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Topological complexity and related invariants∗

Yuli B. Rudyak 1

Abstract

Early this century, Michael Farber introduced and developed the
notion of topological complexity, applying it to robotics (in greater
detail, to robot motion planning). This is a numerical invariant of
Lusternik–Schnirelmann type. We survey recent progress in the
area.
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1 Motion planning problem

Let X be a topological space that we can regard as the configuration
of a mechanical system. Points of X are the states the system, and a
continuous motion can be regarded as a continuous path α : I → X
where I = [0, 1]. Here α(0) is the initial point and α(1) is the final
point.

We denote by XI the space of continuous paths I → X equipped
with the compact-open topology.

We assume that X is path-connected, and so we can move any given
point of X to another given point.
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A motion planning algorithm is a rule that assigns to each pair
(x, y) ∈ X a path α : I → X with α(0) = x and α(1) = y.

For more on motion planning see [La91, LV06].

To say it more formally, consider the fibration

ζX = {π : XI → X ×X, π(α) = (α(0), α(1)).

Now the motion planning algorithm turns out to be a map (not nec-
essarily continuous) s : X × X → XI such that π(s(x, y)) = (x, y) for
all (x, y) ∈ X ×X. In other words, π ◦ s = 1X×X , or we can say that
s : X × X → XI is a section of ζX . Now we (can) interpret a motion
planning algorithm as a section of the fibration ζX .

It is easy to see that a continuous motion planning algorithm exists
if and only if X is contractible, see [Fa08, Lemma 4.2]

However, usually people do not like discontinuity or, at least, want
to control this. Now we describe a mathematical apparatus that helps
us to manage this situation.

2 Sectional category: preliminaries

Below “fibration” denotes “Hurewicz fibration” and the base B of any
fibration is assumed to be path-connected CW space of finite type. All
maps are assumed to be continuous unless something other is said explic-
itly. All functional spaces of the form Y X are assumed to be equipped
with compact-open topology.

Definition 2.1 (A. Schwarz [S66]). Given a fibration ξ = {p : E → B},
the sectional category or Schwarz genus of ξ is the least number k such
that there exists an open covering A0, A1, . . . Ak of B and, for each Ai,
a map si : Ai → E having p ◦ si = 1Ai . In other words, each si is a
(continuous) local section of p. We also agree that the sectional category
of ξ is equal to −1 if E = ∅.

We use the notation secat ξ or secat p for the sectional category of
ξ. Clearly, secat ξ = 0 iff p has a section.

Proposition 2.2 (Serre). Given a fibration ξ = {p : E → B}, for
any two points b, b′ ∈ B the fibers p−1(b) and p−1(b′) are homotopy
equivalent.
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Definition 2.3. The homotopy fiber of a fibration ξ is defined to be the
homotopy equivalence class of p−1(b), b ∈ B. The notion is well-defined
because of Proposition 2.2.

For ξ as above, we frequently speak about the fibration F → E → B
meaning that F is a homotopy fiber of ξ.

Definition 2.4. Let X be a path-connected space, let x0 ∈ X, and let
P (X) = P (X,x0) be the space of paths that start at x0. So, PX = {α ∈
XI

∣∣ α(0) = x0}. Define the Serre path fibration ηX = {pX : PX → X}
by setting p(α) = α(1).

Example 2.5. Consider the Serre path fibration ηX = {p = pX :
P (X,x0)→ X}. It is clear that p−1

X (x0) is the loop space Ω(X,x0). So,
the homotopy fiber of ηX is (the homotopy class of) Ω(X,x0).

It is worthy to note that, generally, p−1
X (x1) for x1 6= x0 is homeo-

morphic neither to Ω(X,x0) nor to Ω(X,x1).

In next three sections we give three main examples of sectional cat-
egory.

3 Lusternik–Schnirelmann category

Definition 3.1. The Lusternik–Schnirelmann category of a space X
(denoted by catX) is the least number k such that there exists an open
covering A0, A1, . . . Ak of X where each Ai is contractible in X.

Now, assume that X is path-connected. Then the space PX is
contractible. Hence, a local section s : A → PX of p exists if and only
if the subspace A of X is contractible in X. So, Lusternik–Schnirelmann
category is equal to the sectional category of ηX . So, catX := secat ηX .

It is worth noting one of the main applications of the Lusternik–
Schnirelmann theory: Given a smooth function f : M → R on a
closed smooth manifold M , the number of critical points of f is at
least 1 + catM . This result turned out to be the starting point of LS
theory, [LS29, LS34]. Currently, the LS theory is a wide area of intensive
topology research.

More information on Lusternik–Schnirelmann theory can be found
in [CLOT03].
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4 Topological complexity

Most results of this subsection are due by Farber and his collaborators,
[Fa03, Fa04, Fa06, Fa08, FG08].

Definition 4.1 (Farber [Fa08]). Let X be a path-connected CW space
of finite type. A topological complexity of a space X (denoted by TC(X))
is the sectional category of ζX . So, TC(X) := secat ζ.

