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Motion planning in tori revisited∗
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Abstract
The topological complexity (TC) of the complement of a com-
plex hyperplane arrangement, which is either linear generic or
else affine in general position, has been computed by Yuzvinsky.
This is accomplished by noticing that efficient homotopy mod-
els for such spaces are given by skeletons of Cartesian powers of
circles. Soon after, Cohen and Pruidze noticed that the topologi-
cal complexity of the complement of the corresponding redundant
subspace arrangement, as well as of right-angled Artin groups, can
be obtained by considering general subcomplexes of cartesian pow-
ers of higher dimensional spheres. Unfortunately Cohen-Pruidze’s
TC-calculations are flawed, and our work describes and mends the
problems in order to validate the extended applications. In addi-
tion, we generalize Farber-Cohen’s computation of the topological
complexity of oriented surfaces, now to the realm of Rudyak’s
higher topological complexity.

2010 Mathematics Subject Classification: 20F36, 52C35, 55M30.
Keywords and phrases: Topological complexity, motion planner, zero-
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1 Introducción

Michael Farber proposed in [5, 6] a topological model to study the con-
tinuity instabilities of the motion planning problem in robotics. Fol-
lowing Farber, a motion planning algorithm (or motion planner) P =

∗This work is the result of the activities of the authors in the student workshop en-
titled “Applied Topology at ABACUS: Motion Planning in Robotics” held in August
2013. The authors thank all participants of the workshop for useful discussions, and
kindly acknowledge the financial support received from ABACUS through CONA-
CyT grant EDOMEX-2011-C01-165873.
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{Fi, si}i=1,...,k for a space X consists of a collection of k pairwise dis-
joint subsets Fi of X × X, each admitting a continuous section si :
Fi → X [0,1] for the end-points evaluation map π : X [0,1] → X × X,
π(γ) = (γ(0), γ(1)), such that {Fi}i is a covering of X ×X by ENR’s.
The sets Fi and the maps si are respectively called the local domains
and the local rules of P. The motion planner is said to be optimal when
the number of local domains is minimal possible. The topological com-
plexity of X, TC(X), is one less than the number of local domains in
any optimal motion planner for X.

A lower bound for TC(X) is described in Proposition 1.1 below
through the concept of the zero-divisor cup-length of X with respect to
a cohomology theory with products h∗. An h∗-zero-divisor of X is an
element in the kernel of the induced map

(1) π∗ : h∗(X ×X)→ h∗(X [0,1]).

The h∗-zero-divisor cup-length of X, denoted by zclh∗(X), is the maxi-
mal number of h∗-zero-divisors whose product in h∗(X×X) is non-zero.
The “zero-divisor” adjective comes from the fact that π : X [0,1] → X×X
is a fibrational substitute for the diagonal map X → X×X. Thus, if the
strong form of the Künneth formula holds for h∗, the kernel of (1) can
be identified with the kernel of the cup-product map h∗(X)⊗ h∗(X)→
h∗(X).

Proposition 1.1 ([5, Theorem 7]). The topological complexity of X is
bounded from below by the h∗-zero-divisor cup-length of X, i.e.

zclh∗(X)) ≤ TC(X).

Instead of the usual upper bound for TC(X) given by homotopy
theory (see [7, 8, 11]), the novel ingredient in Yuzvinsky’s [16] and
Cohen-Pruidze’s [4] works relies on the explicit construction of motion
planners whose optimality is then guaranteed by Proposition 1.1. The
relevant spaces arise as follows. Fix a positive integer k and consider
the standard (minimal) cellular structure in the k-dimensional sphere
S = Sk = e0 ∪ ek. Here e0 is the base point, which we denote by e.
Then take the product cell decomposition in

(2) Sn = S× · · · × S︸ ︷︷ ︸
n times

=
⊔
J

eJ ,

where the cells eJ , indexed by subsets J ⊆ [n] = {1, . . . , n}, are defined
by eJ =

∏n
i=1 e

di with di = 0 if and only if i 6∈ J . Explicitly, eJ =
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{
(x1, . . . , xn) ∈ Sn | xi = e0 if and only if i /∈ J

}
. Cohen and Pruidze’s

main result is stated next.

