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Toeplitz operators with piecewise

quasicontinuous symbols ∗

Breitner Ocampo

Abstract

For a fixed subset of the unit circle ∂D, Λ := {λ1, λ2, . . . , λn},
we define the algebra PC of piecewise continuous functions in
∂D \ Λ with one sided limits at each point λk ∈ Λ. Besides, we
let QC stands for the C∗-algebra of quasicontinuous functions on
∂D defined by D. Sarason in [5]. We define then PQC as the
C∗-algebra generated by PC and QC.
A2(D) stands for the Bergman space of the unit disk D, that is,

the space of square integrable and analytic functions defined on D.
Our goal is to describe TPQC , the algebra generated by Toeplitz
operators whose symbols are certain extensions of functions in
PQC acting on A2(D). Of course, a function defined on ∂D can be
extended to the disk in many ways. The more natural extensions
are the harmonic and the radial ones. In the paper we describe the
algebra TPQC and we prove that this description does not depend
on the extension chosen.
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1 Introduction

We consider the C∗-algebra of quasicontinuous functions QC, which
consists of all functions f : ∂D → C such that both f and its complex
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conjugate f̄ belong to H∞ + C. Here H∞ denotes the set (algebra)
of boundary functions for bounded analytic functions on the unit disk
D, and C stands for the algebra of continuous functions on ∂D. The
space QC has two natural extensions to the disk, namely, the radial and
the harmonic extension, we denote these extensions by QCR and QCH ,
respectively.

We use A2(D) to denote the Bergman space of L2(D) which consists
in all analytic functions. For A2(D) ⊂ L2(D), we denote by BD the
Bergman projection BD : L2(D) → A2(D). Let K denote the ideal of
compact operators acting on A2(D).

Recall that, for a bounded function f on D, the Toeplitz operator Tf
acting on A2(D) is defined by the formula Tf (g) = BD(fg). For a linear
subespace A ⊂ L∞(D) we denote by TA the (closed) operator algebra
generated by Toeplitz operators with defining simbols in A.

In this paper we describe the Calkin algebras TQCR/K and TQCH/K.
We use the characterization of QC as the set of bounded functions with
vanishing mean oscillation to prove that the Calkin algebras TQCR/K
and TQCH/K are commutative, moreover TQCR ∼= TQCH .

For a finite set of points Λ := {λ1, . . . , λn} of ∂D, we define the
space of piecewise continuous functions PC := PCΛ as the algebra of
continuous functions on ∂D \ Λ with one sided limits at each point
λk ∈ Λ. We denote by PQC the C∗-algebra generated by both PC
and QC. We use an extension of PQC to the disk and thus define the
Toeplitz operator algebra TPQC ⊂ B(A2(D)). There are several ways to
extend the functions in PQC to D; two of them are: the radial extension,
PQCR, and the harmonic extension, PQCH . The main goal of this
paper is the description of the Calkin algebra TPQC/K, which is stated
in Theorem 3.15. Finally, in Section 4, we prove that the result does
not depend on the extension chosen for PQC, that is, TPQCR = TPQCH .

2 Preliminaries

First of all, we set some notation that will be used throughout the paper.
Any mathematical symbol not described here will be used in its more
common sense, ‖ · ‖A stands for the norm in the space A. We denote
by D the unit disk and by ∂D its boundary, the unit circle. The sets D
and ∂D are endowed with the standard topology and with the Lebesgue
measures dz = dxdy and dθ , where the point z = x + iy belongs to D
and eiθ belongs to ∂D. All the functions in the paper are considered as
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complex-valued.
This section includes some basic facts about the space of Vanishing

Mean Oscillation functions on ∂D, denoted here by VMO. The impor-
tance of this space lies in the fact that QC = VMO ∩ L∞ ( see [4]).
For the convenience of the reader we recall the relevant material from
[5] omitting proofs, thus making the exposition self contained.

We define the following spaces of functions on ∂D:

• L∞ := L∞(∂D) = the algebra of bounded measurable functions
f : ∂D→ C,

• H∞ := H∞(∂D) = the algebra of radial limits of bounded analytic
functions defined on D,

• C := C(∂D) = the algebra continuous functions on ∂D.

Definition 2.1. [5, page 818] We define the C∗-algebra of quasicon-
tinuous functions QC as the algebra of all bounded functions f on ∂D,
such that, both f and its complex conjugate f̄ belong to H∞+C, that
is;

QC := (H∞ + C) ∩
(
H
∞

+ C
)
.

Some of the statements below are formulated for segments in the
real line, but they can also be formulated for arcs in ∂D.

By an interval on R we always mean a finite interval. The length of
the interval I will be denoted by |I|.

For f ∈ L1(I), the average of f over I is given by

(1) I(f) := |I|−1

∫
I
f(t)dt.

For a > 0, let

Ma(f, I) := sup
J⊂I,|J |<a

1

|J |

∫
J
|f(t)− J(f)|dt.