How is it related to motion planning problem? We already noticed
that a continuous motion planning algorithm exists for contractible X
only. So, as a first step, it makes sense to consider subsets {Ai} with
∪Ai = X × X and such that each Ai admits a section of ζX over Ai.
Note that if TC (X) = k then X×X admits such a family {Ai}ki=0 (and
even with open Ai, i = 0, . . . , k).

However, this is not enough for our goals. In fact, the local sections
si can overlap since, in general, we have Ai ∩ Ai 6= ∅. So, here we will
not get a well-defined motion planning algorithm.

To cope with this inconvenience, it makes sense to enlarge the class
of considered domains of continuity (by using not only open subsets
but something more), while to keep good properties of {Ai}’s. This
needs some expenses, such as restrictions on the configuration space X,
but this is enough for most applications. This program was successfully
realized by Farber, who used Euclidean Neighborhood Retracts (ENRs).
See [Do95] concerning ENRs. From our point of view, the advantage of
ENR is the property that, given two open subsets U and V of an ENR
X, the U \ V is also an ENR.

Theorem 4.2 (Farber [Fa08]). Assume X is a polyhedron in RN with
TC(X) = k. There exist a motion planning algorithm s : X ×X → XI

and a partition X = F0 ∪ F1 ∪ · · · ∪ Fk such that

• each Fi is an Euclidean Neighborhood Retract (ENR);

• for each i the restriction s|Fi
: Fi → X ×X is continuous;

• Fi ∩ Fj = ∅ for i 6= j.

Thus, if TC(X) = k then there exists a motion planning algorithm
s : X × X → XI that has k + 1 domains of continuity of s, and each
domain of contnuity is an ENR.
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5 Higher topological complexity

Let Jn denote the wedge of n copies of the closed interval [0, 1], in all
of which 0 ∈ [0, 1] is the base point. Given a space X, every element
α ∈ XJn can be regarded as an n-tuple (multipath) (α1, . . . , αn) of paths
in X all of which start at a common point.

Consider a fibration ζn = ζn,X = {en = eXn : XJn → Xn}, en(α) =
(α1(1), . . . , αn(1)) where X is a path-connected CW space of finite type.

Definition 5.1 (Rudyak [Ru10]). A higher topological complexity (of
order n) of a space X (denoted by TCn(X)) is the sectional category of
ζn. So, TCn(X) := secat ζn.

Clearly, TC(X) = TC2(X).

It is worthy to note that, given n, the equality TCn(X) = 0 holds if
and only if X is contractible.

Proposition 5.2. If A is a retract of X then catA ≤ catX and
TCn(A) ≤ TCn(X).

Proof. Obvious.

Remark 5.3. In Sections 3, 4, 5, assume that X is a polyhedron. Then
the values catX and TCn(X) do not change if, in the definitions, we
assume that each Ai is an euclidean neighborhood retract, not necessary
an open subset of the base. This is proved for n = 2 in Theorem 4.2,
and the general case can be proved similarly.

There is another interpretation of TCn. Consider a fibration

υn = {un : XI → Xn},

υn(α) =

(
α(0), α

(
1

n− 1

)
, . . . , α

(
n− 2

n− 1

)
, α(1)

)
.

It is easy to check (and we will see it below) that ζn and υn have equal
sectional categories.

Now you can see how TCn is related to motion planning theory.
Indeed, TC(X) is related to motion planning algorithm when a robot
moves from a point to another point, while TCn(X) is related to motion
planning problem whose input is not only an initial and final point but
also n− 2 intermediate additional points.

See [BGRT14, GLO13, GLO15b, KL12] for more information on
TCn.
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6 More on sectional category

Given two fibrations ξ = {p : E → B} and ξ′ = {p′ : E′ → B′}, consider
their product

ξ × ξ′ = {p× p′ : E × E′ → B ×B′}.

Theorem 6.1 (Schwarz). We have

secat(ξ × ξ′) ≤ secat ξ + secat ξ′.

In particular,

cat(X × Y ) ≤ catX + catY and TCn(X × Y ) ≤ TCn(X) + TCn(Y ).

Proof. For the proof, see [S66, Prop. 21].

This theorem dates back to Bassi [B37], who proved the similar
inequality for Lusternik-Schnirelmann category.

Let ξ = {p : E → B} be a fibration and f : X → B be a map.
Consider the induced fibration f∗ξ over X.

Proposition 6.2. We have secat f∗ξ ≤ secat ξ.

Proof. Indeed, if ξ has a local section over a subspace A of B then f∗ξ

has a local section over the subspace f−1(A) of X.

Now we settle homotopy invariance of sectional category.

Consider two fibrations ξ = {p : E → B} and ξ = {p′ : E′ → B}
over the same base B, and a commutative diagram

E
f−−−−→ E′

p

y yp′

B B.

Proposition 6.3. We have secat ξ ≤ secat ξ. Furthermore, if f is a
fiber homotopy equivalence over B then secat ξ = secat ξ.

Proof. Indeed, if s : A→ E is a local section of ξ over A then fs is a local

section of ξ over the same A. Hence, secat ξ ≥ secat ξ. Furthermore, if
f is a fiber homotopy equivalence over B then there exists a homotopy
inverse h : E′ → E over B to f , and hence secat ξ ≤ secat ξ. Thus,
secat ξ = secat ξ.
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Consider two fibrations ξ = {p : E → B} and ξ′ = {p′ : E′ → B′}
and a commutative diagram

E
f−−−−→ E′

p

y yp′

B
g−−−−→ B′.

