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A bound on the size of irreducible triangulations ∗

Gloria Aguilar Cruz 1 Francisco Javier Zaragoza Mart́ınez 2

Abstract

Let S be a closed surface with Euler genus γ(S). An irreducible
triangulation of S is a simple graph G without contractible edges
embedded on S so that each face is a triangle and any two faces
share at most one edge. Nakamoto and Ota were the first to
give a linear upper bound for the number n of vertices of G in
terms of γ(S). This bound was recently improved for orientable
surfaces. By extending Nakamoto and Ota’s method we improve
on these bounds by showing that n ≤ 106.5γ(S)−33 for any closed
surface S.
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1 Introduction

The orientable (non-orientable) closed surface Mg (Ng) with genus g is
the sphere with g handles (cross-caps) attached. The Euler genus of
these surfaces is γ(Mg) = 2g for the orientable surface Mg and γ(Ng) =
g for the non-orientable surface Ng.

A triangulation G of a closed surface S is a graph without loops or
multiple edges, i.e. a simple graph, embedded on the surface so that
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each face is a triangle and any two faces share at most one edge. The
orientable genus γ̄(G) of G is defined as the least g such that G is
embeddable in Mg and the non-orientable genus γ̃(G) of G is defined
as the least g such that G is embeddable in Ng. The Euler genus γ(G)
of G is defined to be γ(G) = min{2γ̄(G), γ̃(G)}. Note that γ(G) =
min{γ(S) : G is embeddable in S}.

Let G be a triangulation of a closed surface S and let ab be an
edge of G; then ab is on two faces, say abc and abd. We say that ab is
contractible if we can obtain a new triangulation by deleting edges ab,
one of ac or bc, one of ad or bd, and identifying a with b, see Figure 1.
A triangulation G is said to be irreducible if G has no contractible edge.
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Figure 1: Contracting edge ab

The size of an irreducible triangulation can be measured in terms of
the number of its vertices, edges, or triangles (by Euler’s formula these
are all equivalent and we have chosen to measure the size in terms of the
number n of vertices). Ringel [13] obtained an explicit formula for the
size of minimum triangulations for all non-orientable surfaces. Later,
Jungerman and Ringel [8] obtained an explicit formula for all orientable
surfaces.

Steinitz and Rademacher [14] showed that there is only one irre-
ducible triangulation (with 4 vertices) of the sphere. Barnette [3] showed
that there are two irreducible triangulations (with 6 or 7 vertices) of the
projective plane. Lavrenchenko [9] determined that there are 21 irre-
ducible triangulations (with 9 or 10 vertices) of the torus. Barnette
and Edelson [2] showed that any surface has finitely many irreducible
triangulations. Gao, Richmond, and Thomassen [6] showed that there
are O(γ(S)4) vertices in any irreducible triangulation of the surface S.
This bound was improved by Gao, Richter, and Seymour [7] to O(γ(S)2)
vertices. Nakamoto and Ota [11] were the first to give a linear bound
n ≤ 171γ(S) − 72 and this bound was improved to n ≤ 120γ(S) for
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orientable surfaces by Cheng, Dey, and Poon [4]. In this paper we pro-
pose a better bound of n for any closed surface S obtained by extending
Nakamoto and Ota’s method

2 Improving the bound

We use the following bound on the Euler genus of a 1− or 2−sum of
graphs.

Lemma 2.1. Miller [10] Let G1 and G2 be two graphs and let G :=
G1∪G2. If G1 and G2 have at most two common vertices, then γ(G) ≥
γ(G1) + γ(G2).

From now on, let S be either Mg or Ng with g ≥ 1 and let G be an
irreducible triangulation of S. This implies that G contains no vertex
of degree less than four. If v is a vertex of G we define Hv to be the
subgraph of G induced by v and its neighbors.

Lemma 2.2. Nakamoto, Ota [11] Let G be an irreducible triangula-
tion of a closed surface S and v a vertex of G. Then γ(Hv) ≥ 1.

A set of vertices of G is independent if G does not contain any edge
between them. The following result appears in [11] for k = 6. A similar
proof for irreducible quadrangulations appears in [1].

