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Abstract

Let n be a fixed positive integer and h : {1, 2, ..., n} → {1, 2, ..., n}
a Hessenberg function. The main result of this manuscript is to
give a systematic method for producing an explicit presentation
by generators and relations of the equivariant and ordinary coho-
mology rings (with Q coefficients) of any regular nilpotent Hes-
senberg variety Hess(h) in type A. Specifically, we give an explicit
algorithm, depending only on the Hessenberg function h, which
produces the n defining relations {fh(j),j}nj=1 in the equivariant
cohomology ring. Our result generalizes known results: for the
case h = (2, 3, 4, . . . , n, n), which corresponds to the Peterson va-
riety Petn, we recover the presentation of H∗

S(Petn) given previ-
ously by Fukukawa, Harada, and Masuda. Moreover, in the case
h = (n, n, . . . , n), for which the corresponding regular nilpotent
Hessenberg variety is the full flag variety F`ags(Cn), we can ex-
plicitly relate the generators of our ideal with those in the usual
Borel presentation of the cohomology ring of F`ags(Cn). The
proof of our main theorem includes an argument that the restric-
tion homomorphism H∗

T (F`ags(Cn))→ H∗
S(Hess(h)) is surjective.

In this research announcement, we briefly recount the context and
state our results; we also give a sketch of our proofs and conclude
with a brief discussion of open questions. A manuscript containing
more details and full proofs is forthcoming.
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1 Introduction

This paper is a research announcement and is a contribution to the vol-
ume dedicated to the illustrious career of Samuel Gitler. A manuscript
containing full details is in preparation [1].

Hessenberg varieties (in type A) are subvarieties of the full flag va-
riety F`ags(Cn) of nested sequences of subspaces in Cn. Their geome-
try and (equivariant) topology have been studied extensively since the
late 1980s [6, 8, 7]. This subject lies at the intersection of, and makes
connections between, many research areas such as: geometric represen-
tation theory [26, 14], combinatorics [12, 23], and algebraic geometry
and topology [5, 20]. Hessenberg varieties also arise in the study of the
quantum cohomology of the flag variety [22, 25].

The (equivariant) cohomology rings of Hessenberg varieties has been
actively studied in recent years. For instance, Brion and Carrell showed
an isomorphism between the equivariant cohomology ring of a regular
nilpotent Hessenberg variety with the affine coordinate ring of a certain
affine curve [5]. In the special case of Peterson varieties Petn (in type A),
the second author and Tymoczko provided an explicit set of generators
forH∗

S(Petn) and also proved a Schubert-calculus-type “Monk formula”,
thus giving a presentation of H∗

S(Petn) via generators and relations [16].
Using this Monk formula, Bayegan and the second author derived a
“Giambelli formula” [3] for H∗

S(Petn) which then yields a simplification
of the original presentation given in [16]. Drellich has generalized the
results in [16] and [3] to Peterson varieties in all Lie types [10]. In
another direction, descriptions of the equivariant cohomology rings of
Springer varieties and regular nilpotent Hessenberg varieties in type
A have been studied by Dewitt and the second author [9], the third
author [18], the first and third authors [2], and Bayegan and the second
author [4]. However, it has been an open question to give a general and
systematic description of the equivariant cohomology rings of all regular
nilpotent Hessenberg varieties [19, Introduction, page 2], to which our
results provide an answer (in Lie type A).

Finally, we mention that, as a stepping stone to our main result,
we can additionally prove a fact (cf. Section 4) which seems to be
well-known by experts but for which we did not find an explicit proof
in the literature: namely, that the natural restriction homomorphism
H∗

T (F`ags(Cn))→ H∗
S(Hess(h)) is surjective when Hess(h) is a regular

nilpotent Hessenberg variety (of type A).
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2 Background on Hessenberg varieties

In this section we briefly recall the terminology required to understand
the statements of our main results; in particular we recall the definition
of a regular nilpotent Hessenberg variety, denoted Hess(h), along with
a natural S1-action on it. In this manuscript we only discuss the Lie
type A case (i.e. the GL(n,C) case). We also record some observations
regarding the S1-fixed points of Hess(h), which will be important in
later sections.