Theorem 6.4. If f is a fiber homotopy equivalence and g is a homotopy
equivalence then secat ξ = secat ξ′.

Proof. The bundle map ξ → ξ′ can be decomposed as

ξ → g∗ξ′ → ξ′

where the correcting map ξ → g∗ξ′ yields the identity map 1B on bases.
Now, secat ξ = secat g∗ξ′ by Proposition 6.3, while secat g∗ξ′ ≤ secat ξ′

by Proposition 6.2. Hence secat ξ ≤ secat ξ′. Since f is fiber homotopy
equivalence, we can find a fiber homotopy equivalence h : E′ → E that
is fiber homotopy inverse to f and prove that secat ξ′ ≤ secat ξ.

Corollary 6.5. The invariant catX, as well as TCn(X), is a homotopy
invariant.

Remark 6.6. Now you see the above-mentioned equality secat en =
secatun. Indeed, both maps en : XJn → Xn and υn : Xi → Xn are
homotopy equivalent to the diagonal dn : X → Xn, and so the fibration
en and υn are fiber homotopy equivalent, like in Theorem 6.4. Thus,
secat en = secatun.

7 Several inequalities

Proposition 7.1. For any fibration ξ = {p : E → B} we have the
inequality secat ξ ≤ catB.

Proof. This holds because, for any subset A of B that is contractible in
B, the fibration ξ admits a local section over A.

Theorem 7.2. For every n we have catXn−1 ≤ TCn(X) ≤ catXn ≤
TCn+1(X).

Proof. The second inequality follows from the Proposition 7.1. For the

inequality catXn−1 ≤ TCn(X), see [BGRT14, Proposition 3.1]. (Note
that Farber [Fa08] considered the case n = 2.)
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Corollary 7.3. TCn(X) ≤ TCn+1(X).

Open Problem 7.4. Do there exist a non-contractible space X and a
natural number n such that TCn(X) = TCn+1(X)?

Proposition 7.5. If X is not contractible then TCn(X) ≥ n− 1.

Proof. This is proved in [Ru10, Proposition 3.5]. We present one more
proof. Ganea and Hilton [GH59] proved that catXn ≥ n for X non-
contractible. Now the proposition follows from the inequality TCn(X) ≥
catXn−1.

Theorem 7.6. If G is a path-connected H-space (e.g. a topological
group) then TCn(G) = catGn−1.

Proof. For a topological group and n = 2 this is proved in [Fa04], for
n > 2 see [BGRT14]. For arbitrary H-spaces see [LuSh13].

Note also the following difference between cat and TC. We know
that cat(X ∨Y ) = max{catX, catY }. This is not true for TC. Namely,
TC(S1) = 1 while TC(S1 ∨ S1) = 2.

Theorem 7.7 (Dranishnikov [Dr14]). Assume X,Y are two absolute
neighborhood retracts. Then

max{TC(X),TC(Y ), cat(X ×Y ) ≤ TC(X ∨Y ) ≤ TC(X) + TC(Y ) + 3.

We know that if X̃ → X is a cover map then cat X̃ ≤ catX. This
is not true for TC.

Example 7.8 (Dranishnikov [Dr14]). Let X = S3×S3 ∨S1, and let X̃
be the universal cover of X. Then TC(X) ≤ 3 while TC(X̃) ≥ 4.

8 Topological complexity of discrete groups

Let π be a discrete group. Define TC(π) := TC(Bπ) where Bπ denotes
the classifying space of π. Since the classifying space (assumed to be
CW) is defined uniquely up to homotopy equivalence, and because of
the homotopy invariance of TC, the invariant TC(π) is well-defined.

Note that the invariant catπ := cat(Bπ) has a known purely group-
theoretical description. In fact, catπ is equal to the cohomological di-
mension cd(π) of π, see [EG57] for catπ 6= 2 and [St68, Sw69] for
catπ = 2.
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The situation for TC looks more complicated. We know that catX ≤
TC(X) ≤ cat(X×X) for all X. The following proposition tells us that,
in the class of K(π, 1)-spaces, the above-mentioned inequality gets no
new bounds. In other words, we have examples of two group π, π′ such
that catπ = catπ′ while TC(π) 6= TC(π′).

Proposition 8.1 ([Ru16]). For every natural k and every natural l
with k ≤ l ≤ 2k there exists a discrete group π such that catπ = k and
TC(π) = l. In fact, we can put π = Zk ∗ Zl−k.

Because of the proposition, the following problem turns out to be
essential.

Open Problem 8.2 (Farber). Describe TC(π) in purely group-theoreti-
cal terms.

9 A homotopy-theoretical description of sec-
tional category

Recall that the join X ∗ Y of two CW spaces X and Y is defined to be
a quotient space (X × I × Y )/R, where R is the equivalence generated
by the equivalences (x, 0, y1) ∼ (x, 0, y2) for all x ∈ X, y1, y2 ∈ Y and
(x1, 1, y) ∼ (x2, 1, y) for all x1, x2 ∈ X, y ∈ Y .

