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Moduli spaces and modular operads

Jeffrey Giansiracusa 1

Abstract

We describe a generalised ribbon graph decomposition for a broad
class of moduli spaces of geometric structures on surfaces (with
nonempty boundary), including moduli of spin surfaces, r-spin
surfaces, surfaces with a principle G-bundle, surfaces with maps
to a background space, surfaces with Higgs bundle, etc.
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1 Introduction

This paper is an expansion of some ideas that I first talked about in
2012 in the MIMS conference on Operads and Configuration Spaces.
Here I shall give a more detailed account, though still not a complete
one, of a certain theorem about modular envelopes. The full details will
appear in a future paper; in this note I will try to be expository and
focus on illuminating the central ideas without being overly concerned
by technical details that might otherwise obscure some of the conceptual
clarity of the arguments.

Fix a class ψ of geometric structures on surfaces. For example, one
could take orientations, principal G-bundles, or spin structures, etc.
Associated to any surface Σ is the space ψ(Σ) of all such structures on
that surface. Taking the homotopy quotient by the diffeomorphism group
yields a homotopy theoretic moduli space of surfaces with ψ-structure.
If we consider surfaces with some marked intervals along the boundary,
and ψ-structures that have a fixed value on each marked interval, then
we can glue the intervals together and the result is a modular operad.
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denoted Mψ. (If, instead of a single fixed value on the intervals, we
allow one of several fixed valued then the result is instead a coloured
modular operad). These moduli spaces are the objects we wish to study.
The idea of this work is to decompose them, in a sense, into moduli
spaces of discs with ψ-structure. The modular operad Mψ contains a
sub-cyclic operad Dψ of moduli spaces of discs with ψ-structure. Our
main result is that Mψ is freely generated (in a homotopical sense) as a
modular operad over this sub-cyclic operad. I.e., the derived modular
envelope of Dψ is weakly equivalent to Mψ.

This result was inspired by the work of Costello. As part of his
groundbreaking work in the homotopy theory of open-closed topological
field theories [9], he gave a new perspective on the very important idea
of describing the moduli space of Riemann surfaces with ribbon graphs
in [8, 10]. He proved that the derived (i.e., homotopy invariant) modular
envelope of the associative operad gives a model for the modular operad
of moduli spaces of Riemann surfaces with open-string type gluing for
the compositions. A point in this modular envelope can be described as
a graph equipped with lengths on all of its edges and a cyclic order of
the edges incident at each vertex — i.e., a metric ribbon graph. Thus
the moduli space of ribbon graphs is equivalent to the moduli space of
Riemann surfaces.

Costello’s proof used geometry and analysis on a certain partial
compactification of the moduli space of Riemann surfaces. Thus it
appears his argument is not suited to more homotopy theoretic contexts
such as the one considered in this paper. In [13], I gave a different proof
of Costello’s modular envelope theorem. This proof instead rested on
the well-known contractibility of the arc complex of a surface. This new
argument lead to an adaptation to dimension 3: the derived modular
envelope of the framed little 2-discs is equivalent to the modular operad
of moduli spaces of 3-dimensional handlebodies.

Here we instead focus of refining and generalising the argument of
[13] in dimension 2. When the structures being considered are principal
G-bundles then we expect this result will lead to a G-equivariant version
of Costello’s open-closed TFT theorem.

2 Operads

A cyclic operad in C is a functor P from the category of finite sets and
bijections to C together with composition maps
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P(I)⊗ P (J)
i◦j→ P(I t J r {i, j}),

for i ∈ I and j ∈ J , satisfying an associativity condition and natural in
(I, i) and (J, j). One can think of P as a collection of abstract “electrical
circuit components,” where P(I) as a set/space of components with
terminals given by the set I. The composition maps correspond to wiring
terminals together to produce new components; terminals can only be
glued in pairs (no trivalent connections) and in a cyclic operad two
components can only be glued together in at most one place. Allowing
multiple gluings leads to the following definition.

A modular operad in C is a cyclic operad Q together with natural

self-composition maps Q(I)
◦i,j→ Q(I r {i, j}) that commute with the

cyclic operad composition maps and with each other.

Example 2.1. 1. The commutative modular operad is the constant
functor sending each finite set to a point.

2. The associative cyclic operad Assoc sends I to the set of cyclic
orders on I.

We will need a slight generalisation in which there are different types
of terminals and two terminals can only be connected if they are of the
same type. The types are called colours. Fix a set Λ, which we will
call the set of colours. A Λ-coloured set I consists of a finite set with
a map to Λ. A morphism I → I ′ of coloured sets is a bijection that
respects the colours. A coloured cyclic operad P is a functor from the
category of coloured sets to C together with a collection of composition
maps i◦j as before, but now only defined when i and j have the same
colour. A coloured modular operad is defined analogously, where the
self-composition maps ◦ij also only defined when i and j have the same
colour.

2.1 Homotopy theory of cyclic and modular operads

Berger and Batanin [7] have recently constructed fully satisfactory
Quillen model category structures on cyclic and modular operads. When
talking about derived constructions such as the derived modular envelope,
one could work with the model category structures. However, we take a
more pragmatic approach, since the modular envelope is the only functor
we ever have to derive, and our construction of the derived functor will
be manifestly homotopy invariant due to the homotopy invariance of
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homotopy colimits. We need only the following definition. A morphism
P → P ′ of cyclic or modular operads in spaces is a weak equivalence if
each map of spaces P(I)→ P ′(I) is a weak equivalence.