Lemma 2.3. Let G be an irreducible triangulation of a surface S, and
let k ≥ 4 be an integer. There exists an independent set X of vertices
of degree at most k such that

|X| ≥
k∑

i=4

|Vi|
i+ 1

,

where Vi is the set of vertices of G with degree i.

Proof. Let X4 be a maximal independent subset of V4. For each i ∈
{5, 6, . . . , k}, let Xi be a maximal independent subset of Vi − ∪i−1j=4Ai,j ,
where Ai,j is the set of vertices of degree i with a neighbor in Xj . We
claim that X = ∪ki=4Xi satisfies the required property. If we count each
vertex in Xi and each of its neighbors, we obtain:

(i+ 1)|Xi| ≥ |Vi|+
k∑

j=i+1

|Aj,i| −
i−1∑
j=4

|Ai,j | for every 4 ≤ i ≤ k.
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Therefore

|X| =
k∑

i=4

|Xi|

≥
k∑

i=4

|Vi|
i+ 1

+

k∑
i=4

k∑
j=i+1

|Aj,i|
i+ 1

−
k∑

i=4

i−1∑
j=4

|Ai,j |
i+ 1

=

k∑
i=4

|Vi|
i+ 1

+

k−1∑
j=4

k∑
i=j+1

[
|Ai,j |
j + 1

− |Ai,j |
i+ 1

]

≥
k∑

i=4

|Vi|
i+ 1

.

�
The proof of the following theorem is very similar to that of Theo-

rem 3 in [11]. We denote by NG(v) the set of neighbors of the vertex v
in the graph G.

Theorem 2.4. Let G be an irreducible triangulation of a closed surface
S with n vertices. Then n ≤ 106.5γ(S)− 33.

Proof. Let m and f be the number of edges and faces of G, respectively.
By Euler’s formula

n−m+ f = 2− γ(S).

Since G is a triangulation we have 3f = 2m and therefore

3n−m = 6− 3γ(S).

Since
∑

i≥4 |Vi| = n and
∑

i≥4 i|Vi| = 2m we have that

5n+
∑
i≥4

(1− i)|Vi| = 12− 6γ(S).

Let k ≥ 6 be an integer. By adding and subtracting kn = k
∑

i≥4 |Vi|
we obtain

(5− k)n+
∑
i≥4

(k + 1− i)|Vi| = 12− 6γ(S),

thus
k∑

i=4

(k + 1− i)|Vi| ≥ (k − 5)n− 6γ(S) + 12.(1)
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Let X be an independent set as in Lemma 2.3 and define

Y := {y ∈ V (G)−X : y ∈ NG(x) for some x ∈ X}.

Consider the bipartite graph B with bipartition X and Y , where xy ∈
E(B) for x ∈ X, y ∈ Y if and only if xy ∈ E(G).

Let X ′ := {v1, v2, . . . , vr} be a maximal subset of X satisfying the
following condition:∣∣∣∣∣∣

 ⋃
1≤i<j

NB(vi)

 ∩NB(vj)

∣∣∣∣∣∣ ≤ 2, for each j = 1, 2, . . . , r.

By Lemma 2.1 and Lemma 2.2 we obtain

γ

(
r⋃

i=1

Hvi

)
≥

r∑
i=1

γ(Hvi) ≥ |X ′|.

Since
⋃r

i=1Hvi is a subgraph of G, it is embeddable in S, thus

γ(S) ≥ γ

(
r⋃

i=1

Hvi

)
,

and it follows that

|X ′| ≤ γ(S).(2)

Now define Y ′ := {y ∈ Y : y ∈ NB(v) for some v ∈ X ′}. Let M be
the subgraph of B induced by X ∪ Y ′. Since M is a subgraph of G it is
embeddable in S, therefore

|V (M)| − |E(M)|+ |F (M)| ≥ 2− γ(S).