Note also that X ∗Y is the double mapping cylinder of the diagram

X
p1←−−−− X × Y p2−−−−→ Y.

More generally, given two maps f : X → Z and g : Y → Z, the
fiberwise join of f and g is defined to be the map f ∗ g : X ∗Z Y → Z
where

X ∗Z Y = {[x, t, y] ∈ X ∗ Y
∣∣ f(x) = g(y)}

and (f ∗ g)(x, t, y) = f(x).

Note that X ∗Z Y turns into X ∗ Y if Z is the point.

We can iterate the join construction. In particular, given a fibration
ξ = {p : E → B} we can form the fibration

ξ∗k := {p ∗ p ∗ · · · ∗ p : E ∗B · · · ∗B E︸ ︷︷ ︸
k times

→ B}.

If we denote the homotopy fiber of ξ by F then the homotopy fiber of
ξ∗k is F ∗k.
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Theorem 9.1 (Schwarz[S66]). The fibration ξ∗k has a section if and
only if secat ξ < k.

In other words, secat ξ is the least value m such that ξ∗(m+1) admits
a section.

For example, let ηX = {pX : PX → X} be the Serre path fibration.
So, we have the iterated fiber join

(ηX)∗m = {Pm(X) := PX ∗ · · · ∗ PX → X}

over X. This is a fibration with homotopy fiber (ΩX)∗k.

Corollary 9.2. We have: catX < m iff (ηX)∗m has a section.

Similarly, we can apply Theorem 9.1 and get the following.

Corollary 9.3. We have TCn(X) < m iff (ζn,X)∗m has a section.

There is another description of (ηX)∗m, the so-called fiber-cofiber
construction. We construct a certain fibration qn : Gn(X) → X by
induction on n. Put G0(X) = PX, F0(X) = ΩX and write ηX as the
fibration F0(X)→ G0(X)→ X. Assume that we have a fibration

Fn(X)
in−−−−→ Gn(X)

qn−−−−→ X

and consider the mapping cone C(in) = C(Fn(X)) ∪Gn(X). The map
qn extends to a map r : C(in) → X so that r is a constant map on
C(Fn). Define qn+1 : Gn+1(X)→ X to be the Serre fibration substitute
of r. We denote by Fn+1(X) the (homotopy) fiber of qn+1 and get the
fibration

Fn+1(X)
in+1−−−−→ Gn+1(X)

qn+1−−−−→ X.

It turns out to be that Gn(X) → X and Pn+1(X) → X are homo-
topy equivalent fibrations over X.

10 Dimension–connectivity relations

Theorem 10.1 (Schwarz[S66]). Given a fibration ξ = {p : E → B},
take a point b ∈ B and put F = p−1(b). Put dimB = d and assume
that πk(F ) = 0 for k < s (i.e., the space F is (s− 1)-connected). Then

secat ξ <
d+ 1

s+ 1
.
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Remark 10.2. By Proposition 2.2, the condition πk(F ) = 0 does not
depend on choise of b, and we can express the condition as follows: the
homotopy fiber of ξ is (s− 1)-connected.

Example 10.3. Let X be an (s− 1)-connected space with s > 0 (that
tells us that X is path-connected). Put d = dimX. Let us estimate
catX. Recall the fibration ηX = {p : PX → X}. The homotopy fiber
of ηX has the homotopy type of ΩX (the loop space of X). Note that
ΩX is (s− 2)-connected. Thus, because of Theorem 10.1, we have

catX = secat(ηX) <
d+ 1

s
, or catX ≤ d

s
.

Similarly, TC(X) ≤ 2d/s and TCn(X) ≤ dn/s.

Example 10.4. Let Tn,RPn, and CPn denote the torus, the real pro-
jective space, and the complex projective space, respectively. It fol-
lows from Theorem 10.1 catTn ≤ n and catRPn ≤ n. Furthermore,
catCPn ≤ n since CPn is simply connected (πi(CPn) = 0 for i < 2).

11 Cohomological tools: cup-length

We start with a special case: Lusternik–Schnirelmann category.

Definition 11.1. Given a path-connected space X and a commutative
ring R, define the cup-length of X with coefficients in R (denoted by
clR(X)) to be the maximal number k such that there exist u1, · · · , uk ∈
H̃∗(X;R) with u1 ^ · · ·^ uk 6= 0.

Theorem 11.2. We have the following estimate: clR(X) ≤ catX.

Proof. The idea of the proof is quite simple. Let catX = n. Take a
covering {A0, A1, . . . , An} by open and contractible in X sets. Suppose
that clR(X) = k > n and take u1, . . . uk with u1 ^ · · ·^ uk 6= 0. Now,

u1|A1
= 0, . . . , un|An

= 0, un+1|A0
= 0.

Therefore, the classes ui come from corresponding relative classes wi in
H∗(X,Ai;R) (where An+1 := A0). In particular, the non-zero product
u1 ^ · · · ^ un+1 comes from the relative product w1 ^ · · · ^ wn+1,
which lies in the trivial group H∗(X,X;R).