3 Category theory and homotopy theory

3.1 The nerve of a category

Let C be a category, which we assume is small, meaning that the objects
form a set rather than a class. (E.g., The category of all sets is not
small, but the category of all subsets of a fixed big set is small.) We
can associate a simplicial set (and hence a space) with C via the nerve
construction.

The nerve of C , denoted N(C ) is the simplicial set whose 0-simplices
are the objects of C , 1-simplices are the morphisms of C , 2-simplices
are the 2-simplex shaped diagrams in C

X0

X1 X2,
��

f
��

g◦f

//
g

and so on. In general, the n-simplices N(C )n are the set of composable
n-tuples of morphisms,

X0
f1→ X1

f2→ · · · fn→ Xn.

We will write BC for the geometric realisation of the nerve.
It is easy to see that a functor F : C → D induces a map of nerves

N•C → N•D . A natural transformation F → F ′ induces a homotopy
between the corresponding maps. From this it follows that an adjoint
pair (F,G) induces a homotopy equivalence of nerves.

If a category C has an initial object u then there is a natural
transformation form the constant functor with value u to the identity,
and so the nerve of C is contractible. Likewise, existence of a final object
implies contractibility of the nerve.

3.2 The fundamental group of the nerve of a category

While computing the higher homotopy groups of a space is usually very
difficult, there is a convenient recipe for computing the fundamental
group of the nerve of a category.
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Given C , let C [C−1] denote the category formed by adjoining inverses
to all of the arrows in C (see [6, §1.1]) This localisation is clearly a
groupoid (all morphisms are invertible). If two objects of a groupoid
lie in the same connected component then their automorphism groups
are isomorphic (by an isomorphism that is unique up to conjugation).
Given an object x of C , the fundamental group of NC based at x is
canonically isomorphic to the automorphism group of x in the groupoid
C [C−1].

3.3 Strict 2-categories

A strict 2-category is a category enriched in Cat . I.e., it consists of a
class of objects ObjC , a category HomC (a, b) for each pair of objects,
and composition functors

HomC (a, b)×HomC (b, c)→ HomC (a, c)

that are strictly associative and for which a unit exists in HomC (a, a).
The objects of the hom categories are called 1-morphisms and the
morphisms of the hom categories are called 2-morphisms.

Example 3.1. Let T op2 denote the strict 2-category whose objects are
spaces, and for which Hom(X,Y ) is the groupoid of maps and homotopy
classes of homotopies. For example, the groupoid of morphisms from
a point to a circle is equivalent to the group Z (i.e., one object and
automorphism group Z).

Example 3.2. Let Cat2 denote the strict 2-category whose objects are
small categories and whose hom categories are the categories of functors
and natural transformations.

Example 3.3. Since a set can be considered as a category with no
non-identity morphism, an ordinary category can be considered as a
2-category in which there are no non-identity 2-morphisms.

Remark 3.4. In this paper, all strict 2-categories that arise will have
the property that all 2-morphisms are in fact isomorphisms. Such a
2-category is sometimes called a (2,1)-category. Strict 2-categories are a
restricted class of 2-categories. More generally, one often wants to work
with weak or lax 2-categories, where the associativity and unit conditions
only hold up to natural transformations (which must then satisfy some
conditions). We will have no need of these more sophisticated notions in
this paper.
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A strict 2-functor between strict 2-categories F : C → D is a map
F : ObjC → D together with a functor Hom(a, b) → Hom(F (a), F (b))
for each pair of objects such that these functors are strictly compatible
with the composition functors. We will usually abbreviate and call this
a functor.

We will leave it as an exercise to spell out precisely what a natural
transformation between strict 2-functors is.

A strict 2-category C has a nerve N(C ) that is a bisimplicial set.
It is constructed as follows. First one replaces all the hom categories
with their nerves to obtain a simplicial category. Then the nerve of this
simplicial category yields a bisimplicial set that is the nerve of C . As
in the case of 1-categories, a strict 2-functor induces a map of nerves,
and a natural transformation induces a homotopy. In particular, observe
that if F : C → Cat2 is a strict 2-functor then taking the realisation of
the nerve pointwise yields a strict 2-functor C → T op2.

3.4 Over categories and Quillen’s Theorems A and B

Let F : A → B be a functor. Given an object b ∈ B, one can define a
category of objects in A over b. This is denoted F ↓ b (or B ↓ b when
F is the identity functor) and is called the over category of F based
at b (some people instead call it the comma category). Its objects are
pairs consisting of an object a ∈ A and a morphism g : F (a) → b in

B. A morphism from F (a)
g→ b to F (a′)

g′→ b consists of a morphism
h : a→ a′ in A such that the diagram

F (a) F (a′)

b
��g

//
F (h)

�� g′

in B commutes. Observe that a morphism f : b → b′ in B induces a
functor f∗ : (F ↓ b) → (F ↓ b′). There is also a canonical projection
functor (F ↓ b)→ A given by forgetting the morphism to b.

Over categories can be thought of as a category-theoretic analogue
of homotopy fibres. In fact, Quillen’s Theorems A and B are instances
of this analogy. If the homotopy fibre of a map is contractible then the
map is a weak equivalence.

Theorem 3.1 (Quillen’s Theorem A). Let F : A → B be a functor
and suppose that for each object b of B the nerve of the over category
F ↓ b is contractible. Then F induces a weak equivalence of nerves.
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This is a special case of a more general theorem that allows one to
identify the homotopy fibre of a map of nerves induced by a functor.

Theorem 3.2 (Quillen’s Theorem B). Let F : A → B be a functor and
suppose for each morphism f : b → b′ in B the corresponding functor
f∗ : (F ↓ b) → (F ↓ b′) induces a weak equivalence of nerves. Then
(F ↓ b)→ A → B is a homotopy fibre sequence.