Note that 0 ≤ Ma(f, I) ≤ Mb(f, I) if a ≤ b, then let M0(f, I) :=
lim
a→0

Ma(f, I).

Definition 2.2. [5, page 81] A function f ∈ L1(I) is of vanishing mean
oscillation in the interval I ( or the arc I), if M0(f, I) = 0. The set of
all vanishing mean oscillation functions on I is denoted by VMO(I).

In particular, if we replace I by ∂D in definitions above we get
VMO := VMO(∂D).
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A useful characterization of the space VMO is as follows: a function
f belongs to VMO if and only if for any ε > 0 there exists δ > 0,
depending on ε, such that

|J |−2

∫
J

∫
J
|f(t)− f(s)|dsdt < ε,

for every interval J ⊂ I with |J | < δ.

Definition 2.3. [5, Page 818] Let f be an integrable function defined
in an open interval containing the point λ. We define the integral gap
of f at λ by

γλ(f) := lim sup
δ→0

∣∣∣∣∣∣δ−1

λ+δ∫
λ

f(t)dt− δ−1

λ∫
λ−δ

f(t)dt

∣∣∣∣∣∣ .
Obviously, if f belongs to VMO(I), then γλ(f) = 0 for each interior

point λ of I. The most important use of Definition 2.3 is stablished in
the following lemma:

Lemma 2.4. [5, Lemma 2] Let I = (a, b) be an open interval, λ a point
of I, and f a function on I which belongs to both VMO((a, λ)) and
VMO((λ, b)). If γλ(f) = 0, then f belongs to VMO(I).

We denote by M(QC) the space of all non-trivial multiplicative lin-
ear functionals on QC, endowed with the Gelfand topology. In the same
way define M(C) and identify it with ∂D via the evaluation function-
als. Since C is a subset of QC, every functional in M(QC) induces, by
restriction, a functional in C.

Here and subsequently, f0 denotes the function f0(λ) = λ. The
Stone-Weierstrass theorem implies that f0 and the function f(λ) = 1
generate the C∗-algebra of all continuous functions on ∂D.

Definition 2.5. [5, Page 822] For every λ ∈ ∂D, we denote by Mλ(QC)
the set of all functionals x in M(QC) such that x(f0) = λ, that is

Mλ(QC) := {x ∈M(QC) : x(f0) = f0(λ) = λ}.

In other words, x belongs to Mλ(QC) if the restriction of x to the
continuous functions is the evaluation functional at the point λ.

Definition 2.6. [5, Page 822] We let M+
λ (QC) denote the set of x ∈

Mλ(QC) with the property that f(x) = 0 whenever f inQC is a function
such that lim

t→λ+
f(t) = 0. M−λ (QC) is defined in an analogous way.
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Let f be bounded function on ∂D. The harmonic extension of f to
the unit disk is denoted by fH and is given by the formula

(2) fH(z) := fH(r, θ) :=
1

2π

∫
∂D

Pr(θ − λ)f(λ)dλ,

where

Pr(θ) := Re

(
1 + reiθ

1− reiθ

)
=

1− r2

1− 2rcos(θ) + r2

is the Poisson kernel for the unit disk.
For every point z in D we define a functional in QC by the following

rule: z(f) = fH(z), so, we consider D as a subset of the dual space of
QC. Under this identification we have that the weak-star closure of D
contains M(QC) [5, Lemma 7].

Lemma 2.7. Let f be a function in QC which is continuous at the
point λ0. Then x(f) = f(λ0) for every functional x in Mλ0(QC).

Proof. Consider the case where the function f is continuous at λ0 and
such that f(λ0) = 0. Let x be a point in Mλ0(QC). For ε > 0 there is
δ0 > 0 such that |f(λ)| < ε for all λ in the arc Vλ0 = (λ0 − δ0, λ0 + δ0).
The values taken by the Poisson extension of f should be small if we
evaluate points in D of an open disk with center at λ0, i.e, there is a δ1

such that |fH(z)| < ε/2 if dist(z, λ0) < δ1 and z ∈ D.
Using ε1 = min{δ0, δ1, ε} we construct a neighbourhood Vx in QC∗

with parameters f, f0, ε1.
By Lemma 7 in [5], there is a z in D such that z ∈ Vx, that is

|fH(z)− x(f)| < ε1 < ε and |f0(z)− f0(λ0)| = |z − λ0| < ε1 < δ1.

This implies that dist(z, λ0) ≤ δ1 and then |fH(z)| < ε/2.
Now we estimate x(f),

|x(f)| ≤ |x(f)− fH(z)|+ |fH(z)| < ε,

consequently x(f) = 0.
In the general case, when f(λ0) 6= 0, we apply the previous argument

to the function g = f − f(λ0). For g we obtain 0 = x(g) = x(f)− f(λ0)
and then x(f) = f(λ0) for all x ∈Mλ0(QC).