This is a contradiction.
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Examples 11.3. 1. It is easy to see that clZ(Tn) = n. Hence, catTn ≥
n. Together with the inequality catTn ≤ dimTn = n we conclude that
catTn = n.

2. We have H∗(RPn;Z/2) = Z/2[u]/un+1, with dimu = 1. Hence,
clZ/2 = n. So, cat(RPn) ≥ n, and we have cat(RPn) = n because
cat(RPn) ≤ dimRPn) = n.

3. We have H∗(CPm) = Z/[u]/(un+1), with dimu = 2. Hence
clZ(CPn) = n, so cat(CPn) ≥ n. Further, cat(CPn) ≤ dim(CPn)/2 =
2n/2 = n; the denominator 2 appears because CPn is simply connected.
Thus, cat(CPn) = n.

4. For completeness, note that catSm = 1 for all m > 0. Indeed,
catSm > 0 because Sm is not contractible, while Sm can be covered by
two contractible spaces (discs).

We leave it to the reader to check that catS = 2 for all closed
surfaces except S2.

Now we pass to the general situation. Consider a fibration ξ = {p :
E → B}.
Definition 11.4. Define the cup-length of ξ with coefficients in R (de-
noted by clR(ξ)) to be the maximal number k such that there exist
elements u1, · · · , uk ∈ Ker{H̃∗(B;R)→ H̃∗(E;R)} with

u1 ^ · · ·^ uk 6= 0.

Theorem 11.5 (Schwarz). We have the following estimate: clR(ξ) ≤
secat ξ.

Remarks 11.6. 1. In a special case of the Serre fibration ηX = {p :
PX → X} the space PX is contractible. Therefore cl(ηX) = cl(X).

2. In the definition and application of cup-length, we can con-
sider more general situation: to consider ui ∈ H∗(B;Ai) for arbi-
trary coefficient groups (and even local coefficient systems) Ai with
u1 ^ · · ·^ uk ∈ H∗(B;A1 ⊗ · · · ⊗Ak).

12 Zero-divisors, TC and higher TC of spheres

Consider the fibration ζn = {en : XJn → Xn} and the homotopy com-
mutative diagram

XJn −−−−→ X

en

y dn

y
Xn 1−−−−→ Xn
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where dn is the iterated diagonal map, dn(x) = (x, . . . , x) and the top
map has the form (α1, . . . , αn) 7→ α1(0).

Definition 12.1 (Farber [Fa08]). A cohomology class u ∈ H∗(Xn;R)
is called an zero-divizor if d∗n(u) = 0.

So, the cup-length of ζn can be reformulated as the maximal number
k such that there exist zero-divizors u1, · · · , uk with u1 ^ · · ·^ uk 6= 0.

Theorem 12.2 (Farber [Fa08]). We have

TC(S2k+1) = 1 and TC(S2k) = 2.

So, we have a remarkable contrast with the claim cat(Sm) = 1.

Proof. Proof of TC(S2k−1) = 1. We must construct two continuous
sections si : Ai → (S2k+1)I where A0 ∪ A1 = S2k−1 × S2k−1. In other
words, cover S2k−1×S2k−1 by subsets A0, A1 such that every two points
(x, y) ∈ Ai, i = 1, 2 can be joined by an arc in S2k−1, and the arc depends
on x, y continuously in each Ai.

Put A0 = {(x, y)
∣∣ x, y ∈ S2k+1 with x 6= −y}, and join x to y by

the shortest geodesic. Put A1 = {(x, y)
∣∣ x = −y}. To construct s1,

recall that S2k−1 possesses a non-vanishing continuous tangent vector
field v. Now, given x ∈ S2k−1, join x to y = −x by the geodesic whose
tangent vector at x is equal to v(x).

Proof of TC(S2k) = 2. Take a generator u ∈ H2k(S2k) and consider
the element v := u⊗ 1− 1⊗ u which lies in

H2k(S2k × S2k) = H2k(S2k)⊗H0(S2k)⊕H0(S2k)⊗H2k(S2k)

Note that v is a zero-divisor. Indeed, d∗2(u ⊗ 1) = u = d∗2(1 ⊗ u),
and so d∗2(v) = 0. Furthermure, since dimu = 2k is even, we have
v ^ v = −2u⊗ u 6= 0. Indeed

v ^ v = ((u⊗ 1)− (1⊗ u)) ^ ((u⊗ 1)− (1⊗ u))

= −(u⊗ 1) ^ (1⊗ u)− (1⊗ u) ^ (u⊗ 1)

= −2u⊗ u, since dim(1⊗ u) = dim(u⊗ 1) is even.

So, v ^ v 6= 0, and hence cl(ζS2k) ≥ 2. So, TC(S2k) ≥ 2. Furthermore,
TC(S2k) ≤ 2 because of the dimension-connectivity relation, and thus
TC(S2k) = 2.
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Theorem 12.3 (Rudyak [Ru10]). We have

TCn(S2k+1) = n− 1 and TC(S2k) = 2n.