The construction of over categories and Quillen’s Theorems A and B
have extensions to strict 2-categories. See [1] and [2] for details. Given
a strict 2-functor F : A → B and an object x ∈ ObjB, there is an over
2-category (F ↓ x). It objects are pairs (a ∈ ObjA, f : F (a) → x). A

morphism from F (a1)
f1→ x to F (a2)

f2→ x consists of a morphism g :
a1 → a2 in A and a 2-morphism in B from f1 to f2 ◦F (g). A 1-morphism
x→ x′ in B induces a strict translation 2-functor (F ↓ x)→ (F ↓ x′).

Theorem 3.3 (Theorem B for 2-categories,[2]). If all of the translation
functors induce homotopy equivalences then

N(F ↓ x)→ N(A)→ N(B)

is a homotopy fibre sequence for any object x.

3.5 Left Kan extension

Let A ,B,C be categories. Given a functor f : A → B, precomposition
with f sends a functor B → C to a functor A → C . This defines a
functor

f∗ : Fun(B,C )→ Fun(A ,C ).

It turns out that this f∗ admits a left adjoint f!, which is called the left
Kan extension.

3.6 Left Kan extensions and homotopy left Kan exten-
sions

Let A , B and C be categories with C cocomplete. Consider functors

A C

B.

//F

��
G
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Recall that the left Kan extension of F along G is a functor

G!F : B → C

defined on objects by the colimit

G!F (b) = colim
(G↓b)

F ◦ jb,

where (G ↓ b) is the comma category of objects in C over b and jb : (G ↓
b)→ C forgets the morphism to b (to simplify the notation we will often
omit writing jb). Left Kan extensions possess a universal property: the
functor G!F comes with a natural transformation

F ⇒ G!F ◦ P

that is initial among natural transformations from F to functors factoring
through P .

If C is a Quillen model category (such as topological spaces or chain
complexes) then there is a homotopy invariant (or, derived) version
known as the homotopy left Kan extension LG!F ; it is given by the
formula

LG!F (b) = hocolim
(G↓b)

F ◦ jb.

This construction is homotopy invariant in the following sense: a natural
transformation F → F ′ that is a pointwise homotopy equivalence in-
duces a natural transformation LG!F → LG!F

′ that is also a pointwise
homotopy equivalence. In fact, this is the left derived functor of left Kan
extension with respect to the projective model structure on the functor
categories.

There is a homotopy coherent version of the universal property for
homotopy left Kan extensions. See [5, Proposition 6.1] for the details.

Note that there is a “Fubini theorem” for both ordinary and homotopy
colimits,

colim
A

F ∼= colim
B

G!F and hocolim
A

F
'→ hocolim

B
LG!F.

3.7 Homotopy colimits, the Grothendieck construction
and Thomason’s Theorem

At several points we shall be taking homotopy colimits of diagrams in
T op obtained from diagrams in Cat by applying the classifying space
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functor B (i.e. geometric realisation of the nerve) pointwise. Here we
briefly recall a couple of useful tools for this situation.

Given a functor F : C → Cat , the Grothendieck construction
on F , denoted

∫
C F is the category in which objects are pairs (x ∈

C , y ∈ F (x)), and a morphism (x, y) → (x′, y′) consists of an arrow
f ∈ homC (x, x′) and an arrow g ∈ homF (x′)(f∗y, y

′). This construction
satisfies an associativity condition: if F : C → Cat and G :

∫
C F → Cat

are functors then sending c ∈ ObjC to
∫
F (c)G defines a functor

∫
F G :

C → Cat and there is a natural equivalence of categories∫
∫

C F
G '

∫
C

(∫
F
G

)
.

Thomason’s Theorem [11, Theorem 1.2] asserts that there is a natural
homotopy equivalence,

hocolim
C

BF
'−→ B

(∫
C
F

)
.

As a special case, if C is actually a group G (a category with a single
object ∗ and all arrows invertible), then BF (∗) is a space with a G
action, and B(

∫
G F ) is homotopy equivalent to the homotopy quotient

(BF (∗))hG.

If C = ∆op
semi then F is a semi-simplicial category, BF is a semi-

simplicial space, and B(
∫

∆op
semi

F ) ' hocolimBF is equivalent to the

geometric realisation of this semi-simplicial space.

There is a 2-categorical version of the above. First of all, given a
strict 2-category C and a strict 2-functor F : C → Cat2 there is a
Grothendieck construction that produces a strict 2-category

∫
C F over

C . An object of
∫
C F is a pair (x ∈ ObjC , y ∈ ObjF (x)). A 1-morphism

(x, y) → (x′, y′) is a pair (f1, f2). where f1 : x → x′ is a 1-morphism
in C and f2 : F (f1)(y) → y′ is a morphism in F (x′). A 2-morphism
(f1, f2) → (g1, g2) consists of a 2-morphism α : f1 ⇒ g1 in C (which
gives a natural transformation α∗ from F (f1) to F (g1)) such that the
diagram (in F (x′))

F (f1)(y) y′

F (g1)(y)
��

α∗

//
f2

??

g2
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commutes. This 2-categorical Grothendieck construction satisfies the ob-
vious analogue of the associativity condition satisfied by the 1-categorical
construction. Also, a 2-functor C → T op2 has a homotopy colimit, and
a 2-categorical version of Thomason’s theorem holds [2]: if F : C → Cat2

is a 2-functor then

hocolim
C

BF ' B
∫

C
F.

We again refer the reader to [2] and the references there for further
details.