For z 6= 0 in D, we let Iz denote the closed arc of ∂D whose center
is z/|z| and whose length is 2π(1− |z|). For completeness, I0 = ∂D.
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Lemma 2.8. [5, Lemma 5] For f in QC and any positive number ε,
there is a positive number δ such that |fH(z) − Iz(f)| < ε whenever
1− |z| < δ.

The average of a function f over an arc I defines a linear functional
on QC. Let us identify each arc I with the “averaging” functional in
QC. The set of all these functionals is denoted by G. By Lemma 7 in
[5] and Lemma 2.8 we come to the following lemma.

Lemma 2.9. [5, Page 822] M(QC) is the set of points in the weak-star
closure of G ( denoted here by G∗) which does not belong to G.

For λ ∈ ∂D we denote by G0
λ the set of all arcs I in G with center

at λ. Let M0
λ(QC) be the set of functionals in Mλ(QC) that lie in the

weak-star closure of G0
λ. By Lemma 2.8, the set M0

λ(QC) coincides with
the set of functionals in Mλ(QC) that lie in the weak-star closure of the
radius of D terminating at λ.

In [5], D. Sarason splits the space Mλ(QC) into three sets:

M+
λ (QC) \M0

λ(QC), M−λ (QC) \M0
λ(QC) and M0

λ(QC).

These three sets are mutually disjoint due to the next lemma:

Lemma 2.10. [5, Lemma 8] M+
λ (QC) ∪ M−λ (QC) = Mλ(QC) and

M+
λ (QC) ∩M−λ (QC) = M0

λ(QC).

The result in Lemma 2.10 allows us to draw the maximal ideal space
M(QC). We consider the unit circle as the interval [0, 2π], where the
points 0 and 2π represent the same point. At each point λ in [0, 2π] we
draw a segment representing the fiber Mλ(QC). The segment Mλ(QC)
is splitted into two parts, the upper part M+

λ (QC) and the lower part
M−λ (QC). Their intersection is M0

λ(QC), the central part of the fiber.

0 2π

Mλ(QC)

M0
λ(QC)

M+
λ (QC)

M−λ (QC)

Figure 1: The maximal ideal space of QC.
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3 Toeplitz operators with piecewise quasicon-
tinuous symbols on the Bergman space

This section deals with Toeplitz operators with symbols in certain ex-
tension of PQC acting on A2(D). The C∗-algebra PQC is generated
by both, the space PC of piecewise continuous functions, and QC, the
space of quasicontinuous functions, both extended from ∂D to the unit
disk D. The main result of this section (Theorem 3.15) describes the
Calkin algebra T̂PQC := TPQC/K as the C∗-algebra of continuous sec-
tions over a bundle ξ constructed from the operator algebra TPQC .

Definition 3.1. Let Λ := {λ1, λ2, . . . , λn} be a fixed set of n different
points on ∂D. Define PC := PCΛ as the set of continuous functions on
∂D \Λ with one sided limits at every point λk in Λ. For a function a in
PC we set

a+
k := lim

λ→λ+
k

a(λ) and a−k := lim
λ→λ−k

a(λ),

following the standard positive orientation of ∂D.

Definition 3.2. PQC is defined as the C∗-algebra generated by PC
and QC.

Our interest is to describe a certain Toeplitz operator algebra acting
on the Bergman space A2(D). For this we need to extend the functions
in PQC to the whole disk. There are two most natural ways of such
extensions

• the harmonic extension gH , given by the Poisson formula 2,

• the radial extension gR, defined by gR(r, θ) = g(θ).

In this section we use the radial extension, however, we emphasize
that the main result of this paper does not depend on the extensions
mentioned above (Theorem 4.11).

Recall that the Bergman spaceA2(D) is the closed subspace of L2(D)
which consists of all functions analytic in D. Being closed, the space
A2(D) has the orthogonal projection BD : L2(D) → A2(D), called the
Bergman projection. Let K denote the ideal of compact operators acting
on A2(D).

Given a function g in L∞(D), the Toeplitz operator Tg : A2(D) →
A2(D) with generating symbol g is defined by Tg(f) = BD(gf).
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In [7], K. Zhu describes the largest C∗-algebra Q ⊂ L∞(D) such that
the map

ψ : Q → B(A2(D))/K
f 7→ Tf +K,

is a C∗-algebra homomorphism. This algebra is closely related to QC
because both can be described using spaces of vanishing mean oscillation
functions.

Definition 3.3. [7, Page 633] Consider

Γ := {f ∈ L∞(D) : TfTg − Tfg ∈ K for all g ∈ L∞(D)}.

Let Q := Γ̄ ∩ Γ.

For z in D, we define

Sz := {w ∈ D : |w| ≥ |z| and | arg(z)− arg(w)| ≤ 1− |z|},

The area of Sz, denoted by |Sz|, is π(1− |z|)2(1 + |z|).