By the flag variety we mean the homogeneous space GL(n,C)/B
which may also be identified with

F`ags(Cn) := {V• = ({0} ⊆ V1 ⊆ · · ·Vn−1 ⊆ Vn = Cn) | dimC(Vi) = i}.

A Hessenberg function is a function h : {1, 2, . . . , n} → {1, 2, . . . , n}
satisfying h(i) ≥ i for all 1 ≤ i ≤ n and h(i + 1) ≥ h(i) for all 1 ≤
i < n. We frequently denote a Hessenberg function by listing its values
in sequence, h = (h(1), h(2), . . . , h(n) = n). Let N : Cn → Cn be a
linear operator. The Hessenberg variety (associated to N and h)
Hess(N,h) is defined as the following subvariety of F`ags(Cn):

(1) Hess(N,h) := {V• ∈ F`ags(Cn) | NVi ⊆ Vh(i) for all i = 1, . . . , n}

⊆ F`ags(Cn).

If N is nilpotent, we say Hess(N,h) is a nilpotent Hessenberg vari-
ety, and if N is a principal nilpotent operator then Hess(N,h) is called
a regular nilpotent Hessenberg variety. In this manuscript we re-
strict to the regular nilpotent case, and as such we denote Hess(N,h)
simply as Hess(h) where N is understood to be the standard principal
nilpotent operator, i.e. N has one Jordan block with eigenvalue 0.

Next recall that the following standard torus

(2) T =



g1

g2
. . .

gn

 | gi ∈ C∗ (i = 1, 2, . . . n)


acts on the flag variety Flags(Cn) by left multiplication. However, this
T -action does not preserve the subvariety Hess(h) in general. This prob-
lem can be rectified by considering instead the action of the following
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circle subgroup S of T , which does preserve Hess(h) ([17, Lemma 5.1]):

(3) S :=



g

g2

. . .

gn

 | g ∈ C∗

 .

(Indeed it can be checked that S−1NS = gN which implies that S
preserves Hess(h).) Recall that the T -fixed points Flags(Cn)T of the
flag variety Flags(Cn) can be identified with the permutation group
Sn on n letters. More concretely, it is straightforward to see that the
T -fixed points are the set

{(〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), ew(2), ..., ew(n)〉 = Cn) | w ∈ Sn}

where e1, e2, . . . , en denote the standard basis of Cn.

It is known that for a regular nilpotent Hessenberg variety Hess(h)
we have

Hess(h)S = Hess(h) ∩ (Flags(Cn))T

so we may view Hess(h)S as a subset of Sn.

3 Statement of the main theorem

In this section we state the main result of this paper. We first recall
some notation and terminology. Let Ei denote the subbundle of the
trivial vector bundle Flags(Cn) × Cn over Flags(Cn) whose fiber at
a flag V• is just Vi. We denote the T -equivariant first Chern class of
the line bundle Ei/Ei−1 by τ̃i ∈ H2

T (Flags(Cn)). Let Ci denote the
one dimensional representation of T through the map T → C∗ given by
diag(g1, . . . , gn) 7→ gi. In addition we denote the first Chern class of the
line bundle ET×TCi over BT by ti ∈ H2(BT ). It is well-known that the
t1, . . . , tn generate H∗(BT ) as a ring and are algebraically independent,
so we may identify H∗(BT ) with the polynomial ring Q[t1, . . . , tn] as
rings. Furthermore, it is known that H∗

T (Flags(Cn)) is generated as
a ring by the elements τ̃1, . . . , τ̃n, t1, . . . , tn. Indeed, by sending xi to
τ̃i and the ti to ti we obtain that H∗

T (Flags(Cn)) is isomorphic to the
quotient

Q[x1, . . . , xn, t1, . . . , tn]/ (ei(x1, . . . , xn)− ei(t1, . . . , tn) | 1 ≤ i ≤ n).
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Here the ei denote the degree-i elementary symmetric polynomials in
the relevant variables. In particular, since the odd cohomology of the
flag variety Flags(Cn) vanishes, we additionally obtain the following:

(4) H∗(Flags(Cn)) ∼= Q[x1, . . . , xn]/(ei(x1, . . . , xn) | 1 ≤ i ≤ n).

