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Enumeration of integer lattices by quotient group

Álvar Ibeas Mart́ın

Abstract

Motivated by the enumeration of graph regular coverings, Kwak,
Chun, and Lee gave a formula that counts the subgroups of a
finitely generated free abelian group with a given finite quotient.
This article examines that result from several viewpoints, provid-
ing an alternative proof with a plain combinatorial interpretation.
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1 Introduction

An integer (point) lattice in dimension r is a subgroup of the additive
group Zr, equipped with the metric inherited from the Euclidean space
Rr. Such an object is conveniently set down by means of a basis: an
integer matrix with r rows and linearly independent columns that gen-
erate the subgroup (elements of Zr are treated as column vectors in this
article). In symbols, if B is a d-column basis for lattice Λ, we have
Λ = BZd = {Bv : v ∈ Zd}. We shall only consider full-dimensional
lattices, i.e. those generated by square matrices. For example, here are
three different lattices in Z2:

[
4 0
0 1

]
Z2

[
2 1
0 2

]
Z2

[
2 0
0 2

]
Z2
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Let us determine the quotient group (which must be abelian of order
4) for each of the three examples above. In the first two, a point in Z2

can be found whose order modulo the lattice is 4, so that the quotient is
cyclic (C4) in both cases. In contrast, the double of every point lies in
the third lattice (which is indeed 2Z2), so that the quotient is C2 ⊕ C2

in this case (and in no other in dimension 2, see Lemma 4.1).
This paper focuses on the following enumeration problem: given a

positive integer r and a finite abelian group G, how many lattices are
there in dimension r whose quotient group is G? We look, therefore, for
the cardinality of the set

Lr(G) = {Λ ⊆ Zr : Zr/Λ ∼= G}.

In other words, we are interested in counting lattices whose bases have
a given Smith Normal Form. As the Euclidean metric is not relevant to
this matter,1 the problem can be phrased just in terms of subgroups of
a finitely generated free abelian group.

The question above is settled by a theorem published by Kwak,
Chun, and Lee [11, Thm. 3.4] and restated here as Theorem 5.2. These
authors’ aim was to enumerate graph regular coverings and used this
result—put as the enumeration of connected coverings—as an interme-
diate step. Nevertheless, they have also pointed out [12, p. 125] the
subgroup-enumerating reading of their study.

In spite of presenting such a plain statement, the mentions to the
studied problem that we have found in the literature are scarce. This
might be explained by the fact that Theorem 5.2 can be thought of
as a straightforward corollary to the long-known result [5, 6, 19] which
enumerates (through Equation (4)) subgroups of a given type in a fi-
nite abelian group. However, we have considered it worth to provide a
detailed account of the topic.

Due to the structure properties of finite abelian groups, only finite
abelian p-groups (i.e. with a prime-power order) need to be considered.
These are conveniently described by means of integer partitions, as re-
called in Section 3. Hence, the formula solving the addressed problem is
parameterized by a positive integer r, a prime p, and an integer partition
λ (with no more than r parts).

Delving further into that formula, we explore several ways to under-
stand it. We start by analysing (in Section 6) a couple of special cases:
when the quotient group is cyclic and when it is elementary abelian. In

1We will however turn to it to define dual lattices.



Enumeration of integer lattices by quotient group 35

dimension 2, the cyclic case is enough to fully solve the problem; but
this reduction is not extendable to an arbitrary dimension. When the
quotient is an elementary abelian p-group, our problem is equivalent to
finding subspaces of a vector space over a finite prime field.

Lattices with a given abelian p-group quotient can be recursively
constructed drawing on the elementary abelian case. In this way, we
contribute (in Section 7) an inductive proof for Theorem 5.2 which al-
lows a combinatorial interpretation of its formula, according to which
the sought lattices are classified as liftings of chains of subspaces in
(Z/pZ)r with dimensions prescribed by the quotient group.

Summing up, we count three approaches for proving the result we
are dealing with. Apart from the interpretation sketched out in the
previous paragraph, we have the original proof by Kwak, Chun, and
Lee and the reduction to the subgroup-enumerating formula (4). In the
closing section, the last two are presented in a unified fashion that boils
down to the enumeration of epimorphisms from a finitely generated free
abelian group to an abelian p-group.

2 Enumeration by volume

A characterization of a full-dimensional lattice Λ, alternative to the one
given in the introduction, is that the quotient group is finite. In this
case, the lattice volume is the index [Zr : Λ]. It equals the absolute value
of the determinant of every lattice basis. This suggests the problem of
counting ar(n), the number of integer lattices in Zr with volume n [14,
A128119, A160870].

When r = 1, there is exactly one lattice (namely, nZ) for every
volume n. When r = 2, a2(n) = σ(n), the sum of divisors of n. This
can be proved describing a system of bases of lattices with volume n. To
this end, since a lattice admits (infinitely) many bases, it will be useful
to fix a canonical choice.

Two bases for the same lattice are related by a unimodular matrix
(i.e. an integer matrix with an integer inverse), and conversely. In other
words, a matrix is a basis of lattice BZr if and only if it is of the form
BP , with P ∈ Zr×r and | det(P )| = 1.