Definition 3.4. [7, Page 621] A function f in L1(D) belongs to
VMO∂(D), the space of functions with vanishing mean oscillation near
the boundary of D, if

lim
|z|→1−

1

|Sz|

∫
Sz

∣∣∣∣f(w)− 1

|Sz|

∫
Sz

f(u)dA(u)

∣∣∣∣ dA(w) = 0.

Theorem 3.5. [7, Theorem 13] The algebra Q is the set of bounded
functions with vanishing mean oscillation near the boundary, i.e.,

Q = VMO∂(D) ∩ L∞(D).

For the proof we refer the reader to [7].

Lemma 3.6. Let f be a function in QC. Then, the function fR belongs
to Q.

Proof. According to Theorem 3.5 and Definition 3.4, we need to esti-
mate

(3)
1

|Sz|

∫
Sz

∣∣∣∣f(w)− 1

|Sz|

∫
Sz

f(u)dA(u)

∣∣∣∣ dA(w).

Using polar coordinates we get that this quantity is equal to
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(4)
2

|Iz|2

∫
Iz

∫
Iz

|f(θ)− f(φ)|dA(θ)dA(φ).

If z is close to the boundary, then the measure of |Iz| is small. Hence,
the expresion in (4) goes to zero because f is in QC. This implies that
the expresion in (3) goes to zero if |z| goes to 1, thus fR is in Q as
required.

In Lemma 4.5 we prove that the harmonic extension fH also belongs
to Q, but the tools needed for the proof of this fact are not stablished
yet.

From now on, and until further notice, we use only the radial ex-
tension of a function in PQC. To simplify the notation, we use PQC
to denote functions defined on ∂D as well as radial extensions of such
functions. Moreover g will denote both, the function on ∂D and its
radial extension to D.

By TPQC we denote the C∗-algebra generated by Toeplitz operators

with symbols in PQC. We use T̂PQC to denote the Calkin algebra
TPQC/K. The main goal of this paper is to describe the C∗-algebra

T̂PQC .
We use the Douglas-Varella Local Principle (DVLP for short) to

describe the C∗-algebra T̂PQC . A complete description of this principle
can be found, for example, in [6, Chapter 1].

Let A be a C∗-algebra with identity, Z be some of its central C∗-
subalgebras with the same identity, T be the compact of maximal ideals
of Z. Furthermore, let Jt be the maximal ideal of Z corresponding to
the point t ∈ T , and J(t) := Jt · A be the two sided closed ideal in the
algebra A generated by Jt .

We define Et := A/J(t) as the local algebra at the point t. [a]t stands
for the class of the element a in the quotient algebra Et. Two elements
a, b of A are say locally equivalents at the point t ∈ T if [a]t = [b]t in
Et.

Using the spaces

E :=
⋃
t∈T

Et

and T , there is a standard procedure to construct the C∗-bundle ξ =
(p,E, T ), where p : E → T is a projection such that p|Et = t. This
procedure gives to E a compatible topology such that the function â :
T → E with â(t) = [a]t ∈ Et is continuous for each a in A.
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A function γ : T → E is called a section of the C∗-bundle ξ, if
p(γ(t)) = t. Let Γ(ξ) denote the C∗-algebra of all continuous sections
defined on ξ.

Theorem 3.7 (Douglas-Varela Local Principle). The C∗-algebra A is
isomorphic and isometric to the C∗-algebra Γ(ξ), where ξ is the C∗-
bundle constructed from A and its central algebra Z.

Lemma 3.6 and the results in [7] imply that the quotient T̂QC =

TQC/K is a commutative C∗-subalgebra of T̂PQC . Thus we use T̂QC
as the central algebra needed to apply the DVLP in the description of
T̂PQC . The algebra T̂QC can be identified with QC

T̂QC = {Tf +K|f ∈ QC},

hence we localize by points in M(QC). We first construct the system
of ideals parametrized by points x in M(QC).

Definition 3.8. For every point x ∈ M(QC), we define the maximal
ideal of T̂QC , Jx := {f ∈ QC : f(x) = 0} = {Tf + K|f(x) = 0}. The
ideal J(x) is defined as the set Jx · TPQC/K.

We set the notation T̂PQC(x) := T̂PQC/J(x) for the local algebra at

the point x. The class of the element Tf +K ∈ T̂ in the quotient algebra

T̂ (x) shall be denoted by [T̂f ]x, in order to simplify the notation we say

“Tf is locally equivalent...” instead of “the class of [T̂f ]x is loccaly
equivalent...”

Lemma 3.9. Let f be a function in QC and x a point of M(QC). The
Toeplitz operator Tf is locally equivalent, at the point x, to the complex
number f(x) (realized as the operator f(x)I).

Proof. Let x be a point in M(QC) and f be a function in QC. The
function f − f(x) belongs to J(x), thus, the operator Tf − Tf(x) =

Tf−f(x) is zero in T̂PQC(x). This means that the operator Tf is locally
equivalent to the operator Tf(x) = f(x)I and then, the operator Tf is
locally equivalent to the complex number f(x).