Proof. First, we prove that TCn(S2k+1) = n−1. Consider a unit tangent
vector field v on S2k+1. Given x, y ∈ S2k+1, y = −x, denote by [x, y]
the path determined by the geodesic semicircle joining x to y and such
that the v(x) is the direction of the semicircle at x. If x 6= −y, denote
by [x, y] the path determined by the shortest geodesic from x to y.

Determine a (non-continuous) function ϕ : (S2k+1)n → (S2k+1)Jn ,
by ϕ(x1, . . . , xn) = {[x1, x1], . . . , [x1, xn]}

For each j = 0, . . . , n− 1 consider the submanifold (with boundary)
Uj in S2k+1 such that each n-tuple (x1, . . . , xn) in Uj has exactly j
antipodes to x1. Then ϕ|Uj

: Uj → (S2k+1)Jn is a continuous section of

ζn,S2k+1 . Hence, TCn(S2k+1) ≤ n− 1, and thus TCn(S2k+1) = n− 1.

Now we prove that TCn(S2k) = n. Take a generator u ∈ H2k(S2k)
and consider the element

w =

(
n−1∑
i=1

1⊗ · · · 1⊗ u(ith place )⊗ 1 . . .⊗ 1

)
− 1⊗ · · · 1⊗ (n− 1)u

Note that w is a zero-divisor class. Furthermore, w^n = (1− n)n!(u⊗
· · · ⊗ u) (since dimS2k is even). Hence TCn(S2k) ≤ n by the cup-
length argument, and thus TCn(S2k) = n by the dimension-connectivity
argument.

Note also the following fact.

Theorem 12.4 (Grant-Lupton-Oprea[GLO13]). If TC(X) = 1 then
X ∼= S2n+1.

Generally, for n > 2 we do not know if the equality TCn(X) = n−1
implies that X ∼= S2k+1. This is true for many cases (for example, if X
is a simply connected space), but it is an open question in general.

Open Problem 12.5. Does the equaility TCn(X) = n − 1 imply the
homotopy equivalence X ∼= S2k+1?

13 Surfaces

In this section, for brevity we write xy for x ^ y for x, y ∈ H∗(X).

For orientable closed surface, we have the following facts:
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• TC(S2) = 2

• TC(T 2) = catT 2 = 2, since T 2 is a group.

• TC(Sg) = 4 provided Sg is a closed orientable surface of genus
g > 1 [Fa08]. Indeed, take a1, a2, b1, b2 ∈ H1(Sg) such that

a1a2 = b1b2 = a1b2 = a2b1 = a2
1 = a2

2 = b21 = b22 = 0

and that a1b1 = a2b2 ∈ H2(Sg) = Z is a non-zero element. Now,
we can see the non-zero product of zero-divisors

2∏
i=1

(ai ⊗ 1− 1⊗ ai)(bi ⊗ 1− 1⊗ bi).

Hence, TC(Sg) ≥ 4, and we get the equality TC(Sg) ≤ 4 by the
dimension-connectivity relation.

Now consider non-orientable surfaces Ng (N1 = RP2, N2 is the Klein
bottle).

First, TC(RP 2) = 3. Indeed, we have H2(RP 2) = Z/2[u]/u3 = 0,
and u⊗ 1 + 1⊗ u is a zero-divisor in H∗(RP 2 ×RP 2;Z/2). Now

(u⊗ 1 + 1⊗ u)3 = u2 ⊗ u+ u⊗ u2 6= 0.

So, TC(RP 2) ≥ 3. Now we can see the inequality TC(RP 2) ≤ 3 geo-
metrically, [Fa08].

We do not know TC(Ng) for g = 2, 3. (It is clear, however, that
3 ≤ TC(Ng) ≤ 4). Recently it was proved (Dranishnikov [Dr15]) that
TC(Ng) = 4 for g > 3.

Concerning TCn.

We have TCn(S2) = n

We have TCn(T 2) = cat((T 2)n−1) = 2n− 2, since T 2 is a group.

We note the following surprising fact:

Theorem 13.1 ([GGGL15]). If n > 2 then TCn(F ) = 2n for all other
surfaces F , no matter whether F is orientable or not.

Why surprising? Two exciting moments. First, TC(RP 2) = 3 while
TCn(RP 2) = 2n for n > 2. Second, for the Klein bottle K (and
K#RP2), we do not know the value of TC(K) while we know that
TCn(K) = 2n for n > 2.
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14 Some high-dimensional examples

Theorem 14.1 ([BGRT14]). For any path-connected space X and pos-
itive integers n and k we have cl(ζ(n,X×Sk) ≥ cl(ζn,X) + n − 1. This
inequality can be improved to cl(ζ(n,X×Sk) ≥ cl(ζn,X) + n provided k is
even and H∗(X) is torsion-free.

Corollary 14.2. TCn(Sk1 × Sk2 × · · · × Skm) = m(n − 1) + l where l
is the number of even-dimensional spheres.

Proof. This follows from theorems 6.1 and 14.1.

Corollary 14.3. TCn(T k) = k(n− 1).

Proof. This is a consequence of either Corollary 14.2 or Theorem 7.6.