Theorem 1.2. For a subcomplex X of the cell decomposition (2),

1. TC(X) = 2 dim(X)
k for even k;

2. TC(X) = zclH∗(X)

= max {|J |+ |K| : J ∩K = ∅, eJ and eK cells of X}

for odd k.

It is illustrative to compare Theorem 1.2 to its Lusternik-Schnirel-
mann category counterpart (in terms of the polyhedral power notation).
Félix and Tanré prove in [10] the equality

cat((Sk, ?)L) = cat(Sk)(dim(L) + 1).

Here L is an abstract simplicial complex with vertices in [n], and cat
denotes the (reduced) Lusternik-Schnirelmann category of X. For even
k, this corresponds to the equality TC((Sk, ?)L) = TC(Sk)(1 + dim(L))
in item 1 of Theorem 1.2. However, for an odd k, the answer

TC((Sk, ?)L) = zclH∗((Sk, ?)L)

in item 2 of Theorem 1.2 has a value which is arbitrarily lower than that
in item 1, as we explain next.

Item 2 in Theorem 1.2 yields the calculations in [4, 16] of the topo-
logical complexity of complements of complex hyperplane arrangements
(either linear generic, or affine in general position), and of Eilenberg-
MacLane spaces K(π, 1) for π a right-angled Artin group. It is also
interesting to notice that, while the value of TC(X) in item 1 of Theo-
rem 1.2 is maximal possible (see [6, Theorem 5.2]), item 2 in Theorem 1.2
gives instances where the actual value of TC(X) can be arbitrarily lower
than the dimension-vs-connectivity bound. In fact item 2 in Theo-
rem 1.2 implies that the general estimate “cat ≤ TC ≤ 2 cat” in [5,
Theorem 5] can reach any possible combination1—besides the stan-
dard facts that TC(X) = cat(X) for H-spaces ([12, Theorem 1]), and

1The authors learned of this fact at Dan Cohen’s lecture during the student work-
shop Applied Topology at ABACUS: Motion Planning in Robotics, that took place a
week after the 2013 Mathematical Congress of the Americas, in México.
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TC(X) = 2 cat(X) for closed simply connected symplectic manifolds ([9,
Corollary 3.2]). Indeed, for any positive integers c and t with c ≤ t ≤ 2c,
there is a space X with cat(X) = c and TC(X) = t. In detail, for a
fixed non-negative odd integer k, let X = Sc∨St−c. Since cat(Sc) = c ≥
t−c = cat(St−c), we see cat(X) = max

{
cat(Sc), cat(St−c)

}
= c. On the

other hand, item 2 in Theorem 1.2 yields TC(X) = t. (The case k = 1
is treated in [14] with different techniques.)

We noticed that the inequality TC(X) ≤ 2 dim(X)
k in item 1 of The-

orem 1.2 is standard. Cohen and Pruidze assert to have constructed
an explicit motion planning algorithm realizing this upper bound, but
as described in the next section, their construction is flawed on several
fronts. Similar problems hold in item 2 of Theorem 1.2, but in this case
the situation is critical because the needed upper bound is not available
by other means.

The first main goal of this paper, addressed in the next section, is
to fix the problems in [4]. Then, in Sections 3, we compute the higher
topological complexity of oriented surfaces.

2 Correction of gaps in Cohen-Pruidze’s work

The simplest motion planner on Sn holds for k odd, assumption which
will be in force in this section until further notice. When n = 1, the
motion planner has two local domains described as follows: Let F1 ⊂
S× S and s1 : F1 → S[0,1] be given by

F1 = {(x,−x)|x ∈ S}

and, for a fixed nowhere zero tangent vector field ν on S, s1(x,−x) is the
path from x to −x at constant speed along the semicircle determined
by the tangent vector ν(x). The second local domain is given by the
complement of F1,

F0 = S× S− F1,

with local rule s0 : F0 → S[0,1] where s0(x, y) is the path from x to y
at constant speed along the shortest geodesic arc. It is elementary to
see that zclH∗(S) = 1, so TC(S) = 1 and the above motion planner is
optimal.