Lemma 3.10. Let x be a point of Mλ(QC) with λ /∈ Λ and a be a
function in PC. Then, the Toeplitz operator Ta, in the local algebra
T̂PQC(x), is equivalent to the complex number a(λ) (realized as the op-
erator a(λ)I).
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The proof is very similar to the proof of Lemma 3.9 and is omitted.
For the case when x ∈Mλk(QC), we use Lemma 2.10 to split the fiber
Mλk(QC) into three disjoints sets: M+

λk
(QC) \M0

λk
(QC), M−λk(QC) \

M0
λk

(QC) and M0
λk

(QC).

Lemma 3.11. Let x be a point of M+
λk

(QC) \ M0
λk

(QC) and a be a
function in PC. Then, the Toeplitz operator Ta, in the local algebra
T̂PQC(x), is equivalent to the complex number a+

k (realized as the oper-
ator a+

k I).

Proof. Let a be a function for which a+
k = 0. If x belongs to

M+
λk

(QC) \M0
λk

(QC),

then x belongs to M+
λk

(QC) and does not belong to M−λk(QC). This
implies the existence of a function g in QC such that

lim
λ→λ−k

g(λ) = 0

and g(x) = 1.
The product ag is continuous at λk and ag(λk) = 0. The difference

Ta−Tag can be rewritten as T(1−g)a = T1−gTa+K where K is a compact
operator. Since the function 1 − g vanishes at x, T1−g belongs to Jx,
and then Ta − Tag belongs to J(x).

From this we conclude that the Toeplitz operator with symbol a
is locally equivalent to the Toeplitz operator with symbol ag. At the
same time, the Toeplitz operator Tag is locally equivalent to the complex
number 0 = ag(λk), hence, the operator Ta is locally equivalent to the
complex number a+

k = 0.
For the general case, if the function a in PC has limit a+

k 6= 0, we
construct the function b(λ) = a(λ)−a+

k . The function b has lateral limit
b+k = 0, fulfilling the initial assumption of the proof. By the first part of
the proof, the Toeplitz operator Tb = Ta−a+

k I is locally equivalent to the
complex number 0, thus the Toeplitz operator Ta is locally equivalent
to the complex number a+

k .

Similarly the following lemma holds:

Lemma 3.12. Let x be a point of M−λk(QC) \ M0
λk

(QC) and a be a
function in PC. Then, the Toeplitz operator Ta, in the local algebra
T̂PQC(x), is equivalent to the complex number a−k (realized as the oper-
ator a−k I).
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Now we analize the case when x belongs to central part of the fiber
Mλk(QC), i.e, x ∈M0

λk
(QC). For this case we use some results regard-

ing Toeplitz operators with zero-order homogeneous symbols defined in
the upper half plane Π.

We consider A2(Π) as the Bergman space of Π, that is, the (closed)
space of square integrable and analytic functions on Π. Let BΠ stands
for the Bergman projection BΠ : L2(Π)→ A2(Π).

Denote by A∞ the C∗-algebra of bounded mesureable homogeneous
functions on Π of zero-order, or functions depending only in the po-
lar coordinate θ. We introduce the Toeplitz operator algebra T (A∞)
generated by all Toeplitz operators

Ta : φ ∈ A2(Π) 7→ BΠ(aφ) ∈ A2(Π)

with defining symbols a(r, θ) = a(θ) ∈ A∞.

Theorem 3.13. [6, Theorem 7.2.1] For a = a(θ) ∈ A∞, the Toeplitz
operator Ta acting in A2(Π) is unitary equivalent to the multiplication
operator γaI acting on L2(R). The function γa(s) is given by

γa(s) =
2s

1− e−2sπ

∫ π

0
a(θ)e−2sθdθ.

Let ∂D+
k denote the upper half of the circunference and D+

k the upper
half of the disk D both determined by the diameter passing through λk
and −λk. Denote by ∂D−k and D−k the complement of ∂D+

k and D+
k ,

respectively.

Let H be a function in PC with lateral limits H+
k and H−k , we

construct the function h in PC such that h = H+
k in ∂D+ and h = H+

k

in ∂D−. The function H − h is continuous at λk and (H − h)(λk) = 0.
For any point x ∈ M0

λk
, the Toeplitz operator TH−h belongs to J(x)

and thus TH and Th are locally equivalent at the point x.

The previous paragraph implies that the C∗-algebra generated by
TH in T̂PQC(x) depends only on the values H+

k and H−k . To describe
the local algebra at x, we need to analize the algebra generated by the
Toeplitz operator which symbol h is constant on both ∂D+ and ∂D−.
The radial extension of such function h is the function which is constant
in D+ with value A and constant in D− with value B for some complex
constants A and B.