Theorem 14.4 ([BGRT14]). Let X be a CW complex of finite type,
and R a principal ideal domain. Take u ∈ Hd(X;R) with d > 0, d
even, and assume that the n-fold iterated self R-tensor product

um ⊗ · · · ⊗ um ∈ (Hmd(X;R))⊗n

is an element of infinite additive order. Then TCn(X) ≥ mn.

Corollary 14.5. For every closed simply connected symplectic manifold
M2m we have TCn(M) = nm.

Note also the following nice and interesting result.

Theorem 14.6 (Farber-Tabachnikov-Yuzvinsky [FTY03]). For n 6=
1, 3, 7 the number TC(RPn) is the smallest k such that the RPn ad-
mits an immersion into Rk. Furthermore, for n = 1, 3, 7 we have
TC(RPn) = n.

15 The sequence {TCn(X)}∞n=2 as an invariant
of X

When the concept of higher topological complexity appeared, the fol-
lowing question arose: Do the invariants TCn(X) give us really more
information on X than TC(X)? In other words, is it true or not that
the sequence {TCn(X)} is completely determined by TC(X)? The fol-
lowing example shows that the sequenence {TCn(X)} contains more
information of X than merely TC(X).
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Example 15.1. We have

TC(S2) = TC(T 2) = 2, TCn(S2) = n, TCn(T 2) = 2n− 2.

More generally, what can we say about the behavior of the sequence
{TCn (X)}? As an example, we note the following fact.

Proposition 15.2. For every CW space X of finite type, the sequence
{TCn(X)} has linear growth with respect to n.

Proof. This follows from of the inequalities TCn(X) ≤ cat(Xn) ≤
n cat(X).

Given X, we (can) introduce the power series
∑∞

n=0 TCn+2(X)zn

and ask about analytical properties of them.

Example 15.3. For X = S2k+1 we have

∞∑
n=0

TCn+2(S2k+1)zn =

∞∑
n=0

(n+ 1)zn = (1− z)−2 + 2(1− z)−1.

Generally, we have the following fact:

Proposition 15.4. For every CW space X of finite type, the radius of
convergence of the series

∑
TCn+2(X)zn is equal to 1.

Proof. Put an = TCn(X) and note that an ≤ catXn ≤ n catX. Hence
an/n ≤ catX. Hence the upper limit lim(an/n) exists, and it is positive
because {an} is an increasing sequence of positive numbers. This implies
that

lim
an
an+1

= lim
n+ 1

n
= 1.

And an open question.

Open Problem 15.5. Do the power series∑
cat(Xn)zn and

∑
TCn+2(X)zn

represent rational functions?
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16 Monoidal topological complexity

Consider robot motion planning with the following property: if the
initial position of a robot in the configuration space X coincides with
the terminal position, then the algorithm keeps the robot still. This
leads to the notion of monoidal topological complexity, [IS10, IS12].

Definition 16.1. For a CW space X, the monoidal topological com-
plexity TCM (X) is the least number m such that there exists a cover of
X×X by m+ 1 open subsets Ai, i = 0, 1, . . .m and, for each Ai, a local
section si : Ui → PX for ζX = {π : XI → X ×X} with the following
property: si(x, x) is the constant path at x for all x ∈ X.

Remark 16.2. Iwase and Sakai [IS10] require that each Ai contains
the diagonal d(X) ⊂ X×X. However, their definition agrees with ours,
cf. [Dr14, p.1].

Open Problem 16.3. Is it true that TCM (X) = TC(X) for all X?

In fact, Iwase and Sakai proclaimed the equality TCM (X) = TC(X)
in [IS10] and then withdrew the clam in [IS12].

Proposition 16.4. For any CW space we have TC(X) ≤ TCM (X) ≤
TC(X) + 1.

Proof. See [IS12, Dr14]

Theorem 16.5. The equality TC(X) = TCM (X) holds true for all
k-connected simplicial complexes X with

(k + 1)(TC(X) + 2) ≥ dimX + 1.

Proof. [Dr14, Theorem 2.5].

Note also the equalities TC(X) = TCM (X) is X is a sphere Sn or
a connected Lie group G, [Dr14].

The following theorem refines Theorem 7.7.

Theorem 16.6 (Dranishnikov [Dr14]). Let X,Y be two absolute neigh-
borhood retracts. Then

max{TC(X),TC(Y ), cat(X × Y ) ≤ TC(X ∨ Y ) ≤ TCM (X ∨ Y )

≤TCM (X) + TCM (Y ) + 1 ≤ TC(X) + TC(Y ) + 3.
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17 Symmetric topological complexity

This section is an extract from [BGRT14].

In discussing on robotics, it is natural to consider motion planning
so that a path α from A to B is equal to the inverse one α−1 of the
path from B to A. This leads to symmetric version(s) of topological
complexity.

We discuss two symmetric versions of TCn. One of them, TCΣ
n ,

has the advantage of being a homotopy invariant. The other, TCS
n , is

better for calculations and is a natural generalization of the symmetric
topological complexity studied by Farber and Grant in [FG07]. We
begin with the n = 2 case of the homotopically well-behaved version.