3.8 Graphs and Costello’s graph category

For us, a graph Γ will consist of a set V of vertices, a set H of half-edges,
an incidence map in : H → V , and an involution ι : H → H, called
the edge flip, that specifies how the half-edges are glued together. The
free orbits of ι are the edges of the graph, denoted E(Γ), so each edge
consists of a pair of half-edges. The fixed points are called the legs
and are denoted L(Γ). The incidence map sends each half-edge to the
vertex that it meets. A graph Γ has a topological realisation |Γ| as a
1-dimensional CW complex with a 0-cell for each vertex and a 1-cell
for each edge and leg. A graph is a tree if its topological realisation is
contractible, and a forest if it is a union of trees.

A corolla is a graph that consists of a single vertex and a number of
legs incident at it. If a graph is a disjoint union of corollas then the edge
flip map is the identity and so giving a union of corollas is equivalent to
giving a triple (V,H, in : V → H). Associated with a graph Γ are two
disjoint unions of corollas. The first is given by forgetting the edge flip
and is denoted ν(Γ) (cutting each edge into a pair of legs). The second
is denoted π0Γ; it has one vertex for each connected component of the
graph and one leg for each leg of the original graph Γ.

Costello [8] introduced a category Graphs in which the objects are
disjoint unions of corollas and morphisms are given by graphs. In intuitive
terms, we think of a morphism as assembling a bunch of corollas into
a graph Γ followed by contracting all edges so that what remains is
again a union of corollas (the result is π0Γ). Composition of morphisms
is defined by iterating this process. More precisely, the objects are
triples, (V,H, in : V → H); a morphism from (V1, H1, in1 : V1 → H1)
to (V2, H2, in2 : V2 → H2) is represented by a graph Γ together with an
isomorphism from the source to ν(Γ) and an isomorphism from the target
to π0Γ. There is an obvious notion of equivalence on these data and the
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set of morphisms is defined as the set of equivalence classes. Alternatively,
one can describe the set of morphisms as follows. A morphism consists
of involution a on H1 so that (V1, H1, in1 : V1 → H1, a) defines a graph
Γ together with an isomorphism of π0Γ with the union of corollas
corresponding to the target. To define the composition of morphisms we
use this second description. A composable pair of morphisms is given by
a union of corollas, an involution a1 on the half edges, and then a second
involution a2 on the set of fixed points of the first. The composition is
given by the involution that is equal to a1 on the free orbits of a1 and is
equal to a2 on the fixed points of a1.

Graphs also form a category in a different way, where the objects
are graphs and the morphisms are given by contracting a set of tree
subgraphs to points.

Disjoint union makes Graphs into a symmetric monoidal category.
We will be interested in the symmetric monoidal subcategory Forests ⊂
Graphs which has only those objects containing no 0-valent components
(i.e., no isolated vertices) and only those morphisms that are forests (i.e.,
disjoint unions of trees); the inclusion functor will be denoted `. We will
also be interested in the over category of this inclusion. Fix a union of
corollas x and consider the over category ` ↓ x.

Proposition 3.5. The category ` ↓ x is canonically equivalent to the
category whose objects are graphs with legs identified with the legs of x
and whose morphism are given by contracting a collection of disjoint
trees down to points.

3.9 Coloured graphs

Fix a set Λ of colours. A Λ-coloured graph is a graph together with
an element of Λ assigned to each edge and each leg. One can form a
category of Λ-coloured graphs, generalised Costello’s category Graphs,
in which the objects are disjoint unions of corollas and the morphisms
are coloured graphs.

3.10 Cyclic and modular operads as functors

Costello introduced his categories of graphs in order to reformulate the
definition of cyclic and modular operads in terms more amenable to
doing homotopy theoretic constructions.

Proposition 3.6. The category of cyclic operads in C is equivalent
to the category of symmetric monoidal functors Forests → C , and
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the category of modular operads in C is equivalent to the category of
symmetric monoidal functors Graphs → C .

The idea is that a cyclic (or modular) operad P determines a functor
by sending the n-corolla ∗n to the space P(n), and it sends a disjoint
union of several corollas ∗n1t· · ·t∗nk to the product P(n1)⊗· · ·⊗P(nk).
Gluing legs together is sent to the map induced by the corresponding
composition map.

Coloured cyclic and modular operads can of course also be described
as symmetric monoidal functors, using the categories of coloured graphs.

3.11 Some examples: the commutative and associative
operads

We will mainly be concerned with the case when the ambient category
in which our operads live is the category T op of topological spaces.

The commutative operad Comm is the cyclic operad that is the
constant functor Gr → T op sending each graph to a single point ∗.
Clearly the commutative operad can also be considered as a modular
operad.

A ribbon structure on a graph is a choice of cyclic ordering of the
half-edges incident at each vertex. A graph with ribbon structure is
called a ribbon graph. The associative operad Assoc is the cyclic operad
that sends each graph γ to the discrete space consisting of one point
for each ribbon structure on γ. It is not hard to see that if γ → γ′

is a contraction of a tree subgraph then there is a canonical bijection
between ribbon structures on γ and on γ′. There is also a canonical
bijection between ribbon structures on γ and on its atomisation, and
this provides the natural isomorphism required in the definition of a
cyclic operad.

3.12 Modular envelopes

Restriction from Graphs to Forests defines a forgetful functor from
modular operads to cyclic operads. This functor admits a left adjoint,
Mod, called the modular envelope. We think of the modular envelope of
a cyclic operad as the modular operad it freely generates. The modular
envelope can be constructed via left Kan extension along the inclusion
Forests ↪→ Graphs.