As mentioned in Section 2, in this manuscript we focus on a particular
circle subgroup S of the usual maximal torus T . For this subgroup S,
we denote the first Chern class of the line bundle ES ×S C over BS by
t ∈ H2(BS), where by C we mean the standard one-dimensional repre-
sentation of S through the map S → C∗ given by diag(g, g2, . . . , gn) 7→
g. Analogous to the identification H∗(BT ) ∼= Q[t1, . . . , tn], we may also
identify H∗(BS) with Q[t] as rings.

Consider the restricion homomorphism

(5) H∗
T (F`ags(Cn))→ H∗

S(Hess(h)).

Let τi denote the image of τ̃i under (5). We next analyze some algebraic
relations satisfied by the τi. For this purpose, we now introduce some
polynomials fi,j = fi,j(x1, . . . , xn, t) ∈ Q[x1, . . . , xn, t].

First we define

(6) pi :=
i∑

k=1

(xk − kt) (1 ≤ i ≤ n).

For convenience we also set p0 := 0 by definition. Let (i, j) be a pair of
natural numbers satisfying n ≥ i ≥ j ≥ 1. These polynomials should be
visualized as being associated to the (i, j)-th spot in an n × n matrix.
Note that by assumption on the indices, we only define the fi,j for entries
in the lower-triangular part of the matrix, i.e. the part at or below the
diagonal. The definition of the fi,j is inductive, beginning with the case
when i = j, i.e. the two indices are equal. In this case we make the
following definition:

(7) fj,j := pj (1 ≤ j ≤ n).

Now we proceed inductively for the rest of the fi,j as follows: for (i, j)
with n ≥ i > j ≥ 1 we define:

(8) fi,j := fi−1,j−1 +
(
xj − xi − t

)
fi−1,j .
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Again for convenience we define f∗,0 := 0 for any ∗. Informally, we may
visualize each fi,j as being associated to the lower-triangular (i, j)-th
entry in an n× n matrix, as follows:

(9)


f1,1 0 · · · · · · 0
f2,1 f2,2 0 · · ·

f3,1 f3,2 f3,3
. . .

...
fn,1 fn,2 · · · fn,n


To make the discussion more concrete, we present an explicit exam-

ple.

Example 1. Suppose n = 4. Then the fi,j have the following form.
fi,i = pi (1 ≤ i ≤ 4)
f2,1 = (x1 − x2 − t)p1
f3,2 = (x1 − x2 − t)p1 + (x2 − x3 − t)p2
f4,3 = (x1 − x2 − t)p1 + (x2 − x3 − t)p2 + (x3 − x4 − t)p3
f3,1 = (x1 − x3 − t)(x1 − x2 − t)p1
f4,2 = (x1−x3− t)(x1−x2− t)p1 + (x2−x4− t){(x1−x2− t)p1 + (x2−
x3 − t)p2}
f4,1 = (x1 − x4 − t)(x1 − x3 − t)(x1 − x2 − t)p1

For general n, the polynomials fi,j for each (i, j)-th entry in the
matrix (9) above can also be expressed in a closed formula in terms of
certain polynomials ∆i,j for i ≥ j which are determined inductively,
starting on the main diagonal. As for the fi,j , we think of ∆i,j for
i ≥ j as being associated to the (i, j)-th box in an n × n matrix. In
what follows, for 0 < k ≤ n− 1, we refer to the lower-triangular matrix
entries in the (i, j)-th spots where i−j = k as the k-th lower diagonal.
(Equivalently, the k-th lower diagonal is the “usual” diagonal of the
lower-left (n− k)× (n− k) submatrix.) The usual diagonal is the 0-th
lower diagonal in this terminology. We now define the ∆i,j as follows.

1. First place the linear polynomial xi− it in the i-th entry along the
0-th lower (i.e. main) diagonal, so ∆i,i := xi − it.