Let φ be a Möbius transformation which sends the upper half plane
to the unit disk and such that: φ(0) = λk, φ(i) = 0 and φ(∞) = −λk.
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Using the function φ we construct a unitary transformation W which
sends L2(D) onto L2(Π). Under the unitary transformation W , the
Toeplitz operator with symbol h, acting on A2(D), is unitary equivalent
to the Toeplitz operator Th(φ(w)) acting on A2(Π). The corresponding
symbol h(φ(w)) is a homogeneous function of zero-order.

By Theorem 3.13, the Toeplitz operator with symbol h(φ(w)), acting
on A2(Π), is unitary equivalent to the multiplication operator by the
function γh(φ(w)), acting on L2(R). Following the unitary equivalences
we deduce that Th is unitary equivalent to γh(φ(w)).

By Corollary 7.2.2 in [6], the function γh(φ)(s) is continuous in R̄ =
R ∪ {−∞,+∞}, the two point compactification of R; furthermore, for

the function h = χD+
k

we have γh(φ)(s) = 1−e−sπ
1−e−2sπ = 1

1+e−2sπ . The

function γh(φ)(s) and the identity function 1 generate the algebra of
continuous functions on R̄ [6, Corollary 7.2.6].

Recall that all piecewise constant functions are generated by linear
combinations of the identity and the function χD+

k
. Thus, using the

change of variables

t =
1

1 + e−2sπ
,

which is a homeomorphism between [0, 1] and R̄, we conclude that the
local algebra T̂PQC(x) is isomorphic to C[0, 1] for every x ∈ M0

λk
(QC);

further, such isomorphism, denoted here by ψ, acts on the generator
TχD+

k

as follows:

TχD+
k

7→ t.

This implies that the Toeplitz operator with symbol a in PC is sent to
C([0, 1]), via ψ, to the function a−k (1 − t) + a+

k t. Thus we come to the
following lemma.

Lemma 3.14. If x belongs to M0
λk

(QC), then the local algebra gener-
ated by the Toeplitz operators with symbols in PQC is isometric and
isomorphic to the algebra of all continuous functions in [0, 1].

With the set M(QC), we construct the C∗-bundle

ξPQC := (p,E,M(QC)).

We use the description of the local algebras given by Lemmas 3.10, 3.11,
3.12 and 3.14 to construct the bundle

E :=
⋃

x∈M(QC)

Ex
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where

• Ex = C, if x ∈Mλ(QC) with λ /∈ Λ,

• Ex = C, if x ∈M+
λk

(QC) \M0
λk

(QC), λk ∈ Λ,

• Ex = C, if x ∈M−λk(QC) \M0
λk

(QC), λk ∈ Λ,

• Ex = C([0, 1]), if x ∈M0
λk

(QC), λk ∈ Λ.

The function p is the natural projection from E to M(QC).
Let Γ(ξPQC) denote the algebra of all continuous sections of the

bundle ξPQC . Applying the DVLP (Theorem 3.7) we get the following
theorem:

Theorem 3.15. The C∗algebra T̂PQC is isometric and isomorphic to
the C∗-algebra of continuous sections over the C∗-bundle ξPQC.

As a corollary of Theorem 3.15, the algebra T̂PQC is commuta-

tive, thus there exists a compact space X = M(T̂PQC), such that

T̂PQC ∼= C(X) = C(M(T̂PQC)). The compact space M(T̂PQC) can

be constructed using the irreducible representations of T̂PQC .

Let ∂̂D be the set ∂D cut by the points λk of Λ. The pair of points
of ∂̂D which correspond to the point λk will be denoted by λ+

k and λ−k ,
following the positive orientation of ∂D. Let In := tni=1[0, 1]k be the
disjoint union of n copies of the interval [0, 1].

Denote by Σ the union of ∂̂D and In with the point identification

λ−k ≡ 0k λ+
k ≡ 1k,

where 0k and 1k are the boundary points of [0, 1]k, k = 1, . . . , n.
Let M(T̂PQC) :=

⋃
λ∈Σ

Mλ(TPQC) where each fiber corresponds to

Mλ(T̂PQC) :=Mλ(QC) if λ ∈ ∂D̂, λk /∈ Λ

Mλ+
k

(T̂PQC) :=
(
M+
λk

(QC) \M−λk(QC)
)
∪M0

λk
(QC), λk ∈ Λ,

Mλ−k
(T̂PQC) :=

(
M−λk(QC) \M+

λk
(QC)

)
∪M0

λk
(QC), λk ∈ Λ,

Mt(T̂PQC) :=M0
λk

(QC) if t ∈ (0, 1)k, k = 1, . . . , n.

With the help of Figure 1, we draw the maximal ideal space for
T̂PQC . The idea is to duplicate the set M0

λ(QC) and then connect this
two copies by the interval [0, 1].
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Mλ(T̂PQC) = Mλ(QC) Mλ+
i

(T̂PQC)

Mt(T̂PQC)

Mλ−i
(T̂PQC)

M0
λ(QC)

M+
λi

(QC)\M−λi(QC)

M−λi(QC)\M+
λi

(QC)

Figure 2: The maximal ideal space of T̂PQC .