By replacing the Kan extension with the derived Kan extension, we
have the derived modular envelope functor LMod.
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4 Moduli of geometric structures on surfaces

4.1 Surfaces with collars

Let Σ be a surface with boundary and corners (by corners, we mean
that it is locally modelled on the positive quadrant [0,∞)2 ⊂ R2). The
boundary of Σ is canonically partitioned into smooth strata, each of
which is either a circle of an interval. A boundary interval is a boundary
stratum that is an interval. Let J ⊂ Σ be a boundary interval. A
collar of J is a smooth embedding φ of (−1, 0]× [0, 1] into Σ that sends
boundary to boundary and is a diffeomorphism of {0} × [0, 1] onto J . A
surface equipped with a finite set of disjoint boundary intervals equipped
with disjoint collars is called a collared surface. If the collars are labelled
by a set I then we call the surface I-collared.

Suppose Σ1 and Σ2 are I-collared surfaces. A diffeomorphism of I-
collared surfaces Σ1 → Σ2 is a diffeomorphism of the underlying surfaces
that respects the labelling and parametrization of the collars.

Suppose Σ is a surface with disjoint boundary intervals J1 and J2

equipped with disjoint collars φ2 and φ2 respectively. One can glue these
two boundary intervals together and obtain a new smooth surface. This
is done as follows: let Σ′ = Σ r (J1 ∪ J2)/ ∼, where we identify φ1(x)
with φ2(x) for each x ∈ (−1, 0)× [0, 1].

4.2 Sheaves of geometric structures

Let Surf be the category enriched in T op of finite type surfaces (possibly
with boundary and corners) and open embeddings.

Definition 4.1. A smooth sheaf ψ on S̃urf is an enriched functor

S̃urf → T op that sends pushout squares to homotopy pullback squares.

Remark 4.2. Smooth sheaves of this type have been studied in [3], where
they are called homotopy sheaves and their relation with Goodwillie-
Weiss embedding calculus of functors is explored. This notion also could
go under the name of ∞-stacks.

Here we will think of the space ψ(Σ) as the space of geometric
structures of a given type on Σ. Below is a list of interesting examples
of some of the kinds of structures that one can consider within this
definition.

Example 4.3. 1. Orientations: ψ(Σ) is the set of orientations on Σ.
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2. Almost complex structures: Since the space of almost complex
structures (for a fixed orientation) is contractible, this is equivalent
to simply taking orientations.

3. Principal G-bundles: The space associated with a surface Σ is the
space of maps Σ→ BG.

4. Maps to a background space X: The space ψ(Σ) is the space of
maps Σ→ X.

5. Spin, Spinc and r-spin can all be described in terms of the space
of lifts of the classifying map Σ→ BSO(2) of the tangent bundle.

6. Foliations: ψ(Σ) is the geometric realization of the simplicial space
whose space of p-simplices is the space of codimension 2 foliations
of Σ×∆p that are transverse to the boundary of the simplex.1

One way to produce examples of smooth sheaves is to take sections
of a bundle that is functorially associated with the tangent bundle. Let
X be a space with an action of GL2(R). Given a surface Σ, let P → Σ
be the GL2(R)-principal bundle associated with the tangent bundle and
consider the bundle P ×GL2(R) X → Σ.

Proposition 4.4. Sending Σ to the space of sections of P ×GL2(R) X

(with the compact-open topology) defines a smooth sheaf ψX on S̃urf .
Similarly, if X is a smooth manifold on which GL2(R) acts smoothly,
then sending Σ to the space of smooth sections (with the smooth topology)
defines a smooth sheaf.

Those smooth sheaves arising in this way will be called tangential.

Remark 4.5. A priori, the definition of a smooth sheaf appears more
general than the definition of tangential smooth sheaf. Not every smooth
sheaf is tangential, such as the example of foliations in the list above.
However, every smooth sheaf admits a tangnetial approximation and
sometimes the approximation is actually equivalent to the original sheaf.
In more detail, as described in [4, p. 16–17], given an smooth sheaf ψ,
there is associated a tangential sheaf τψ and a canonical comparison
morphism ψ → τψ. Moreover, (a version of) Gromov’s h-principle gives
conditions under which this comparison morphism is a weak equivalence
of sheaves.

1The author thanks the referee for suggesting the inclusion of this example.
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A smooth sheaf ψ will be called connected if ψ((−1, 0)× I) is con-
nected. Assuming ψ is connected, we can choose a basepoint ∗ ∈
ψ((−1, 0)× I). Suppose J ⊂ ∂Σ is a boundary interval equipped with a
collar φ. We say that a section s ∈ ψ(Σ) is trivial at J if φ∗(s) restricts
to the chosen basepoint ∗ on (−1, 0)× I.

Remark 4.6. In proving the main theorem of this paper, the assumption
that ψ is connected can be discarded if one is willing to work with coloured
cyclic and modular operads instead of ordinary (single colour) cyclic and
modular operads.

If Σ is a surface equipped with a collection of disjoint collared
boundary intervals {J1, . . . , Jn}, we write

ψ̃(Σ) ⊂ ψ(Σ)

for the subspace consisting of sections that are trivial at the boundary
intervals Ji.

4.3 The monoid of geometric structures on a strip

Consider the unit square I × I equipped with a collar at each of the
intervals {0} × I and {1} × I oriented in the same direction. We write
Aψ for the space ψ′(I × I) of sections that are trivial at each side of the
square because this space will play a particularly important role in the
results ahead.