As a normalized basis, we adopt a variant of the Hermite form.
Namely, an upper triangular matrix with nonnegative entries and posi-
tive diagonal elements (called pivots), each of them bigger than the rest
of entries in its row. Now, the set of normalized bases for 2-dimensional
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lattices of volume n is

(1)

{(
d b
0 n/d

)
: d | n, 0 ≤ b < d

}
,

affording the statement a2(n) = σ(n).

The enumeration of normalized bases settles the question for arbi-
trary dimension as well. Namely, ar(n) can be expressed as the sum
of d01d

1
2 · · · dr−1r , extended over every factorization n = d1 · · · dr of the

volume into r ordered factors: the pivots arranged from bottom to top.
The following recursive expressions can be provided too:

(2) ar(n) =
∑
d|n

(n
d

)r−1
ar−1(d) =

∑
d|n

d · ar−1(d).

The first one is deduced from the observation that, in the Hermite
Normal Form of a lattice with volume n, the bottom-right (r − 1) ×
(r − 1) block generates a lattice of volume d, for a certain divisor d
of n. Moreover, the first pivot is n/d and every entry in the first row
(shadowed in the left figure below) can take n/d different values. The
other recurrence reflects the decomposition shown in the right figure,
where each element on the shadowed column can take as many values
as the corresponding pivot on the top-left block, and the pivot product
is d (cf. [17, §63, Aufg. 13], [1, Appx. A]).

vol. d0

n
d

0
n
d

vol. d

It can be proved from the expressions above that, for a fixed di-
mension, the amount of lattices of a given volume is a multiplicative
function. As shown in the cited exercise from [17], as well as in [7, 20]
(see also below),

(3) ar(p
e) =

[
e+ r − 1

e

]
p

and the associated Dirichlet generating function is∑
n≥1

ar(n)

ns
= ζ(s)ζ(s− 1) · · · ζ(s− r + 1).
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The bracket above stands for a Gaussian polynomial. Namely, we use
the notation [n]p = 1+p+ · · ·+pn−1 = pn−1

p−1 , [n]p! = [n]p[n−1]p · · · [2]p,[
r

x1,...,xl+1

]
p

=
[r]p!

[x1]p!···[xl+1]p!
(where r = x1+ · · ·+xl+1) for the p-analogue

of multinomial coefficients, and
[
r
x

]
p

=
[

r
x,r−x

]
p

for Gaussian polynomi-

als. Note that the latter can be defined through any of the recurrences[
x+ y

x, y

]
p

=
x∑
i=0

pi
[
i+ y − 1

i, y − 1

]
p

=
x∑
i=0

p(x−i)y
[
i+ y − 1

i, y − 1

]
p

(if y > 0)

and the boundary conditions
[
x
x,0

]
p

=
[
y
0,y

]
p

= 1. Therefore, (3) follows

from any of the recurrences in (2) and the boundary conditions ar(p
0) =

a1(p
e) = 1.

Our aim is studying the refined enumeration of lattices by their quo-
tient group. For instance, the three examples listed in the introduction
lie among the 7 = σ(4) two-dimensional lattices with volume 4. As we
have already pointed out, all of the seven give a cyclic quotient except
the third example (see Figure 3). Let us recall some facts about the
kind of groups that we will come across as quotients.

3 Finite abelian groups

There are two standard structure results for finite abelian groups. On
the one hand, every such an object can be uniquely decomposed as the
direct sum of cyclic groups Cd1 ⊕ · · · ⊕ Cdl such that 1 < dl | · · · | d1.
The orders of these components are called invariant factors. If B is
a basis of a lattice Λ ⊆ Zr such that Zr/Λ has an invariant factor
decomposition as above, there exist unimodular matrices P,Q such that
PBQ = diag(d1, . . . , dl, 1, . . . , 1︸ ︷︷ ︸

r−l

), the Smith Normal Form of B.

On the other hand, a finite abelian group can be written as the
direct sum of abelian groups with a prime-power order (i.e. finite abelian
p-groups). It is sufficient to take these into account for the sake of
the enumeration dealt with in this article (see Lemma 5.1). As for
these components, every finite abelian p-group is itself (in a unique
way, except for the ordering) the direct sum of cyclic groups Cpλi . For
every occurring exponent λi, let xi be the number of copies present in
the decomposition. Thus, every finite abelian group takes the form⊕

p

Gp(λ), where Gp(λ) = Cx1
pλ1
⊕ · · · ⊕ Cxl

pλl
.
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x1

xl−1

xl

xl+1

x2

r

λ1

λ2

λl−1

λl

x1

xl+1

r

λ′1

G/piG
piG

λ′i

Figure 1: Partition (λ; r) = (λx11 , . . . , λ
xl
l , 0

xl+1)

Arranging the set of occurring exponents in the decreasing order (λ1 >
· · · > λl > 0) leads to the identification of a finite abelian p-group
with its type: the integer partition λ = (λx11 , . . . , λ

xl
l ), written here in

exponential notation. A partition is conveniently displayed by means of
its associated Young diagram (see Figure 1).

