Y, Z).

How to obtain FS(Y,F) not connected with a function:

1. Change OY on a Gerb G (Stack). Example of that is Dolg 2,3,
2-dim LG model.

2. Taking finite group quotients of Y .

3. Degeneration, taking open subset Y ′ ⊂ Y , regeneration.

This suggests a possible conceptual definition of FS(Y, f,G) in the
situation above.

Definition 7.39. FS(Y, f,G) is defined as global sections of the sheaf
of categories f∗(DOY

). or f∗(DG).

Conjecture 7.40. The change of the sheaf of categories from f∗(DOY
)

to f∗(DG) leads to the following:

1. FS(Y, f,G) can attain a phantom.

2. FS(Y, f,G) attains additional categorical basic classes.

Similarly we define categories of matrix factorizations with coeffi-
cients, MF(Y, f,G).

This means the pair

changes to

P1
d−−→ P0

d2 = f
Pi is an OY -module

P1
d−−→ P0

d2 = f

Pi is a G-module
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Definition 7.41. We call MF(Y, f,G) a category of matrix factor-
ization with coefficients.

Conjecture 7.42. The change MF(Y, f) → MF(Y, f,G) leads to new
categorical basic classes.

We can say this differently:

Y

Z

, G - a gerb
f

We get a sheaf over Z, Db(Y,G)/Perf(Y,G).

(40) MF(Y,G) := global section of Db(Y,G)/Perf(Y,G).

So we summarise the proposed definition of A and B side sheaves of
categories connected and not connected with a function.

A B

Sheaf of
categories with

a function

f : Y → C
FS(Y, f, f∗OY )

f : Y → C
MF(Y, f, f∗OY )

Sheaf of
categories with

a function

Y → Z-stack
G-gerb only

FS(Y,Z,G)

Y → Z-stack
G-gerb only

MF(Y, Z,G)

Example 7.43. Consider Fuk(Dolg 2,3) ∼= MF(Y,G).

Fuk(P̂2
p1,...,p9) MF(

12⊕
1
C[x, y]/x2+y2)∼=

∼=Fuk(Dolg 2,3) MF(Y,G)

Log tr Log tr6=

different basic
classes

Fuk(Dolg 2,3) has no phantoms since it is a Calabi -Yau category.
But it has new basic classes. Similarly new basic classes appear in
Fukaya categories after rational blow-down, surgery.
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Example 7.44. Consider A2 ×A2 ×A2.

This creates
Spectral
network

•

•

••
D4

• • A2

•

••
• •

basic class

We can define MF(A2, D4) with additional basic classes.

All these suggest a generalization of Orlov’s Theorem for sheaves of
categories with coefficients.

Conjecture 7.45. 1. MF(Y,G) =< Db(A,G′), E1, . . . , En >.

2. Db(B,G′) =< MF(Y,G), E1, . . . , En >.
Here A is a category of general type, B is a category of Fano type.

G,G′ are gerbs (stacks).

Some version of this conjecture appears in [?].

Acknowledgement
We are grateful to D. Auroux, S. Donaldson, F. Haiden, P. Horja,

M. Kapranov, G. Kerr, M. Kontsevich, A. Kuznetsov, J. Morgan and
P. Pandit for the help with the paper. The authors were supported by
Simons research grant, NSF DMS 150908, ERC Gemis, DMS-1265230,
DMS-1201475 and OISE-1242272 PASI.

Ludmil Katzarkov
Department of Mathematics,
University of Miami,
Miami, FL, USA,
lkatzarkov@gmail.com

Yijia Liu
Department of Mathematics and Statistics,
McGill University,
Montreal, QC, Canada,
yijia.liu@mail.mcgill.ca

References

[1] Mohammed Abouzaid, Denis Auroux, and Ludmil Katzarkov. La-
grangian fibrations on blowups of toric varieties and mirror sym-
metry for hypersurfaces. arXiv preprint arXiv:1205.0053, 2012.

[2] Denis Auroux, Ludmil Katzarkov, and Dmitri Orlov. Mirror sym-
metry for weighted projective planes and their noncommutative
deformations. Ann. of Math. (2), 167(3):867–943, 2008.