Proposition 4.7. Gluing squares side to side endows the space Aψ
with an A∞ composition making it into a group-like A∞ monoid; the
homotopy inverse map is induced by rotating the square 180 degrees.
Fixing a collared boundary interval J on a surface Σ, there is a right
A∞ action of Aψ on ψ̃(Σ) by gluing the right side of a square to J , and
a left A∞ action given gluing the left edge of a square to J .

We will not spell out the proof of this here; it is straightforward but
technical because of the necessity of using some machinery to handle
A∞ monoids and their actions.

Proposition 4.8. Let J1 and J2 be two disjointly collared boundary
intervals on a surface Σ, and let Σ′ be the result of gluing J1 to J2.
There is a homotopy equivalence

ψ(Σ′) ∼ ψ̃(Σ)hAψ
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where the action of Aψ is as follows. Given a square with ψ structure
K ∈ Aψ, we glue the left edge of one copy of K to J1 and glue the left
edge of a second copy of K to J2.

This proposition is the key topological input in our generalised ribbon
graph. The proof is rather technical and so it will be postponed for
the future paper. The idea is straightforward and we explain it now.
Gluing a square at J1 has the effect of simply changing the trivialization
of the ψ structure at J1, and this action is transitive in a homotopical
sense, so the homotopy quotient of this action is equivalent to the space
of ψ-structures on Σ that are not necessarily trivial at J1. Thus the
homotopy quotient appearing in the proposition builds a model for the
space of ψ-structures on Σ such that are not necessarily trivial at J1 and
J2 but are required to agree at these collars. Giving such a structure is
equivalent to giving a structure on the glued surface Σ′.

4.4 A 2-categorical model for the category of surfaces

In defining the modular operad of moduli spaces of ψ-structures, rather

than the category S̃urf of surfaces and open embeddings, we will need
a slightly different category Let Surf denote the topological category
whose objects are collared surfaces. In rough language, a morphism
Σ1 → Σ2 is a gluing of some collared boundary intervals together followed
by a diffeomorphism. More precisely, the space of morphism is the disjoint
union over all surfaces Σ′ obtained from Σ by gluing a number of pairs
of boundary intervals together of the space of diffeomorphisms Σ′ → Σ2.
We let Discs ⊂ Surf denote the full subcategory whose objects are
disjoint unions of discs each having at least 1 collared boundary interval

These topological categories are difficult to work with, so it is conve-
nient to replace them with more combinatorial models that will work
just as well for our purposes. Let Surf 2 and Discs2 denote the strict
2-categories with the same objects as Surf and Discs respectively,
but with each space of diffeomorphisms replaced by the groupoid of
diffeomorphisms and isotopy classes of isotopies.

Proposition 4.9. Given a collared surface Σ, the nerve of the category
HomSurf 2(Σ,Σ) is weakly equivalent to the space Hom

S̃urf
(Σ,Σ) ∼=

Diff(Σ).

Proof. When X is a disc or annulus with no collared boundary compo-
nents then the diffeomorphism group is homotopy equivalent to a circle.
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For any fixed diffeomorphism, there is a Z worth of isotopy classes of
isotopies from it to itself, and the nerve of this Z gives the desired circle.
In all other cases there is at most one isotopy class of isotopies between
any two diffeomorphisms and the components of the diffeomorphism
group are weakly contractible.

Given a smooth sheaf ψ and a collared surface Σ, we have introduced
the space ψ̃(Σ) of sections of ψ that are trivial at the collared boundary
intervals. One sees that ψ̃ determines a continuous functor Surf → T op,
which in turn determines a strict 2-functor Surf → T op2 that we shall
denote by the same symbol.

In order to talk about cyclic and modular operads, we will need
to versions of the above 2-categories in which the collared boundary
intervals are labelled by a fixed finite set.

We define a strict 2-functor

S : Graphs → (Cat2 ↓ Surf 2)

by sending a union of corollas τ to the strict 2-category of collared
surfaces with components identified with the components of τ and
collared boundary intervals compatibly identified with the legs of τ . The
functor to Surf 2 is given by forgetting the extra identification data. We
also define

D : Forests → (Cat2 ↓ Discs2)

analogously. One can check that these functors S and D are actually
symmetric monoidal and hence they define cyclic and modular operads
respectively (albeit in somewhat odd looking ambient categories). A
value S(τ) of S consists of a 2-category C and a functor P : C → Surf .
Composing the ψ̃ with P gives a functor which we will write (with a
moderate abuse of notation) as S(τ)→ T op2.

4.5 The modular operad of moduli spaces

Associated with a smooth sheaf ψ and a diffeomorphism type of surfaces
[Σ], there is a (homotopy theoretic) moduli space of surfaces diffeomor-
phic to Σ and equipped with a ψ-structure. This moduli space is simply
the homotopy quotient

ψ(Σ)hDiff(Σ).

If we consider collared surfaces equipped with ψ-structures that are
trivial at the collared intervals then these moduli spaces collectively form



118 Jeffrey Giansiracusa

a modular operad. However, rigorously defining this modular operad so
that it is strictly associative is somewhat subtle. As a first approximation,
given a finite set I, the corresponding space of the modular operad is
the disjoint union

(1)
∐
Σ

ψ̃(Σ)hDiff(Σ)

where Σ runs over a set of representatives of diffeomorphism classes
of surfaces equipped with a set of disjoint collared boundary intervals
labelled by I. The composition maps ◦i,j and i◦j should be induced
by gluing collared boundaries. However, with this construction, the
composition maps would only be associative up to A∞ homotopy.

One way to resolve this issue and strictify the composition maps
is to use all surfaces (within some set-theoretic universe) rather than
selecting one representative from each diffeomorphism class. To this end
we make the following definition.