2. Suppose that ∆i,j for the (k − 1)-st lower diagonal have already
been defined. Let (i, j) be on the k-th lower diagonal, so i−j = k.
Define

∆i,j :=

(
j∑

`=1

∆i−j+`−1,`

)
(xj − xi − t).
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In words, this means the following. Suppose k = i − j > 0. Then ∆i,j

is the product of (xj − xi − t) with the sum of the entries in the boxes
which are in the “diagonal immediately above the (i, j) box” (i.e. the
boxes which are in the (k−1)-st lower diagonal), but we omit any boxes
to the right of the (i, j) box (i.e. in columns j + 1 or higher). Finally,
the polynomial fi,j is obtained by taking the sum of the entries in the
(i, j)-th box and any boxes “to its left” in the same lower diagonal.
More precisely,

(10) fi,j =

j∑
k=1

∆i−j+k,k.

We are now ready to state our main result.

Theorem 3.1. Let n be a positive integer and h : {1, 2, . . . , n} →
{1, 2, . . . , n} a Hessenberg function. Let Hess(h) ⊂ F`ags(Cn) denote
the corresponding regular nilpotent Hessenberg variety equipped with the
circle S-action described above. Then the restriction map

H∗
T (F`ags(Cn))→ H∗

S(Hess(h))

is surjective. Moreover, there is an isomorphism of Q[t]-algebras

H∗
S(Hess(h)) ∼= Q[x1, . . . , xn, t]/I(h)

sending xi to τi and t to t and we identify H∗(BS) = Q[t]. Here the
ideal I(h) is defined by

(11) I(h) := (fh(j),j | 1 ≤ j ≤ n).

We can also describe the ideal I(h) defined in (11) as follows. Any
Hessenberg function h : {1, 2, . . . , n} → {1, 2, . . . , n} determines a sub-
space of the vector space M(n×n,C) of matrices as follows: an (i, j)-th
entry is required to be 0 if i > h(j). If we represent a Hessenberg func-
tion h by listing its values (h(1), h(2), · · · , h(n)), then the Hessenberg
subspace can be described in words as follows: the first column (start-
ing from the left) is allowed h(1) non-zero entries (starting from the
top), the second column is allowed h(2) non-zero entries, et cetera. For
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example, if h = (3, 3, 4, 5, 7, 7, 7) then the Hessenberg subspace is



? ? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ? ?
0 0 ? ? ? ? ?
0 0 0 ? ? ? ?
0 0 0 0 ? ? ?
0 0 0 0 ? ? ?




⊆M(7× 7,C).

Then, using the association of the polynomials fi,j with the (i, j)-th
entry of the matrix (9), the ideal I(h) can be described as being “gen-
erated by the fi,j in the boxes at the bottom of each column in the
Hessenberg space”. For instance, in the h = (3, 3, 4, 5, 7, 7, 7) example
above, the generators are {f3,1, f3,2, f4,3, f5,4, f7,5, f7,6, f7,7}.

Our main result generalizes previous known results.

Remark 1. Consider the special case h = (2, 3, . . . , n, n). In this case
the corresponding regular nilpotent Hessenberg variety has been well-
studied and it is called a Peterson variety Petn (of type A). Our result
above is a generalization of the result in [11] which gives a presentation
of H∗

S(Petn). Indeed, for 1 ≤ j ≤ n−1, we obtain from (8) and (6) that

fj+1,j = fj,j−1 + (xj − xj+1 − t)fj,j
= fj,j−1 + (−pj−1 + 2pj − pj+1 − 2t)pj

and since fn,n = pn we have

H∗
S(Petn) ∼= Q[x1, . . . , xn, t]

/
(
fj,j−1 + (−pj−1 + 2pj − pj+1 − 2t)pj , pn | 1 ≤ j ≤ n− 1

)
= Q[x1, . . . , xn, t]

/
(
(−pj−1 + 2pj − pj+1 − 2t)pj , pn | 1 ≤ j ≤ n− 1

)
∼= Q[p1, . . . , pn−1, t]

/
(
(−pj−1 + 2pj − pj+1 − 2t)pj | 1 ≤ j ≤ n− 1

)
which agrees with [11]. (Note that we take by convention p0 = pn = 0.)