172 Ludmil Katzarkov and Yijia Liu

[3] Fabio Bardelli. Polarized mixed Hodge structures: on irrationality
of threefolds via degeneration. Ann. Mat. Pura Appl. (4), 137:287–
369, 1984.

[4] 14]BDFIK Matthew Ballard, Dragos Deliu, David Favero,
M Umut Isik, and Ludmil Katzarkov. On the derived categories of
degree d hypersurface fibrations. arXiv preprint arXiv:1409.5568,
2014.

[5] Nero Budur. Bernstein-Sato ideals and local systems. arXiv
preprint arXiv:1209.3725, 2012.

[6] Xiu-Xiong Chen, Simon Donaldson, and Song Sun. Kahler-
Einstein metrics and stability. arXiv preprint arXiv:1210.7494,
2012.

[7] S. K. Donaldson. Irrationality and the h-cobordism conjecture. J.
Differential Geom., 26(1):141–168, 1987.

[8] S. K. Donaldson. Polynomial invariants for smooth four-
manifolds. Topology, 29(3):257–315, 1990.

[9] SK Donaldson. Extremal metrics on toric surfaces: A continuity
method. JOURNAL OF DIFFERENTIAL GEOMETRY, 79:389–
432, 2008.

[10] David Favero. A study of the geometry of the derived cate-
gory. Ph.D. Thesis, University of Pennsylvania, January 1,
2009. Dissertations available from ProQuest. Paper AAI3363290.
http://repository.upenn.edu/dissertations/AAI3363290.

[11] Phillip Griffiths and Joseph Harris. Principles of algebraic geom-
etry. John Wiley & Sons, 2014.

[12] Sergey Galkin, Ludmil Katzarkov, Anton Mellit, and Evgeny
Shinder. Derived categories of Keum’s fake projective planes. Adv.
Math., 278:238–253, 2015.

[13] Robert E. Gompf and Tomasz S. Mrowka. Irreducible 4-manifolds
need not be complex. Ann. of Math. (2), 138(1):61–111, 1993.

[14] P. Horja and L. Katzarkov. Noncommutative Okounkov bodies In
preparation.



Sheaf of categories and categorical Donaldson theory 173

[15] Fabian Haiden, Ludmil Katzarkov, Maxim Kontsevich, and Pran-
av Pandit. In preparation.

[16] Brendan Hassett, Andrew Kresch, and Yuri Tschinkel. Stable
rationality and conic bundles. arXiv preprint arXiv:1503.08497,
2015.

[17] Prizhalkovskii Sakovich Kasprzyk, Katzarkov. In preparation.

[18] Ludmil Katzarkov and Yijia Liu. Categorical base loci and spec-
tral gaps, via okounkov bodies and nevanlinna theory. accepted to
appear in Proceedings of String- Math 2013, Proceedings of Sym-
posia in Pure Mathematics.

[19] Ludmil Katzarkov, Alexander Noll, Pranav Pandit, and Carlos
Simpson. Harmonic Maps to Buildings and Singular Perturbation
Theory. arXiv preprint arXiv:1311.7101, 2013.

[20] Ludmil Katzarkov and Victor Przyjalkowski. Landau-Ginzburg
models—old and new. In Proceedings of the Gökova Geometry-
Topology Conference 2011, pages 97–124. Int. Press, Somerville,
MA, 2012.

[21] Alexander Kuznetsov. Derived categories of cubic fourfolds. In
Cohomological and geometric approaches to rationality problems,
pages 219–243. Springer, 2010.

[22] David Nadler. A combinatorial calculation of the landau-ginzburg
model m = 3, w = z1z2z3. eprint arXiv:1507.08735, 07/2015.

[23] Gang Tian. K-stability and Kahler-Einstein metrics. arXiv pre-
print arXiv:1211.4669, 2012.


	Introduction
	Categorical linear systems
	Real blow-ups, sheaves of categories and linear systems
	Categorical Kähler metrics
	Categorical base loci and categorical Okounkov bodies
	Categorical multiplier ideal sheaves and categorical Kähler-Einstein metrics 
	Applications
	Geometric applications
	More on sheaves of categories.