The order of Gp(λ) is p to the power of the partition’s size: |λ| =∑
xiλi. On the other hand, every minimal system of generators of

Gp(λ) has len(λ) =
∑
xi elements.2 Recall that we are interested in

groups arising from a quotient of Zr, which have therefore a system of r
generators. This provides the constraint len(λ) ≤ r for Lr(Gp(λ)) to be
nonempty. Indeed, we will find it convenient to add xl+1 empty parts to
λ, so that len(λ)+xl+1 = r, as depicted in the figure, using the notation
(λ; r) = (λx11 , . . . , λ

xl
l , 0

xl+1) for the resulting object.
Cyclic groups (of prime-power order) are associated with one-part

partitions. The other degenerate case is constituted by groups where
the order of every nonzero element is p (i.e. elementary abelian groups),
which are associated with one-column partitions (1x) and can be identi-
fied with vector spaces over the field Z/pZ. For an arbitrary partition λ,

setting G = Gp(λ), its first column (associated with the group C
len(λ)
p )

2This follows from Burnside Basis Theorem. In the general case of a finite abelian
group, there exist minimal systems of generators whose cardinality is any of the
numbers in the range [max(len(λ)),

∑
len(λ)], where the maximum and the sum are

extended over the partitions associated with the different primary components.
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can be thought of as G/pG (the quotient of G by its Frattini subgroup)
or as the subgroup consisting of zero and the elements of order p (the
group socle). In general, G/piG is a p-group associated with the par-
tition composed by the first i columns of λ. Analogously, piG matches
the last λ1 − i columns. The column lengths in the Young diagram
constitute the parts of the conjugate partition (λ′1, . . . , λ

′
λ1

).3 We have

λ′i = dim(Z/pZ)
pi−1Gp(λ)

piGp(λ)
.

(Note that these quotient groups are elementary abelian.) In particular,
λ′1 = len(λ). The group Gp(µ) admits a subgroup of type λ if and only
if the partition λ “fits” into µ, i.e. λ ≤ µ part-wise. If this is the case,
the number of occurring subgroups is (see [3, Lemma 1.4.1])

(4)
∏
j≥1

pλ
′
j+1(µ

′
j−λ′j)

[
µ′j − λ′j+1

λ′j − λ′j+1

]
p

.

Every quotient of a finite abelian group can be regarded as a sub-
group of it. This derives from the identification of G with the (isomor-
phic) dual group Ĝ = Hom(G,C∗). In this way, a duality is established

between subgroups of G, linking S with Ĝ/S = {ξ ∈ Ĝ | ξ(S) = 0} ⊆ Ĝ
(see [2], [13, II.(1.5)]). The set of subgroups of a finite abelian group is,
then, a self-dual poset.

If G is a finite abelian p-group, the cotype of a subgroup S is defined
as the type of the quotient G/S. For example, in Figure 2, the 4-cyclic
subgroup 〈2x〉 has cotype (1, 1), whereas the subgroup 〈2x+y〉 (4-cyclic
as well) is self-dual (its cotype is (2)).

Even though the type of a subgroup does not necessarily determine
its cotype, the formula in (4) also counts—by virtue of the duality—
subgroups of Gp(µ) with cotype λ. In Section 5, we see how that formula
quickly solves the problem studied in this paper.

4 A lattice lattice

This ill-sounding heading reflects the double meaning in Mathematics
of the term lattice. Throughout the paper, we are using it to denote

3We find it useful to assign different indices to these parts, disregarding whether
some of them are equal, in contrast to those of λ, which we have indexed by blocks.
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0

〈y〉 〈4x+ y〉 〈4x〉

〈4x, y〉 〈2x+ y〉 〈2x〉

〈2x, y〉 〈x+ y〉 〈x〉

〈x, y〉

Figure 2: Subgroups of C8 ⊕ C2 = 〈x, y | 8x = 2y = 0〉

the objects studied by the Geometry of Numbers. However, it more
commonly refers to a poset-related concept [18, Sec. 3.3].

In this section, we employ the term in both ways, taking a glance
at the interplay between the set of studied lattices and the set of finite
abelian groups. This may complete the picture of the proof for the
enumeration result given in the following section.

We consider the poset of lattices in dimension r, ordered by reverse
inclusion. In general, it will be sufficient to deal with the restriction to
lattices with a p-group quotient (see, for instance, Figure 3).

That poset is a lattice. Indeed, the intersection of two subgroups of
Zr is their join as poset elements, and the lattice sum corresponds to
the meet operator:

Λ1 ∨ Λ2 = Λ1 ∩ Λ2, Λ1 ∧ Λ2 = Λ1 + Λ2.