The main theorem above also immediately yields a computation of
the ordinary cohomology ring. Indeed, since the odd degree cohomology
groups of Hess(h) vanish [29], by setting t = 0 we obtain the ordinary



Cohomology rings of Hessenberg varieties 59

cohomology. Let f̌i,j := fi,j(x, t = 0) denote the polynomials in the
variables xi obtained by setting t = 0. A computation then shows that

f̌i,j =

j∑
k=1

xk

i∏
`=j+1

(xk − x`).

(For the case i = j we take by convention
∏i

`=j+1(xk − x`) = 1.) We
have the following.

Corollary 3.2. Let the notation be as above. There is a ring isomor-
phism

H∗(Hess(h)) ∼= Q[x1, . . . , xn]/Ǐ(h)

where Ǐ(h) :=
(
f̌h(j),j | 1 ≤ j ≤ n

)
.

Remark 2. Consider the special case h = (n, n, . . . , n). In this case
the condition in (1) is vacuous and the associated regular nilpotent
Hessenberg variety is the full flag variety F`ags(Cn). In this case we can
explicitly relate the generators f̌h(j)=n,j of our ideal Ǐ(h) = Ǐ(n, n, . . . , n)
with the power sums pr(x) = pr(x1, . . . , xn) :=

∑n
k=1 x

r
k, thus relating

our presentation with the usual Borel presentation as in (4), see e.g.
[13]. More explicitly, for r be an integer, 1 ≤ r ≤ n, define

qr(x) = qr(x1, . . . , xn) :=

n+1−r∑
k=1

xk

n∏
`=n+2−r

(xk − x`).

Note that by definition qr(x) = f̌n,n+1−r so these are the generators of
Ǐ(n, n, . . . , n). The polynomials qr(x) and the power sums pr(x) can
then be shown to satisfy the relations

(12) qr(x) =

r−1∑
i=0

(−1)iei(xn+2−r, . . . , xn)pr−i(x).

Remark 3. In the usual Borel presentation of H∗(F`ags(Cn)), the
ideal I of relations is taken to be generated by the elementary sym-
metric polynomials. The power sums pr generate this ideal I when we
consider the cohomology with Q coefficients, but this is not true with
Z coefficients. Thus our main Theorem 3.1 does not hold with Z coeffi-
cients in the case when h = (n, n, . . . , n), suggesting that there is some
subtlety in the relationship between the choice of coefficients and the
choice of generators of the ideal I(h).
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4 Sketch of the proof of the main theorem

We now sketch the outline of the proof of the main result (Theorem 3.1)
above. As a first step, we show that the elements τi satisfy the relations
fh(j),j = fh(j),j(τ1, . . . , τn, t) = 0. The main technique of this part of the
proof is (equivariant) localization, i.e. the injection

(13) H∗
S(Hess(h))→ H∗

S(Hess(h)S).

Specifically, we show that the restriction fh(j),j(w) of each fh(j),j to an

S-fixed point w ∈ Hess(h)S is equal to 0; by the injectivity of (13) this
then implies that fh(j),j = 0 as desired. This part of the argument
is rather long and requires a technical inductive argument based on a
particular choice of total ordering on Hess(h)S which refines a certain
natural partial order on Hessenberg functions. Once we show fh(j),j = 0
for all j, we obtain a well-defined ring homomorphism which sends xi
to τi and t to t:

(14) ϕh : Q[x1, . . . , xn, t]/(fh(j),j | 1 ≤ j ≤ n)→ H∗
S(Hess(h)).

We then show that the two sides of (14) have identical Hilbert series.
This part of the argument is rather straightforward, following the tech-
niques used in e.g. [11].

The next key step in our proof of Theorem 3.1 relies on the following
two key ideas: firstly, we use our knowledge of the special case where
the Hessenberg function h is h = (n, n, . . . , n), for which the associated
regular nilpotent Hessenberg variety is the full flag variety F`ags(Cn),
and secondly, we consider localizations of the rings in question with
respect to R := Q[t]\{0}. For the following, for h = (n, n, . . . , n) we let
H := Hess(h = (n, n, . . . , n)) = F`ags(Cn) denote the full flag variety
and let I denote the associated ideal I(n, n, . . . , n). In this case we
know that the map ϕ := ϕ(n,n,...,n) is surjective since the Chern classes
τi are known to generate the cohomology ring of F`ags(Cn). Since the
Hilbert series of both sides are identical, we then know that ϕ is an
isomorphism.