The corresponding product motion planner in Sn (described in [5,
Theorems 11 and 13], and simplified in [6, p. 24]) is recalled in Propo-
sition 2.1 below. The needed preliminaries go as follows: For a subset
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I ⊂ [n], let

FI = {(x, y) ∈ Sn × Sn| xi = −yi iff i ∈ I}

and define sI : FI → (Sn)[0,1] using the maps s1 and s0 defined above,
namely

(3) sI(x, y) = (t1(x1, y1), . . . , tn(xn, yn))

where ti = s1 if i ∈ I, and ti = s0 if i /∈ I. (Here and below we use
the shorthand x = (x1, . . . xn), y = (y1, . . . , yn), etc.) The sets FI ’s
are conveniently separated as FI ∩ FJ = ∅ for I * J . In particular,
FI ∩FJ = ∅ = FI ∩FJ when |I| = |J | with I 6= J . This allows us to set

(4) Wj =
⋃

|I|=n−j
FI ∼=

⊔
|I|=n−j

FI

for j = 0, 1, . . . , n, and define a local rule σj : Wj → (Sn)[0,1] by σj |FI
=

sI .

Proposition 2.1 ([6, p. 24]). For k odd, the subsets Wj ⊂ Sn× Sn and
maps σj : Wj → (Sn)[0,1], j = 0, 1, . . . , n, determine an optimal motion
planner for Sn, thus TC(Sn) = n.

Still assuming k is odd, let X be a subcomplex of the cell decomposi-
tion (2) and, for J ⊂ [n], let TJ denote the subcomplex of Sn generated
by eJ , i.e. TJ = eJ = {x ∈ Sn | xi = e0 if i /∈ J}. If J ∩K = ∅, TJ ∪TK
sits inside Sn as the wedge union TJ ∨ TK . Therefore the term on the
right of the second item in Theorem 1.2 takes the form

z(X) := max { |J |+ |K| | J ∩K = ∅ and TJ ∨ TK ⊆ X } .

Cohen-Pruidze’s critical assertion TC(X) = z(X) in [4, Theorem 3.4] is
argued by (i) constructing a motion planner for X with z(X) + 1 local
domains, and then (ii) showing that the H∗-zero-divisor cup-length of
X is at least z(X). Their proof of (ii) is correct and straightforward,
but their construction in (i) is flawed. Explicitely, the authors assert
that the local rules in the product motion planner for Sn constructed
in Proposition 2.1 restrict to give local rules for any subcomplex X of
Sn. But such an assertion is false in most of the cases. We exhibit an
explicit (but typical) counterexample (Example 2.2), and then show how
the combinatorics of the cell decomposition of X need to be taken into
consideration to fix the construction—and, therefore, Cohen-Pruidze’s
proof of Theorem 1.2.
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Example 2.2. Take n = 2 and k = 1, so Sn = T 2, the 2-torus. Let
X = S1∨S1 be the 1-dimensional skeleton in the minimal cell structure
of T 2, so X has the cell decomposition X = e∅∪e{1}∪e{2}, and z(X) =
2. The local domain decomposition proposed in [4] is

X ×X =
2⋃
j=0

(X ×X) ∩Wj

with local rules given by the restricted sections σj(X) = σj |Wj∩(X×X).
Now let us focus attention on the local domain

(5) (X ×X) ∩W0 = {(−1, 1, 1,−1)} ∪ {(1,−1,−1, 1)}

with corresponding local rule given by

σ0(X)(x,−x,−x, x) = (s1(x,−x), s1(−x, x)).