The poset is infinite and has a zero (namely, Zr). Note that, for
a fixed lattice Λ ⊆ Zr, there is a natural bijection between its super-
lattices and the subgroups of Zr/Λ. In this way, every principal order
ideal (the superlattices of an element) and, more generally, every poset
interval corresponds to the lattice of subgroups of a finite abelian group.
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Z2

[ 2
1]

[ 2
1 1]

[ 1
2]

[ 4
1]

[ 4
2 1]

[ 4
1 1]

[ 2
2]

[ 4
3 1]

[ 1
4]

[ 2
1 2]

Figure 3: Lattices in Z2 whose volume is a power of 2
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For instance, the lattice of Figure 2 matches six principal ideals from
Figure 3. On the other hand, the subposet conformed by the sublattices
of an element (a principal filter) is isomorphic to the whole poset.

When restricted to lattices whose volume is a power of a prime p,
every element is covered by [r]p = 1 + p+ · · ·+ pr−1 sublattices. Taking
the type of the quotient groups makes our poset collapse onto a subposet
of the Young lattice, including only partitions with no more than r parts.

In the general case, if two lattices have the same quotient group,
they are indistinguishable as poset elements. Indeed, two such lattices
admit bases (B1, B2) related by a unimodular change of coordinates:
B1 = PB2, with | det(P )| = 1. Note that P is an automorphism of Zr
and induces an automorphism on the studied poset.

According to next result, a lattice in Zr is a characteristic subgroup
if and only if it is of the form nZr, for a positive integer n.

Lemma 4.1. Let r be a positive integer. Then, |Lr(G)| = 1 if and only
if G is trivial or has r equal invariant factors. In particular, if G is a
finite abelian p-group, |Lr(G)| = 1 if and only if G is associated to a
partition with r equal (possibly empty) parts.

Proof. Let n be a positive integer (including the case n = 1). If Λ is a
lattice in dimension r such that Zr/Λ ∼= Crn, the order of every integer
vector modulo Λ divides n, so that nZr ⊆ Λ (and both lattices coincide,
since Zr/nZr ∼= Crn). Hence, |Lr(Crn)| = 1.

Alternatively, if B is a basis for a lattice with quotient group Crn,
there exist unimodular matrices P and Q such that PBQ = nIr ⇒
BQ = P−1nIr = nIrP

−1, so that the lattice generated by B is nZr.
In order to prove the converse, let G be a finite (r or less)-generated

abelian group not under the hypothesis. We consider the invariant factor
decomposition of G, completed with trivial groups, if necessary, up to r
factors:

G = Cd1 ⊕ · · · ⊕ Cdr , dr | · · · | d1.
There must be at least two different factors di 6= dj . Then, the lattices
spanned by bases diag(. . . , di, . . . , dj , . . .) and diag(. . . , dj , . . . , di, . . .)
are different and give both G as quotient group.

5 Enumeration by quotient

Our goal is enumerating Lr(G), the set of subgroups of Zr whose quo-
tient is G, keeping in mind that only finite abelian (r or less)-generated
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parameters G need to be taken into account.
The problem is trivial in dimension 1: the quotient group of Z by the

only lattice of volume n (i.e. nZ) is cyclic. For dimension 2, there is a
neat solution as well (the picture provided by Rutherford [16] is correct
in dimension 2). On the one hand, for a cyclic quotient, |L2(Cn)| =
ψ(n), the Dedekind ψ function [14, A001615], i.e. the sum of the divisors
of n whose codivisor is squarefree. Indeed, the Smith Normal Form of
a basis in (1) is the diagonal (n, 1) if and only if gcd(d, b, n/d) = 1, so
that |L2(Cn)| equals the cardinality of the set A below. Those matrices
can be classified according to the squarefree kernel of n/d. We recall
that the squarefree kernel, written rad(m), of a positive integer m is the
largest squarefree integer dividing m. It is also the product of all the
different prime divisors of m. The following map is a bijection from A
to a set readily enumerated by ψ(n).

A =

{(
d b
0 n/d

)
: d | n, 0 ≤ b < d, gcd(d, b, n/d) = 1

}
B =

{(
d b
0 n/d

)
: d | n, 0 ≤ b < d, n/d squarefree

}
A −→ B(

d b
0 n/d

)
7→

(
n

rad(n/d)
b·n/d

rad(n/d)

0 rad(n/d)

)
On the other hand, if d | n, we have |L2(Cn ⊕ Cd)| = |L2(Cn/d)| =

ψ(n/d), after the bijection that maps a lattice Λ ∈ L2(Cn ⊕ Cd) to
1
dΛ. This reduction to the cyclic case cannot be extended to higher
dimensions, apart from the full-column removal considered in Section 9.

Before proceeding to arbitrary dimension, we notice that, as an-
nounced, the problem can be reduced to p-groups. The enumeration
by volume studied in Section 2 is solved by a multiplicative function
(ar(uv) = ar(u)ar(v), for coprime u and v). As for the enumeration by
quotient, we can rely on the following property (cf. [11, Thm. 2.7]).

Lemma 5.1. Let G1, G2 be two finite abelian groups with coprime
orders. Then,

|Lr(G1 ⊕G2)| = |Lr(G1)| · |Lr(G2)|.