The following commutative diagram is crucial for the remainder of
the argument.

R−1
(
Q[x1, . . . , xn, t]/I

) R−1ϕ−−−−−→
∼=

R−1H∗
S(H) −−−−−→

∼=
R−1H∗

S(H
S)ysurj

y ysurj

R−1
(
Q[x1, . . . , xn, t]/I(h)

) R−1ϕh−−−−−→ R−1H∗
S(Hess(h)) −−−−−→

∼=
R−1H∗

S(Hess(h)S).



Cohomology rings of Hessenberg varieties 61

The horizontal arrows in the right-hand square are isomorphisms by
the localization theorem. Since ϕ is an isomorphism, so is R−1ϕ. The
rightmost and leftmost vertical arrows are easily seen to be surjective,
implying that R−1ϕh is also surjective. A comparison of Hilbert series
shows that R−1ϕh is an isomorphism. Finally, to complete the proof we
consider the commutative diagram

Q[x1, . . . , xn, t]/I(h)
ϕh−−−−→ H∗

S(Hess(h))yinj

yinj

R−1Q[x1, . . . , xn, t]/I(h)
R−1ϕh−−−−→∼=

R−1H∗
S(Hess(h))

for which it is straightforward to see that the vertical arrows are injec-
tions. From this it follows that ϕh is an injection, and once again a
comparison of Hilbert series shows that ϕh is in fact an isomorphism.

5 Open questions

We outline a sample of possible directions for future work.

• In [24], Mbirika and Tymoczko suggest a possible presentation
of the cohomology rings of regular nilpotent Hessenberg varieties.
Using our presentation, we can show that the Mbirika-Tymoczko
ring is not isomorphic to H∗(Hess(h)) in the special case of Pe-
terson varieties for n − 1 ≥ 2, i.e. when h(i) = i + 1, 1 ≤ i < n
and n ≥ 3. (However, they do have the same Betti numbers.) In
the case n = 4, we have also checked explicitly for the Hessen-
berg functions h = (2, 4, 4, 4), h = (3, 3, 4, 4), and h = (3, 4, 4, 4)
that the relevant rings are not isomorphic. It would be of inter-
est to understand the relationship between the two rings in some
generality.

• In [15], the last three authors give a presentation of the (equivari-
ant) cohomology rings of Peterson varieties for general Lie type
in a pleasant uniform way, using entries in the Cartan matrix. It
would be interesting to give a similar uniform description of the
cohomology rings of regular nilpotent Hessenberg varieties for all
Lie types.
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• In the case of the Peterson variety (in type A), a basis for the
S-equivariant cohomology ring was found by the second author
and Tymoczko in [16]. In the general regular nilpotent case, and
following ideas of the second author and Tymoczko [17], it would
be of interest to construct similar additive bases for H∗

S(Hess(h)).
Additive bases with suitable geometric or combinatorial proper-
ties could lead to an interesting ‘Schubert calculus’ on regular
nilpotent Hessenberg varieties.

• Fix a Hessenberg function h and let S : Cn → Cn be a reg-
ular semisimple linear operator, i.e. a diagonalizable operator
with distinct eigenvalues. There is a natural Weyl group action
on the cohomology ring H∗(Hess(S, h)) of the regular semisim-
ple Hessenberg variety corresponding to h (cf. for instance [30,
p. 381] and also [28]). Let H∗(Hess(S, h))W denote the ring of
W -invariants where W denotes the Weyl group. It turns out that
there exists a surjective ring homomorphism H∗(Hess(N,h)) →
H∗(Hess(S, h))W which is an isomorphism in the special case of
the Peterson variety. (Historically this line of thought goes back
to Klyachko’s 1985 paper [21].) In an ongoing project, we are
investigating properties of this ring homomorphism for general
Hessenberg functions h.
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