We use the topology of M(QC) in order to describe the topology
of M(T̂PQC). We only describe the topology of the fibers Mλ±k

(T̂PQC)

and Mt(T̂PQC), since the topology on the other fibers corresponds to
the topology of Mλ(QC). For x in M(QC), let Ω(x) denote the family
of open neighbourhoods of x. For x ∈ Mλ(QC) and N in Ω(x), let
Nλ = N ∩Mλ(QC), and let Nλ+ and Nλ− denote the sets of points in
N that lie above the semicircles ∂D+

k and ∂D−k , respectively.

Consider the fiber Mλ+
k

(T̂PQC). The sets N in Ω(x) satisfying N =

Nλk∪Nλ+
k

form neighbourhoods of x ∈M+
λk

(QC)\M−λk(QC). Let Ω+(x)

be the set of neighbourhoods N in Ω(x) satisfying N = Nλ ∪Nλ+ . The
sets

(Nλk × (1− ε, 1]) ∪Nλ+
k

N ∈ Ω+(x), and 0 < ε < 1,

form open neighbourhoods of points x in M0
λk

(QC).

The open neighbourhoods for points in the fiber Mλ−k
(T̂PQC) are

constructed analogously.
The sets N in Ω(x) satisfying N = Nλk ∪Nλ−k

form neighbourhoods

of x ∈M−λk(QC) \M+
λk

(QC).
The sets

(Nλk × [0, ε)) ∪Nλ−k
N ∈ Ω−(x), and 0 < ε < 1,

form open neighbourhoods of points x in M0
λk

(QC).

Each set M0
λk

(QC) × (0, 1) is open in M(T̂PQC) and carries the
product topology.
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Theorem 3.16. Let X := M(T̂PQC) as described above. The algebra

T̂PQC is isomorphic to the algebra of continuous functions over X, the
isomorphism acts on the generators in the following way:

• For generators which symbols is a function a in PC

Φ(T̂a)(x) =


a(λ), if x ∈Mλ(T̂PQC) with λ 6= λk;

a+
k , if x ∈Mλ+

k
(T̂PQC);

a−k , if x ∈Mλ−k
(T̂PQC);

a−k (1− t) + a+
k t, if x ∈Mt(T̂PQC).

• For generators which symbols are functions f in QC, Φ(T̂f )(x) =
f(x).

4 Independence of the result on the extension
chosen

In this section we prove that the description of the algebra T̂PQC does
not depend of the extension chosen for functions in PQC. Recall that
PQC is the algebra generated by PC and QC. This algebra is defined
on ∂D and then extended to the whole disk by two different ways:

• the harmonic extension gH given by the Poisson formula 2,

• the radial extension gR, defined by gR(r, θ) = g(θ).

Let a be a function in PC. At the point x ∈ Mλ(QC), for λ /∈ Λ;
the Toeplitz operator TaR is locally equivalent to the complex number
a(λ). The same still true if we use the harmonic extension aH . For
points x in M+

λk
(QC) \M0

λk
(QC) (respectively M−λk(QC) \M0

λk
(QC)),

the Toeplitz operators TaR and TaH are equivalent to the number a+
k

(Respectively a−k ), and then, the local algebras are the same.
Now, we analize the case when x belongs to M0

λk
(QC). Let â be a

function in PC, we construct a function a such that a = â+
k in ∂D+

k

and a = â−k in ∂D−k . The Toeplitz operator with symbol âH is locally
equivalent to TaH .

As in Section 2, we use a Möbius transformation φ to generate a
unitary operator between L2(D) and L2(Π). For the function a in PC
described earlier, the function aH(φ(z)) is harmonic in Π and corre-
sponds to the harmonic extension of a(φ(t)).
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The harmonic extension of a(φ(t)) is aΠ
H := θ

π (a−k −a
+
k )−a+

k , which is
a zero-order homogeneous function on Π. By Theorem 3.13, the Toeplitz
operator TaΠ

H
is unitary equivalent to the multiplication operator γaΠ

H
.

The function γaΠ
H

is given by

γaΠ
H

= A

(
1

2sπ
− 1

e−2sπ − 1

)
+B,

for suitable complex constants A and B. Corollary 7.2.7 of [6] shows
that the algebra generated by γaΠ

H
and the identity is the algebra of

continuous functions on R̄.

Following the unitary equivalences from TaH to γaΠ
H

and making
a change of variables, we have that the algebra generated by TaH is
isomorphic to the algebra of continuous functions over the segment [0, 1].

We already know, from Theorem 3.14, that the Toeplitz operator
with symbol aR generates the algebra of continuous functions over [0, 1]
as well, so, locally, the algebras genereated by TaH and TaR are the
same. We have thus proved

Theorem 4.1. Consider the algebra PC defined on ∂D and its exten-
sions PCR and PCH . The local algebras T̂PCR(x) and T̂PCH (x) are the
same.