Proof. We draw on the bijection between superlattices of a lattice Λ
and subgroups of Zr/Λ. Among the subgroups of G1 ⊕ G2, there are
unique copies of G1 and G2.
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As a consequence, every element of Lr(G1 ⊕ G2) can be expressed
in exactly one way as the intersection of a pair of lattices in Lr(G1) ×
Lr(G2); conversely, every such intersection has quotient G1 ⊕G2.

With this result in mind, in order to enumerate lattices by quotient
in arbitrary dimension, we restate a result proved by Kwak, Chun, and
Lee [11, Thm. 3.4] (see also [12, Thm. 13]) under a different language.

Theorem 5.2. Let p be a prime number, r a positive integer, and λ a
partition with no more than r parts. Let x1, . . . , xl be the part multipli-
cities, so that len(λ) =

∑
xi, and xl+1 = r − len(λ). Then, the number

of lattices in Zr whose quotient is a p-group of type λ is

|Lr(Gp(λ))| = pc(λ;r)
[

r

x1, . . . , xl, xl+1

]
p

,

where, writing (λ′1, . . . , λ
′
λ1

) for the conjugate partition (the columns in

the associated Young diagram), c(λ; r) equals
∑λ1−1

i=1 (r − λ′i)λ′i+1.

Writing λ(i) for the partition obtained from the first x1+· · ·+xi parts
of λ, with λi+1 units removed from each (see Figure 4), the exponent
above can also be expressed as c(λ; r) =

∑l
i=1 xi+1(|λ(i)| − len(λ(i))).

x1

xl−1

xl

xl+1

x2

λ(2)

λ(1)

λ(l−2)

λ(l−1)

λ = λ(l)

r

λ′1

Figure 4: Partition (λ; r) = (λx11 , . . . , λ
xl
l , 0

xl+1)

In the following three sections, we set our focus into a proof which
provides a natural interpretation for the theorem formula. Below, we
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show instead how the result can be considered a particular case of Equa-
tion (4). In this way, the theorem is handily proved, after paying the
toll of turning to that enumeration result.

We recall again the bijection between superlattices of Λ ⊆ Zr and
subgroups of Zr/Λ. Among the latter, those with a certain type (or
cotype) are enumerated through Equation (4), but we are not interested
(in principle) in counting superlattices of a fixed lattice. However, in
our setting (counting lattices with a fixed quotient), it turns out that
there is a sublattice common to every sought lattice and it presents a
simple quotient group.

Proof of Theorem 5.2. Partition λ is “contained” into (λr1), so Cr
pλ1

has

a subgroup isomorphic to Gp(λ). Therefore, there exists Λ ∈ Lr(Gp(λ))
such that pλ1Zr ⊆ Λ ⊆ Zr.

As pointed out in the previous section, elements with the same quo-
tient group play an identical role in the poset of lattices. Any other
element Λ′ ∈ Lr(Gp(λ)) must then contain a sublattice with quotient
group Cr

pλ1
. After Lemma 4.1, that lattice is unique, so pλ1Zr is a

sublattice common to every element of Lr(Gp(λ)). In other words, the
searched for lattices are all superlattices Λ ⊇ pλ1Zr with Zr/Λ ∼= Gp(λ).
Setting µ′j = r for j = 1, . . . , λ1, Equation (4) proves the result.

Notice that the common sublattice used in the prove above is just the
join of the elements in Lr(Gp(λ))—a finite set, since ar(p

|λ|) is finite—,
i.e. their intersection. We have seen that pλ1Zr ⊆ ⋂{Λ ∈ Lr(Gp(λ))}.
Conversely, that intersection must be the only lattice with its quotient
group (if there were another, this would be contained in every element of
Lr(Gp(λ)) as well). Then, after Lemma 4.1, the intersection’s quotient
group is associated to a partition with r equal parts.

6 Elementary abelian case

Let us consider the specialization of Theorem 5.2 in degenerate cases of
the partition λ. Firstly, when the quotient group is cyclic—i.e. one-row
partitions—we get [14, A263950]

(5) c(λ1, 0
r−1) = (r − 1)(λ1 − 1), |Lr(Cpλ1 )| = p(r−1)(λ1−1)[r]p.

Note that, in dimension 2, |L2(Cpλ1 )| = pλ1−1(1 + p) = ψ(pλ1).
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1

r − 1

λ1 1

x

r − x

The case of a one-column partition is of particular interest, since it
constitutes the basis for the inductive proof presented in Section 7. We
have c(1x, 0r−x) = 0, so that Theorem 5.2 is reduced to |Lr(Cxp )| =

[
r
x

]
p
,

a coefficient which is known to enumerate subspaces of (Z/pZ)r with
dimension x (as well as those with dimension r − x).

The componentwise projection from Zr onto (Z/pZ)r, to which we
come back in the next section, yields a bijection between subspaces of
(Z/pZ)r and lattices with a p-elementary quotient.