Consider the involutions τ : X × X → X × X and τ : XI → XI

defined by τ(x, y) = (y, x) and τ(α)(t) = α(1 − t), for (x, y) ∈ X ×X
and α ∈ XI . We work with symmetric subsets A ⊆ X×X (i.e. those for
which τA = A), and equivariant maps s : A→ XI (i.e. those satisfying
τ(s(a)) = s(τ(a)) for all a ∈ A).

Definition 17.1. TCΣ(X) is the least integer k such that X × X =
A0 ∪ A1 ∪ · · · ∪ Ak where each Ai is open, symmetric, and admits a
continuous equivariant section si : Ai → XI of the map e2.

To define Farber–Grant symmetric complexity TCS , consider the
subspace

C2(X) = X2 \ d(X) ⊂ X ×X

of ordered pairs of distinct points in X. The map π : XI → X × X
restricts to a map

π′ : π−1(C2(X))→ C2(X)

that is a Z/2-equivariant map with free Z/2-actions on its domain and
range. So, the quotient map

ε2 := π′/(Z/2) : (π−1(C2(X)))/(Z/2)→ C2(X)/(Z/2)

is a fibration.

Definition 17.2. TCS
2 (X) = 1 + secat(ε2).

Proposition 17.3. For each ENR we have

TCS
2 (X)− 1 ≤ TCΣ(X) ≤ TCS

2 (X).
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Example 17.4. For X contractible and not a point we have TC2(X) =
TCΣ(X) = 0 while TCS

2 (X) = 1. In particular, TCS
2 is not a homotopy

invariant.

Example 17.5. The numbers TCS
2 (Sk) and TC2(Sk) have been com-

puted in [FG07, Corollary 18] and [Fa03], respectively. Here we use the
inequalities TC2 ≤ TCΣ ≤ TCS together with the fact that TCS

2 (Sk) =
2 = TC2(S2k) to deduce TCΣ(S2k) = TCS

2 (S2k) = 2 for all k. On
the other hand, since TC2(S2k+1) = 1, the above argument only gives
1 ≤ TCΣ(S2k+1) ≤ TCS

2 (S2k+1) = 2. Incidentally, note that the con-
struction in [Fa08, Example 4.8] gives an open covering S2k+1×S2k+1 =
A0 ∪ A1 by symmetric sets Ai, and continuous sections of e2 over each
Ai, i = 0, 1. However, one of these sections is not equivariant, which
prevents us from deducing TCΣ(Sk) = 1.

Open Problem 17.6. Evaluate TCΣ S1.

Remark 17.7. We do not know of an example with TC 6= TCΣ.

We next define higher analogues of TCΣ. Recall that for a given
n, the symmetric group Σn acts on the right of Xn and XJn by per-
muting coordinates and paths, respectively. Further, the fibration en in
Definition 5.1 is Σn-equivariant. We now work with symmetric subsets
A ⊆ Xn (i.e. those for which Aσ = A for all σ ∈ Σn), and equivariant
maps s : A → XJn (i.e. those satisfying s(a)σ = s(aσ) for all a ∈ A
and σ ∈ Σn). Definition 17.1 can now be extended to:

Definition 17.8. TCΣ
n (X) is the least integer k such that Xn = A0 ∪

A1∪ · · · ∪Ak where each Ai is open, symmetric and admits a continuous
equivariant section si : Ai → XJn for the map en.

Theorem 17.9. If the spaces X and Y are homotopy equivalent then
TCΣ

n (X) = TCΣ
n (Y ).

Now we present the higher analog of TCS . Let Cn(X) stand for
configuration space of n ordered distinct points in X. The symmetric
group Σn acts on XJn and Xn in an obvious way, and en : XJn → Xn

is an Σn-equivariant map. The Σn-actions are free on both domain and
range of en. Thus, at the level of orbit spaces we get a fibration

εXn = εn : Yn(X)→ Cn(X)/Σn

where Yn := e−1
n (Cn(X)/Σn.
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Theorem 17.10. If X is an ENR then

secat(εn) ≤ TCΣ
n (X) ≤ secat(εn) + · · ·+ secat(ε2) + n− 1.

In view of previous inequality, TCS
2 (X)− 1 ≤ TCΣ(X) ≤ TCS

2 (X).
It hints the following definition:

Definition 17.11. For n ≥ 2 set

TCS
n(X) = secat(εn) + · · ·+ secat(ε2) + n− 1.

18 Topological complexity in presence of group
actions

When an interesting topological concept appears, people consider topo-
logical groups G and do G-equivariant (G-invariant) generalization of
the concept. Topological Complexity is not an exception. I am not
able to discuss here different G-versions of Topological Complexity; the
interested reader is referred to the papers [BK15, CG12, LM15].

Yuli B. Rudyak
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[LuSh13] Lupton, G.; Scherer, Jérôme.: Topological complexity of H-
spaces, Proceedings of the American Mathematical Society
141 No. 5 (2013) 1827–1838.

[LS29] Lusternik, L. A., Schnirelmann, L. G. Sur un principe
topologique en analyse, C. R. Acad. Sci. Paris 188 (1929),
295–297.

[LS34] Lusternik, L. A., Schnirelmann, L. G. Méthodes topologiques
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