To show the same theorem for functions f in QC we need to stab-
lish some definitions related to the space Q in Definition 3.3. Further
information on the theorems and definitions below can be found in [7].

Definition 4.2. For a function g ∈ L∞(D) we define its Berezin trans-
form g̃ by the formula

g̃(z) :=

∫
D

g(w)
1− |w|2

(1− zw̄)2
dA(w).

Note that g̃ belongs to L∞(D) and ‖g̃‖∞ ≤ ‖g‖∞.

Definition 4.3. Define B as the set of bounded functions on D such
that its Berezin transform goes to zero as z approaches to the boundary
of D, that is,

B := {f ∈ L∞(D) : lim
|z|→1

f̃(z) = 0}.
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In [1], S. Axler and D. Zheng proved that a Toeplitz operator Tg,
with bounded symbol g, is compact if and only if g is in B. The next
lemma is due to D. Sarason and is a combination of some results in [5].

Theorem 4.4. The set Q in Definition 3.3 is described as

Q = {f ∈ L∞(D) : lim
|z|→1

|̃f |
2
(z)− |f̃(z)|2 = 0}.

The set B ∩Q is an ideal of Q and, for f ∈ Q, the Toeplitz operator Tf
is compact if and only if f belongs to B ∩Q.

Lemma 4.5. For a function f in QC, the function fH belongs to Q.

Proof. For this proof we use two facts:

1. The Berezin transform of a harmonic function is the function itself,
in our case, f̃H = fH .

2. By [3], the harmonic extension is asymptotically multiplicative in
QC, that is

lim
|z|→1−

|f |2H(z)− |fH(z)|2 = 0.

Now we proceed with the proof:

|̃fH |2(z)− |f̃H(z)|2 ≤
∣∣∣|̃fH |2(z)− |f |2H(z)

∣∣∣+
∣∣|f |2H(z)− |fH(z)|2

∣∣
≤
∣∣∣∣ ˜|fH |2(z)− |f |2H(z)

∣∣∣∣+
∣∣|f |2H(z)− |fH(z)|2

∣∣ ,
the last two sumands goes to zero as z approaches to the boundary ∂D;
the later because of item 2, and the former is due to items 2 and 1.
Finally, using Theorem 4.4, we have that fH is in Q.

Definition 4.6 (page 626, [7]). For each point z in D we define

S′z :=

{
w ∈ D : |w| ≥ |z| and | arg(z)− arg(w)| ≤ 1− |z|

2

}
.

Definition 4.7 (page 627, [7]). For a function f in L∞(D) define

f̂(z) :=
1

|S′z|

∫
S′z

f(w)dA(w).
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Definition 4.8 (page 626, [7]). Let f be in L∞(D, dA). We say f is in
ESV (D) if and only if for any ε > 0, and σ ∈ (0, 1), there exists δ0 > 0
such that |f(z)−f(w)| < ε whenever w ∈ S′z and |z|, |w| ∈ [1−δ, 1−δσ],
with δ < δ0.

The notation ESV (D) means eventually slowly varying and was in-
troduced by C. Berger and L. Coburn in [2].

Theorem 4.9. [7, Theorem 5] Q = ESV +Q∩B. A decomposition is
given by f = f̂ + (f − f̂). Moreover

ESV (D) ∩B = {f ∈ L∞(D) | f(z)→ 0 as |z| → 1−}.

We calculate f̂R and get f̂R(z) = Iz(f). Then, Theorem 4.9 gives us
the decomposition fR(z) = Iz(f) + (fR(z)− Iz(f)), where Iz(f) belongs
to ESV (D) and fR(z)− Iz(f) belongs to Q ∩B.

Lemma 4.10. Consider the function f in QC. The Toeplitz operator
with symbol fR − fH is compact.

Proof. We write fR(z)−fH(z) = (Iz(f)−fH(z))+(fR(z)−Iz(f)). The
first summand goes to zero as |z| goes to 1 by Theorem 2.8. Then by
Theorem 4.9, the function Iz(f) − fH(z) belongs to ESV (D) ∩ B. By
the decomposition of Q as ESV (D)+Q∩B we have that (fR(z)−Iz(f))
belongs to Q ∩B.

In summary, the function fR(z)− fH(z) belongs to Q∩B and then
the Toeplitz operator with symbol fR − fH is compact.

Now we stablish the main result of this section: the algebra de-
scribed in Theorem 3.15 does not depend on the extension chosen for
the symbols in PQC.

Theorem 4.11. Let PQCR and PQCH denote, respectively, the radial
and the harmonic extension to the disk of functions in PQC. Then, the
Calkin algebras TPQCR/K and TPQCH/K are the same.

Proof. The proof follows from Theorem 4.1 and Lemma 4.10.
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