Let us characterize normalized bases of such lattices. The diagonal
is a permutation σ of the multiset {1r−x, px} and an entry above the
diagonal is zero if its row’s diagonal element is 1 or if its column’s
diagonal element is p. In other case (shadowed regions in the figure
below), the entry can take any value from 0 to p− 1.

p

1

p

p

1

1

The number of nondiagonal entries that can take nonzero values is the
number of inversions of σ. Hence, these matrices add up to

∑
σ∈S({1r−x,px})

pinv(σ) =

[
r

x

]
p

,

after Carlitz summation formula [4], [18, Prop. 1.3.17]. Incidentally,
note the following identity, which we fail to top off with a suitable
bijection:

|Lr(Cxp )| = ar−x+1(p
x) = ax+1(p

r−x).
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7 Subspace chain liftings

In this article, we intend to stress the combinatorial interpretation pre-
sented below for the formula of Theorem 5.2, providing thus an alterna-
tive proof. That formula involves two parts: a p-multinomial coefficient
and a power of p. The former can be factorized as[

r

x1, . . . , xl+1

]
p

=

[
xl + xl+1

xl+1

]
p

· · ·
[
r − len(λ(i−1))

r − len(λ(i))

]
p

· · ·
[

r

r − x1

]
p

,

showing that it enumerates subspace chains of the form

(6) Vl � · · · � V1 � V0 = (Z/pZ)r, dim(Vi) = r − len(λ(i)).

The componentwise projection π : Zr −→ (Z/pZ)r relates lattices
and vector spaces by means of a monotone Galois connection. As we
have already pointed out, it induces a bijection between (Z/pZ)-spaces
of codimension x and lattices with an elementary abelian quotient Cxp
(joins of x atoms in the poset of Figure 3). Any (Z/pZ)-vector space V
satisfies V = π(π−1(V )).

For a lattice Λ, we have Λ ⊆ π−1(π(Λ)). The latter is a lattice with
a p-elementary quotient; moreover, it is contained in every lattice that
contains Λ and has a p-elementary quotient.

Therefore, if Λ1 ⊆ Λ2 are two lattices whose volume is a power
of p and their respective quotients are associated to partitions λ1 and
λ2, we have π(Λ1) = π(Λ2) if and only if len(λ1) = len(λ2). Hence,
that projection is a vector space of dimension r − len(λ). In Figure 3,
lattices are divided into five classes, according to which of the five vector
subspaces of (Z/2Z)2 they project onto.

For Λ ∈ Lr(Gp(λ)), let us build a lattice chain projecting to the
vector spaces in (6). As a first step, we set up a superlattice whose
quotient group is pGp(λ) ∼= Gp(λ̂), where λ̂ is the partition obtained by
removing the leftmost column from λ.

Λ {x ∈ Zr : px ∈ Λ}

p−1Λ ∩ Zr

Zr⊆ ⊆

λ′
1

λ̂

=
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That is achieved by appending to Λ those integer vectors whose
order in the quotient group is p. Iterating the process, the following
chain is reached (refer to (8) for a couple of examples):

(7) Λ ( p−1Λ ∩ Zr ( p−2Λ ∩ Zr ( · · · ( p1−λ1Λ ∩ Zr ( Zr.

This recursive technique of trimming partition columns from the
left, building on the simple case of elementary abelian groups, is com-
mon in relevant literature. The following result, inspired by a memoir
of Butler [3], adapts to our problem the concept of fibre count per sub-
space chain and provides, in this manner, a natural interpretation of
Theorem 5.2.

Proposition 7.1. Let p be a prime number, r a positive integer, and λ
a partition with no more than r parts. For every subspace chain as in
(6), there are exactly pc(λ;r) lattices Λ with a p-power volume such that,
for i = 0, 1, . . . , λ1, π(p−iΛ ∩ Zr) = Vj, where j ≤ l is the maximum
index satisfying i < λj (and j = 0, if i = λ1). The quotient of Zr by
each of these lattices is Gp(λ).

Proof. We use induction on λ1. If λ is empty, the subspace chain is
reduced to V0 = (Z/pZ)r, and the only lattice with a p-power volume
that projects onto it is Zr. In other case, the induction hypothesis

shows that there are pc(λ̂;r) possibilities for Λ̂ = p−1Λ ∩ Zr. For each of
these, Zr/Λ̂ ∼= Gp(λ̂). Now, candidates for Λ are sublattices of Λ̂ such

that Zr/Λ is a p-group whose type is λ̂ plus a column attached on the

left. The condition π(Λ) = Vl implies Λ̂/Λ ∼= C
λ′1
p , and is enough to

guarantee Λ ∈ Lr(Gp(λ)).

B1

B2

λ′2

λ′2

p

p

A1 r

∗ λ′2

r − λ′1

1

1

If A is a basis for Λ̂, any basis of any sublattice takes the form
AB, for a certain square matrix B. Basis A can be taken with its last
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λ′2 = len(λ̂) columns in pZ, the first ones describing a (Z/pZ)-basis of
π(Λ̂). Then, with the notation from the figure, π(ABZr) is spanned by
the columns of A1B1.