Definition 4.10. The moduli space modular operad Mψ associated
with a connected smooth sheaf ψ is defined by sending an object τ ∈
Obj Graphs (i.e., a union of corollas) to the homotopy colimit

Mψ(τ) = hocolim
S(τ)

ψ̃.

Similarly, we define a cyclic operad Dψ of moduli spaces of discs by

Dψ(τ) = hocolim
D(τ)

ψ̃.

(To make sense of these symbols, please recall the abuse of notation
mentioned above at the end of the previous subsection.)

In light of Proposition 4.9 above, Mψ evaluated on a corolla with I
legs yields a space homotopy equivalent to the homotopy quotient the
the homotopy-theoretic moduli space of (1).

We can now state our main theorem.

Theorem 4.1. The derived modular envelope of the cyclic operad Dψ
is weakly equivalent as a modular operad to Mψ.

5 Arc systems in a surface

In this section we shall prove that the space of decompositions of a
surface into discs is contractible.
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5.1 Arcs and cutting

Let Σ be a collared surface with nonempty boundary. An arc in Σ is
an embedding [0, 1] → Σ that sends the interior of the interval to the
interior of the surface, sends the endpoints to the boundary, and meets
the boundary transversally. We consider two arcs to be equivalent if
they differ by reversing the direction of the interval via t 7→ 1 − t. If
Σ is equipped with any collars then we require that the arc is disjoint
from the collars. An arc system is a finite (possibly empty) collection of
disjoint arcs in Σ that divide the surface in regions homeomorphic to
discs (the regions will be diffeomorphic to polygons rather than discs
since they will have corners), each of which touches at least one arc or
collared boundary component.

Observe that a surface Σ equipped with an arc system A can by
cut along the arcs of an arc system to yield a disjoint union of discs.
Moreover, each of the boundary intervals created by the cutting can be
collared uniquely up to diffeomorphism so that the resulting union of
discs can be considered as a collared surface with one collared boundary
interval for each collared boundary interval on the original surface plus
one for each arc in the arc system. We shall denote this union of collared
discs by ΣA.

An arc system has a dual graph with one vertex for each region in
the complement of the arcs, an edge for each arc, and a leg for each
collar on the surface. We say that an arc system is reduced if its dual
graph has the minimum possible number of bivalent vertices (1 in the
case of a disc or annulus and zero in all other cases). An orientation
on the surface induces a ribbon structure on the graph (i.e., a cyclic
ordering of the half edges incident at each vertex).

5.2 The category of arc systems

A diffeomorphism of Σ sends arc systems to arc systems. An isotopy
from an arc system A to an arc system B is a 1-parameter family of arc
systems At such that A0 = A and A1 = B. A bijection from the arcs of
A to the arcs of B is said to be admissible if it can be induced by an
isotopy.

Arc systems form a category A (Σ): the objects are arc systems and
a morphism A → B consists an isotopy class of isotopies from A to a
subsystem of B. We let A r (Σ) denote the full subcategory of reduced
arc systems. There is a reduction functor R : A (Σ) → A r(Σ) that is
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defined by replacing each collection of parallel arcs with a single arc and
deleting any arc that is parallel to a collared boundary interval (this is
non canonical the case of a disc or annulus, but a choice can be made in
order to define the functor).

Theorem 5.1. The nerve of A (Σ) is contractible.

Proof. The proof is divided into three cases. (1) Σ is a disc without
collars. (2) Σ is an annulus without collars. (3) Σ is any other collared
surface.

(1) The dual graph of an arc system in the disc is a planar tree, and
the set of univalent vertices (corresponding to arcs that bound discs
containing no other arcs) inherits a cyclic order from the disc. Let Λ
be the category of finite nonempty cyclically ordered sets and degree 1
maps (Connes’s cyclic category). There is a functor q : A → Λ given by
sending an arc system to the set of univalent vertices of its dual graph.
The nerve of Λ is known to be equivalent to BS1, and we will identify
the map induced by the above functor with the map ES1 → BS1.

First, we show that the homotopy fibre of the map is S1. For any
object [n] ∈ Λ, consider the over category q ↓ [n]. Let Z denote the
category with a single object and a Z worth of endomorphisms. There
is a functor r : Z → (q ↓ [n]) given by sending the single object to
the arc system consisting of a single arc and sending the generating
automorphism to the automorphism given by rotating the disc through
360 degrees. Over any object of q ↓ [n], the over category of the
functor r has a nonempty set of objects and by unwinding the definitions
carefully one can see that there is a unique isomorphism between any
two objects. Thus the nerve of any over category of r is contractible
and Quillen’s Theorem A implies that r induces a homotopy equivalence
of nerves. By considering a generator of the fundamental group one
can check that any morphism [n] → [m] in Λ induces a translation
functor (q ↓ [n])→ (q ↓ [m]) that is a homotopy equivalence on nerves.
Quillen’s Theorem B thus says that BZ → A → Λ gives a homotopy
fibre sequence upon passing to nerves. The nerve of the fibre is S1 and
the nerve of the base is BS1.

To conclude that the total space is ES1, we need only check that
the inclusion of the fibre S1 into the total space is trivial on π1. The
generator of π1 of the fibre is represented by a rotation of the disc
through 360 degrees. Given a symmetric configuration of 3 arcs in the
disc, there is an automorphism given by rotation by 120 degrees, and the
cube of this automorphism is the 360 degree rotation. A calculation in
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Rotate 120
degrees CW

Rotate 120
degrees CW

Slide lower arc
120 degrees CW

Figure 1: Calculation in the localised category representing the total
space, showing the the generator of the fundamental group of the fibre
is trivial in the total space. The unlabelled arrows in this diagram are
all the evident inclusions of arc systems.

the localised category using §3.2 will show that this 120 degree rotation is
trivial in the localisation. The calculation is represented by the diagram
in figure 5.2.