The authors of [4] claim that the local rule σ0(X) lands in X [0,1] —
rather than in (T 2)[0,1]. But such an assertion is clearly false. In fact,
for any p ∈ (X ×X)∩W0, the path σ0(X)(p) takes values in X only at
t = 0, 1.

The assertion in [4] that (X × X) ∩Wj = ∅ for j < n − z(X) is
true (and easy to verify). As illustrated above, the problem comes with
the claim that the restrictions σj(X) of σj to (X × X) ∩ Wj , where
(n − z(X) ≤ j ≤ n), give local motion planners in X. The gap noted
in Example 2.2 is typical and can be corrected by taking into account
the combinatorial properties of the cell structure in X. For instance, in
the explicit situation considered in Example 2.2, rather than insisting
on performing the motion in both coordinates in a “parallel” way, one
should move in two halves; the first part of the motion should be on
the coordinate different to 1, keeping the other coordinate fixed. Only
when this part of the motion is complete, and we have arrived to the
base point (1, 1), it will be safe to move the missing coordinate. For
instance, the motion planning algorithm from (−1, 1) to (1,−1) —the
first of the two “tasks” represented in (5)— is depicted by the thick
curve in

&%
'$

&%
'$

• •
�

(−1, 1) (1,−1).

The correct general motion planner is described next.
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Fixed motion planner for item 2 in Theorem 1.2 (k odd ). The descrip-
tion simplifies by normalizing S so to have great semicircles of length
1/2. For x, y ∈ S, we let d(x, y) stand for the length of the shortest
geodesic between x and y over S, so d(x,−x) = 1/2. Likewise, the local
rules s0 and s1 for S defined at the beginning of the section need to be
adjusted. For i = 0, 1 and (x, y) ∈ Fi with x 6= y, set

Si(x, y)(t) =

si(x, y)
(

1
d(x,y) t

)
, 0 ≤ t ≤ d(x, y);

y, d(x, y) ≤ t ≤ 1

(if x = y, Si(x, y)(t) = x = y for all t ∈ [0, 1]). Thus, Si reparametrizes
si so to perform the motion at speed 1, keeping still at the final position
once it is reached—which happens at most at time 1/2. In view of
the homeomorphism in (4), it suffices to define a local rule on each
(X ×X) ∩ FI taking values in X [0,1]. Replace (3) by the map SI : FI ∩
(X × X) → (Sn)[0,1] defined by SI(x, y) = (T1(x1, y1), . . . , Tn(xn, yn))
where Ti(xi, yi) : [0, 1]→ S is the path

Ti(xi, yi)(t) =
{
xi, 0 ≤ t ≤ txi ,

Σi(xi, yi)(t− txi), txi ≤ t ≤ 1.

Here txi = 1
2 − d(xi, 1), and Σi = S1 if i ∈ I while Σi = S0 if i /∈ I.

It is clear that SI is a continuous section on FI ∩ (X × X) for the
end-points evaluation map π : (Sn)[0,1] → Sn × Sn. We only need to
check that SI takes values in X [0,1]. With that in mind, note that
the motion described by the local rule SI , from an “initial coordinate”
xi to the corresponding “final coordinate” yi, is executed according to
the relevant instruction Sj (j ∈ {0, 1}), except that the movement is
delayed a time txi ≤ 1/2. The closer xi gets to 1, the closer the
delaying time txi gets to 1/2. It is then convenient to think of the
path SI(x, y) as happening in two stages. In the first stage (t ≤ 1/2)
all initial coordinates xi = 1 keep still, while the rest of the coordi-
nates (eventually) start traveling to their corresponding final position
yi. Further, at the time the second stage starts (t = 1/2), any fi-
nal coordinate yi = 1 will already have been reached. As a result, SI
never leaves X. In more detail: Let eJ , eK ⊂ X be cells of X. For
(x, y) = ((x1, . . . , xn), (y1, . . . , yn)) ∈ FI ∩ (eJ × eK), coordinates corre-
sponding to indexes i not in J , keep their initial position xi = 1 through
time t ≤ 1/2. Therefore SI(x, y)[0, 1/2] stays within TJ ⊆ X. On the
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other hand, by construction, Ti(xi, yi)(t) = yi = 1 whenever t ≥ 1/2
and i /∈ K. Thus, SI(x, y)[1/2, 1] stays within TK ⊆ X.