The condition on Λ̂/Λ is equivalent to BZr ∈ Lr(Cλ
′
1

p ). In this way,
projection π identifies the choices for BZr with (r − λ′1)-dimensional
subspaces of (Z/pZ)r. The projection of B1 is determined by Vl. There-
fore, the sought sublattices are in bijection with vector spaces of di-
mension r − λ′1 with the projection onto the first r − λ′2 components
fixed. They are in number p(r−λ

′
1)λ
′
2 , then. Finally, note that c(λ; p) =

c(λ̂; p) + (r − λ′1)λ′2.

8 Examples

Let r = 3, p = 2, and λ = (2, 1). The number of subspace chains of
dimensions 1 and 2 in (Z/pZ)3 is [3]2[2]2 = 21. For each of these, there
are two lattices (since c(2, 1, 0) = 1) in Z3 with quotient group C4⊕C2,
bases for which share a cell in Table 1. For instance, for the last two
lattices listed, the superlattice sequences described in (7) are
(8)4 2 1

2 1
1

Z3 (

2 1
1

1

Z3,

4 2 3
2 1

1

Z3 (

2 1
1

1

Z3.

Those are the two lattices projecting to the subspace chain 1
1
1

 (Z/2Z) �

 1
1

1

 (Z/2Z)2.

Recovering the poset of Figure 3, let us count the sublattices of Z2

whose quotient is C8. In this case, the vector chain of (6) is simply

V1 � (Z/2Z)2, dim(V1) = 1.

There are therefore three options, as shown in the figure. Each suitable
lattice determines a chain

Λ ( 2−1Λ ∩ Z2 ( 2−2Λ ∩ Z2 ( Z2,

where the first three elements project onto V1. These chains can be
determined from right to left. Once V1 is fixed, there is only one choice
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1
2

4

2 1
2

2

 1
4

2

2 1
2

2

 1
4 2

2

2 1 1
2

2


2

1
4

2
2 1

2

 4
1

2

4 2
1

2

 4 2
1

2

4 2 2
1

2


2 1

1
4

2 1
2 1

2

 4 1
1

2

4 3
1

2

 4 1 2
1

2

4 3 2
1

2


2

4
1

2
4 2

1

 4
2

1

4 2
2

1

 4 2
2

1

4 2 2
2

1


2 1

4
1

2 1
4 2

1

 4 1
2

1

4 3
2

1

 4 2 1
2

1

4 2 3
2

1


2

4 1
1

2
4 3

1

 4
2 1

1

4 2
2 1

1

 4 2
2 1

1

4 2 2
2 1

1


2 1

4 1
1

2 1
4 3

1

 4 1
2 1

1

4 3
2 1

1

 4 2 1
2 1

1

4 2 3
2 1

1


Table 1: |L3(G2( ))| = |L3(C4 ⊕ C2)| = 42

for 2−2Λ ∩ Z2 and 2 = 2c(2,0) choices for 2−1Λ ∩ Z2. For each of these,
there are two choices for Λ. In total, there are 4 = 2c(3,0) lattices
projecting to a fixed vector space chain.

In contrast, if Z2/Λ ∼= C4⊕C2, we have π(Λ) = 0 and dim(π(2−1Λ∩
Z2)) = 1. For every line in (Z/2Z)2, there is a single (c(2, 1) = 0) lattice
in L2(C4 ⊕ C2).

9 Conservative transformations

We remark in this section a couple of partition transformations that
keep the amount of associated lattices unchanged, as is apparent from
Theorem 5.2.

We have seen at the beginning of Section 5 how, in dimension 2, the
enumeration of lattices with a cyclic quotient solves the general case.
The transformation that removes (or appends) full columns (as long as



Enumeration of integer lattices by quotient group 51

the dimension r) from a partition can be thought of as a generalization
to arbitrary dimension of the reduction from the group Cn⊕Cd to Cn/d,
valid in dimension 2.

λ

λ#

That removal does not affect the part multiplicities x1, . . . , xl+1, nor
the exponent c(λ; r), so that the number of associated lattices remains
the same.

An explicit bijection is given by Λ 7→ p−λlΛ. Notice that, in a
lattice whose quotient is associated to a partition with λl full columns,
the entries of every element are multiples of pλl .

It is not that simple to describe the effect on the number of associ-
ated lattices produced by the removal of trailing empty rows (i.e. reduc-
ing the dimension). This, combined with the previous remark, would
lead to another inductive technique to solve the enumeration considered
in this paper.

Another conservative partition transformation consists of taking the
complement to a box with r rows and (at least) λ1 columns. In this
case, a bijection can be achieved by Λ 7→ pλ1Λ#, where Λ# is the dual
lattice, defined as

Λ# = {x ∈ Qr : 〈x,v〉 ∈ Z, ∀v ∈ Λ}.

Note that this is not necessarily an integer lattice. Indeed, Zr is the only
integer lattice whose dual is also integer. The dual Λ# is spanned by the
transpose inverse of any basis of Λ. From the computational point of
view, this object is an important tool to deal with lattice intersections.
Since we have algorithms to compute the dual of a lattice (just given)
and a lattice sum (reducing the juxtaposition of summand bases), the
intersection can be obtained through the following formula:

Λ1 ∩ Λ2 = (Λ#
1 + Λ#

2 )#.