Since M is bipartite each of its faces has at least 4 edges, therefore
4|F (M)| ≤ 2|E(M)|. Hence we have

2|V (M)| − |E(M)| ≥ 4− 2γ(S).(3)

By maximality of X ′, each vertex v ∈ X−X ′ has at least three neighbors
in Y ′. Also, there are at least |Y ′| edges between X ′ and Y ′. Hence
|E(M)| ≥ 3(|X| − |X ′|) + |Y ′|. By replacing |V (M)| = |X| + |Y ′| and
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|E(M)| in inequality (3), we obtain

4− 2γ(S) ≤ 2|X|+ 2|Y ′| − 3(|X| − |X ′|)− |Y ′|
≤ −|X|+ |Y ′|+ 3|X ′|
≤ −|X|+ (k + 3)|X ′| since |Y ′| ≤ k|X ′|

≤ −
k∑

i=4

|Vi|
i+ 1

+ (k + 3)|X ′| by Lemma 2.3

≤ − 1

nk

k∑
i=4

nk
i+ 1

|Vi|+ (k + 3)|X ′|

In order to use (1) we need

nk
i+ 1

≥ k − i+ 1, for every 4 ≤ i ≤ k

Since (i+ 1)(k− i+ 1) has a unique maximum, we take this value as nk:

nk :=


15 if k = 6(

k + 1

2

)(
k + 3

2

)
if k ≥ 7 and k is odd,(

k + 2

2

)2

if k ≥ 8 and k is even.

Thus we obtain

4− 2γ(S) ≤ − 1

nk
[(k − 5)n+ 12− 6γ(S)] + (k + 3)|X ′|

and therefore

(k − 5)n+ 12 + 4nk − (k + 3)nk|X ′|
6 + 2nk

≤ γ(S).(4)

Thus, (2) provides a good bound for γ(S) when |X ′| is big and (4)
provides a good bound when |X ′| is small. These two bounds are the
same when the left-hand sides of (2) and (4) are equal, that is, when

|X ′| = (k − 5)n+ 4nk + 12

(k + 5)nk + 6
.

In particular, from (2) we obtain

(k − 5)n+ 4nk + 12

(k + 5)nk + 6
≤ γ(S),



Irreducible Triangulations 49

that is
n ≤ f(k)γ(S)− g(k)

where f(k) =
(k + 5)nk + 6

k − 5
and g(k) =

4nk + 12

k − 5
. A straight-forward

calculation shows that f(k) attains its minimum at k = 9, therefore

n ≤ 106.5γ(S)− 33.

�

3 Corollaries

The bound of Nakamoto and Ota has been used to obtain bounds for
other problems in Combinatorial Geometry. Using our new bound we
can improve those bounds as well.

A triangulation of S with boundary C is an embedding of a simple
graph on S containing C such that there is a face bounded by C, called
the outer face, and all other faces are triangles. We say that the vertices
are outer if they lie in C, and inner otherwise. An outer triangulation
is a triangulation with boundary which has no inner vertices.

Let G be a triangulation, let ac be an edge of G, and let abc and
adc be the two faces sharing edge ac in G. The diagonal flip of ac is to
replace a diagonal ac with bd in the quadrilateral abcd, whenever bd is
not in G.

Cortés et al. [5] proved that, for any closed surface S, there exists
a natural number N(S) such that any two outer-triangulations G1 and
G2 of S with |V (G1)| = |V (G2)| ≥ N(S) can be transformed into each
other by a sequence of diagonal flips. Furthermore:

Lemma 3.1. Cortés et al. [5] N(S) ≤ 5|V (G)|+ 12γ(S)− 3.

With Nakamoto and Ota’s bound they obtained N(S) ≤ 867γ(S)−
363. With our new bound this can be improved:

Corollary 3.2. N(S) ≤ 544.5γ(S)− 173.

Negami [12] proved that, for any closed surface S, there exists a
natural number Ñ(S) such that any two triangulations G1 and G2 of S
with |V (G1)| = |V (G2)| ≥ Ñ(S) can be transformed into each other by
a sequence of diagonal flips. Let Virr(S) denote the maximum number
of vertices of an irreducible triangulation of a closed surface S.

Lemma 3.3. Negami [12] Ñ(S) ≤ 19Virr(S) + 18γ(S)− 36.
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With Nakamoto and Ota’s bound he obtained Ñ(S) ≤ 3231γ(S) −
1332. With our new bound this can be improved:

Corollary 3.4. Ñ(S) ≤ 2005.5γ(S)− 591.
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