The motion planning algorithm constructed above is a variation of
the one carefully described in [16] for skeletons of the minimal cell de-
composition in the n-th Cartesian power of the circle. In the current
case, we are considering all possible subcomplexes of the minimal CW-
complex (Sk)n for any odd k.

Proof of Theorem 1.2 (an additional fixing). It remains to check that
zclH∗(X) is bounded from below by 2 dim(X)/k when k is even, and by
z(X) when k is odd. The case for odd k is addressed correctly in [4,
Proposition 3.7], however the case for even k requires some tune-up. We
thus assume in this proof that k is even.

Say dim(X) = k`. Cohen and Pruidze’s argument starts by noticing
thatX must contain a copy of S` as a subcomplex, and that the inclusion
ι : S` → X induces an epimorphism ι∗ : H∗(X) → H∗(S`). From this,
they infer

(6) zclH∗(X) ≥ zclH∗(S`),

and obtain the desired conclusion from the well-known equality

zcl(H∗(S`)) = 2`.

The subtlety here is that the surjectivity of the ring morphism ι∗ is
not enough to deduce (6). One actually needs to know that each factor
in a non-zero product of zero-divisors realizing zcl(H∗(S`))—as the one
described in the proof of Proposition 6.2 in [4]—is the image of a zero-
divisor in zcl(H∗(X)). But such a property does hold in the current
situation, as Proposition 3.6 in [4] holds true also for k even (cf. [1,
Theorem 2.35]). Alternatively, the composition of the inclusion X ↪→ Sn
with the obvious projection Sn → S` gives a retraction ρ for the inclusion
ι : S` → X and, evidently, both ι and ρ are compatible with diagonal
inclusions.

Remark 2.3. The problem noted in Example 2.2 (for k odd) also holds
in [4] for k even. The new issue is more subtle, and this is reflected in
part by noticing an additional gap in the proof of [4, Theorem 6.3]. Here
we illustrate the new error (and some of the subtleties needed to sort
it out), so we assume in this remark that the reader is familiar with
the notation set in the final section of [4] (where k is even). For X =
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S2 ∨ S2 ⊂ S2 × S2, the first paragraph in the proof of [4, Theorem 6.3]
asserts that (X×X)∩Wj = ∅ for j = 0, 1. In particular (AJ×AK)∩Fα
would have to be empty for J = {1}, K = {2}, and α = (1, 0). However
((−e, e), (e,−e)) clearly lies in the latter intersection. Of course, Cohen
and Pruidze’s gap in the argument of their Theorem 6.3 comes from their
assertion (in the second paragraph of their proof) that there should be
some index in {1, 2} missing J ∪K.

As part of her Ph.D. studies, the second author of this paper has
managed to construct an optimal motion planner for any subcomplex
of Sn when k is even. The construction, carried over in more general
terms (for Rudyak’s higher TC and any parity of k), will be discussed
elsewhere.

3 Higher TC of oriented surfaces

In [13] Yuli B. Rudyak introduced the concept of the higher topological
complexity of a path connected space X, denoted by TCs(X). In this
section we extend Farber and Cohen’s calculation of TC2(Σg) in [3]
to the realm of higher topological complexity. Here Σg stands for an
oriented surface of genus g.