In particular, the elements in the lattice chain (7) can be computed as

(piΛ# + Zr)#.
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10 Epimorphism count

The enumeration result studied in this article has been proved (see Sec-
tion 5) relying on Equation (4). As pointed out by Butler [3], the count
of subgroups with a given type appeared in three different papers pub-
lished in the same year. From the exposition of Delsarte [5, §2.(4),(20)],
the following expression for that count can be extracted:

|Epi(Gp(µ), Gp(λ))|
|Aut(Gp(λ))| .

The approach followed by Kwak, Chun, and Lee relies instead on
a technique due to Hall [8, Thm. 1.4], who enumerates subgroups of
an arbitrary group (not necessarily abelian) with a prescribed quotient,
focusing on subgroups of free groups. Applying that method to our
problem, we get (see [11, Thm. 2.6], [12, Thm. 10])

|Lr(G)| = |Epi(Zr, G)|
|Aut(G)| .

Notice the coincidence of numerators in both approaches when µ
is set to (λr1), as is done in Section 5. Both fractions above admit a
simple interpretation as the orbit count relative to the free action by
composition of the automorphism group on the set of epimorphisms [10].

In the second case, the epimorphism enumeration can be directly
derived [11, Lemma 3.3]. Setting (for the rest of the section) x = len(λ),

|Epi(Zr, Gp(λ))| =pr(|λ|−x)|Epi(Zr, Cxp )| =
pr(|λ|−x)(pr − 1)(pr − p) · · · (pr − px−1) =

pr(|λ|−x)p
x(x−1)

2 (p− 1)x
[r]p!

[xl+1]p!
.

(9)

This, combined with the automorphism count below (which fol-
lows [5, §2.(18)], cf. [13, II.(1.6)], [9, Thm. 4.1], [11, Lemma 3.3]), proves
Theorem 5.2.

|Aut(Gp(λ))| = p
x(x−1)

2
+
∑
λ′iλ
′
i+1(p− 1)x[x1]p! · · · [xl]p!

Epimorphism enumeration is a natural application of the extended
Möbius principle [15]. Indeed, the sources of both approaches above [5,
8] constitute two among the first antecedents to Rota’s formalization of
the concept, using the poset of subgroups of a finite group.
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Classifying homomorphisms with respect to their image, we get the
expression

|Hom(Zr, G)| =
∑
S≤G
|Epi(Zr, S)|,

where the sum is extended over the subgroups of G. As the computation
of homomorphisms is easily done (for abelian G, |Hom(Zr, G)| = |G|r),
it is useful to invert previous expression:

|Epi(Zr, G)| =
∑
S≤G

µ([S,G])|S|r =
∑
S≤G

µ([0, S])|G/S|r.

When G = Cn is cyclic, the Möbius function on the poset of sub-
groups coincides with the classic number-theoretic Möbius function on
the divisors of n. This gives

|Lr(Cn)| = 1

ϕ(n)

∑
d|n

µ
(n
d

)
dr =

Jr(n)

ϕ(n)
,

where ϕ denotes Euler’s totient function and Jr is the r-th Jordan func-
tion. This expression recovers the one given in (5), when the group
order is a prime power.

Going back to the general case, in any finite (poset) lattice, the
Möbius function µ([0, a]) is zero for every poset element a, except possi-
bly for joins of atoms [8, Thm. 2.3 and 2.4], [15, Sec. 5, Cor. to Prop. 2],
[18, Cor. 3.9.5]. In the lattice of subgroups of Gp(λ), atoms are the
several copies of Cp, and their joins correspond to elementary abelian

subgroups. For these, µ
(
[0, Ckp ]

)
= (−1)kp

k(k−1)
2 [5, p. 603], [15, Sec. 5,

Ex. 2], [18, Ex. 3.10.2]. Moreover, the amount of subgroups of the form
Ckp in Gp(λ) is

[
x
k

]
p
. Then,

|Epi(Zr, Gp(λ))| =
x∑
k=0

[
x

k

]
p

(−1)kp
k(k−1)

2 pr(|λ|−k) =

pr(|λ|−x)
x∑
k=0

[
x

k

]
p

(−1)kp
k(k−1)

2 pr(x−k).

Developing the Gaussian polynomial with Carlitz formula, the sum
above equals

x∑
k=0

(−1)kp
k(k−1)

2 pr(x−k)
∑

σ∈S({1k,0x−k})

pinv(σ),(10)
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where inv(σ) is the number of inversions of a permutation of the multiset
{1k, 0x−k}. These permutations correspond to subsets of {0, 1, . . . , x−1}
with k elements. Moreover, the sum of the elements in such a subset
is 0 + 1 + · · · + (k − 1) plus the number of inversions of the associated
permutation. This turns (10) into

x∑
k=0

(−1)kpr(x−k)
∑

I⊆{0,...,x−1}
|I|=k

p
∑
i∈I i,

which equals (pr − 1) · · · (pr − px−1), recovering (9).

Álvar Ibeas Mart́ın
ibeas@gmx.com
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