(2) The dual graph of an arc system in the annulus is a chain of
bivalent vertices (corresponding to those arcs which go from the inner
boundary to the outer one) with some trees attached (corresponding to
nested sets of arcs that have both ends on the same boundary circle).
This chain on bivalent vertices inherits a cyclic order from the annulus,
and sending an arc system to this set defines a functor from A to Λ.
Using arguments similar to case (1) above, one can conclude that the
homotopy fibre of the map of nerves is S1 and the fibre sequence is in
fact S1 → ES1 → BS1.

(3) In this case we use a category-theoretic reformulation of an
argument from Hatcher [12]. Let A denote the category of isotopy
classes of arc systems and admissible bijections. Since, in this case, every
admissible bijection is induced by a unique isotopy class of isotopies, the
canonical functor A → A is an equivalence of categories.

Fix an arc x. We will show that the identity functor on A and
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A

x

Sx(A)

Figure 2: The effect of the arc surgery operator Sx.

the constant functor sending any arc system to x are homotopic after
passing to nerves by constructing a zigzag of natural transformations
between functors A → A , starting with the identity and finishing with
the constant functor.

We define an operator Sx from arcs to arcs as follows. If x and y
are disjoint (up to isotopy) then Sx(y) = y. If x and y intersect then,
moving them by isotopies, we may put them in a position so that they
cross transversally and the number of intersection points is minimal (e.g.,
choose a metric and use the geodesic representatives of their isotopy
classes). We may now cut y at each point where it meets x and slides
the resulting endpoints along x until they reach the boundary of the
surface, as shown in figure 5.2. We can extend Sx to a map from arc
systems to arc systems by applying it to each of the arcs in a system.

Let S1 : A → A be the functor that sends an arc system A to
A ∪ Sx(A), let S2 be the functor that sends A to Sx(A), let S3 be the
functor that sends A to x ∪ Sx(A), and let S4 be the constant functor
sending any arc system to x. It is straightforward to see that there are
natural transformations

id→ S1 ← S2 → S3 ← S4

induced by the evident inclusions of arc systems. Upon passing to nerves,
this zigzag of natural transformation yields the desired homotopy from
the identity map to the constant map.

Corollary 5.1. The nerve of A r(Σ) is contractible.

Proof. Let i denote the inclusion A r ↪→ A and observe that for any
arc system A the over category i ↓ A has an initial object given by
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any choice reduction R(A) and morphism R(A)→ A. The result then
follows from Quillen’s Theorem A and Theorem 5.1.

6 Sketch of the proof Theorem 4.1

Let ψ be a smooth sheaf and recall that we have defined the cyclic
operad Dψ of moduli spaces of discs, and the modular operad Mψ of
moduli spaces of surfaces. We will construct a chain of weak equivalences
between the derived modular envelope LMod(Dψ) and Mψ.

By the construction of the derived Kan extension along ` : Forests ↪→
Graphs (evaluated at τ as the homotopy colimit over the over category
` ↓ τ , we see that the derived modular envelope of Dψ, evaluated on a
union of corollas γ, is given by

hocolim
γ∈`↓τ

Dψ = hocolim
γ∈`↓τ

hocolim
D(γ)

ψ̃.

By the Fubini theorem for homotopy colimits, this is weakly equivalent
to hocolim∫

`↓τ D
ψ̃.

An object of
∫
`↓τ D is a graph γ (equipped with an identification

π0γ ∼= τ) and a decoration of each vertex by a disc. Gluing the discs
together as prescribed by the graph results in a surface Σ ∈ S(τ).
Moreover, the collection of arcs in Σ along which the gluing was performed
yield an arc system. This defines a strict 2-functor.

Lemma 6.1. The above construction defines an equivalence of 2-cate-
gories

∫
`↓τ D '

∫
S(τ) A .

The inverse of the equivalence is constructed by cutting along the
arcs, and it is denoted κ. Note that it is not a strict 2-functor but only
a lax 2-functor. Hence

hocolim∫
`↓τ D

ψ̃ ' hocolim∫
S(τ) A

ψ̃ ◦ κ,

which is weakly equivalent to

hocolim∫
S(τ) A r

LR!(ψ̃ ◦ κ),

where R :
∫
S(τ) A →

∫
S(τ) A r is the arc system reduction functor.

We now come to the key step in the argument. As explained in
[13], Kan extension along R can be thought of as integrating out the
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bivalent vertices in the dual graphs to the arc systems, and this has the
following effect. For each edge in the dual graph, one builds a 2-sided
bar construction for the monoid Aψ of geometric structures on a strip
acting on the the spaces associated to the vertices at either end of the
edge. By Proposition 4.8 we then have the following result.

Lemma 6.2. LR!(ψ̃ ◦κ) ' ψ̃ ◦π, where π :
∫
S(τ) A r → S(τ) forgets the

arc system.

In other words, starting with the space of all pairs of an unreduced
arc system and a ψ-structure trivial on the arcs, and then integrating out
the bivalent vertices in the dual graph yields a space equivalent to the
space of pairs of a reduced arc system and a ψ-structure not-necessarily
trivial on the arcs.

Finally, by Corollary 5.1, the homotopy colimit of ψ̃ ◦π over
∫
S(τ) A r

is equivalent to the homotopy colimit of ψ̃ overS(τ), which is precisely
the definition of Mψ(τ).
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