Let Js, s ∈ N, denote the wedge of n closed intervals [0, 1]i, i =
1, . . . , s, where the zero points 0i ∈ [0, 1]i are identified. Consider Xs

(the s-th cartesian product of X) and XJs , where X is a path connected
space. There is a fibration

(7) es : XJs −→ Xs, es(f) = (f(11), . . . , f(1s))

where 1i ∈ [0, 1]i. Recall that the s-th topological complexity of X,
denoted by TCs(X), is defined as the reduced Schwarz genus of es.
Note that (7) is a fibrational substitute of the iterated diagonal map
dXs : X −→ Xs. Hence TCs(X) coincides with the Schwarz genus of
dXs : X −→ Xs. Using the iterated diagonal map dXs and allowing coho-
mology with local coefficients we have the following standard definition:

Definition 3.1. Given a space X and a positive integer n, we denote
by zcls (H∗(X)) the maximal length of non-zero products of elements in
the kernel of the map induced in cohomology by dXs . Thus, zcls (H∗(X))
is the largest integer m for which there exist cohomology classes ui ∈
H∗(Xs, Ai) with dXs (ui) = 0, i = 1, . . . ,m, and

0 6= u1 ⊗ · · · ⊗ um ∈ H∗(Xs, A1 ⊗ · · · ⊗Am).
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Note that zcl2 (H∗(X)) recovers zclH∗(X). The following result
bounds TCs(X) from below by zcls(H∗(X)) and from above by a num-
ber which involves the homotopy dimension ofX, hdim(X) (the smallest
dimension of CW complexes having the homotopy type of X), and the
connectivity of X, conn(X).

Theorem 3.1. For any path-connected space X we have:

zcls (H∗(X)) ≤ TCs(X) ≤ s hdim(X)
conn(X) + 1

For a proof of Theorem 3.1 see [15, Theorems 4 and 5].

Proposition 3.2. For g, s ≥ 2, the s-th higher topological complexity
of Σg is TCs(Σg) = 2s.

This should be compared to the facts that TCs(Σ0) = s and

TCs(Σ1) = 2(s− 1)

proved in [2, Corollary 3.12] (see also [13, Section 4]). In addition, it
should be noted that Proposition 3.2 was also mentioned by Ibai Basabe
during his talk at the conference “Applied Algebraic Topology” held at
the Centro Internacional de Encuentros Matemáticos on July 2014.

Proof of Proposition 3.2. We use cohomology with rational coefficients.
Let ai, bi, i = 1, . . . , g, be the generators of H1(Σg) which satisfy aibj =
aiaj = bibj = 0 for i 6= j, a2

i = b2i = 0 and aibi = ω for any i, where
ω generates H2(Σg). Let HΣg = H∗(Σ×sg ) = [H∗(Σg)]⊗s. For each
i = 2, . . . , s, consider the elements

αi = a1 ⊗ 1⊗ · · · ⊗ 1− 1⊗ · · · ⊗ a1 ⊗ · · · ⊗ 1,
βi = b1 ⊗ 1⊗ · · · ⊗ 1− 1⊗ · · · ⊗ b1 ⊗ · · · ⊗ 1,

where the factor a1 (resp. b1) in 1 ⊗ · · · ⊗ a1 ⊗ · · · ⊗ 1 (resp. 1 ⊗ · · · ⊗
b1 ⊗ · · · ⊗ 1) appears in the i-th tensor coordinate, and

γ1 = a2 ⊗ 1⊗ · · · ⊗ 1− 1⊗ a2 ⊗ 1⊗ · · · ⊗ 1,
γ2 = b2 ⊗ 1⊗ · · · ⊗ 1− 1⊗ b2 ⊗ 1⊗ · · · ⊗ 1

of HΣg . These elements lie in the kernel of the cup-product map

[H∗(Σg)]⊗s → H∗(Σg),

and satisfy γ1 · γ2 · α2 · β2 · · ·αs · βs = 2ω ⊗ · · · ⊗ ω 6= 0. Therefore,
2s ≤ zcls(H∗(Σg)) ≤ TCs(Σg). On the other hand, using the upper
bound in Theorem 3.1, we get TCs(Σg) ≤ 2s. Thus, TCs(Σg) = 2s.
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CINVESTAV del I.P.N.,
Apartado Postal 14-740,
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CINVESTAV del I.P.N.,
Apartado Postal 14-740,
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