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Abstract

This paper concerns controlled Markov-modulated diffusions. Our
main objective is to give conditions for the existence of optimal
policies for the limiting average variance criterion. To this end,
we use the fact that the family of average reward optimal policies
is nonempty. Then, within this family, we search policies that
minimize the limiting average variance.
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1 Introduction

Using the fact that the family of average reward optimal policies is
nonempty (see [5] for details), in this paper we study the existence of
stationary policies that minimize the limiting average variance in the
class of average optimal policies. Under our assumptions we extend to
controlled switching diffusions the results in [6] on discrete-time Markov
control processes.

A diffusion with Markovian switchings (also known as a piecewise
diffusions, switching diffusions, or Markov-modulated diffusions) is a
stochastic differential equation with coefficients depending on a continu-
ous-time irreducible finite-state homogeneous Markov chain. The moti-
vation to study switching diffusions is that recent studies suggest that
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such processes are more general and appropriate for a wide variety of
applications not covered by standard Markovs diffusion models. For
related references see [1, 4, 5, 12, 14, 15, 16].

The existence of optimal policies for Markov-modulated diffusions
with the average reward criterion has been previously studied in the
literature; see, for instance [3, 4, 5]. But, as is well known, this criterion
is very underselective because an average reward optimal policy may
have an arbitrarily bad behavior for large but finite lengths of time. To
avoid this situation, many authors consider more sensitive criteria such
as the limiting average variance criterion; see [6, 7, 9, 10, 11, 13].

The paper is organized as follows. Section 2 introduces our assump-
tions, which lead to the notion of w and w2−exponential ergodicity, a
crucial tool for our results. In Section 3 we define the average optimality
criterion we are interested in, and we summarize some results from [5] on
the existence of solutions to the average reward problem, which is essen-
tially our point of departure to analyze variance optimality. In Section 4
we define the variance optimality criterion and we prove the existence of
variance optimal policies. In Section 5 we prove the Theorem 4.4 which
states that the limiting average variance equals a constant independi-
ent of the initial state. Our results are illustrated with an example in
Section 6.

2 Model Definition and Ergodic Properties

The control system we are concerned with is the controlled Markov-
modulated diffusion process

(1) dx(t) = b(x(t), ψ(t), u(t))dt+ σ(x(t), ψ(t))dW (t),

for t ≥ 0, x(0) = x, and ψ(0) = i, with coefficients depending on a
continuous-time irreducible Markov chain ψ(·) with a finite state space
E = {1, 2, . . . , N}, and transition probabilities

(2) P(ψ(s+ t) = j|ψ(s) = i) = qijt+ o(t).

For states i 6= j the number qij ≥ 0 is the transition rate from i to j,
while qii := −

∑
j 6=i qij . Moreover, in (1), b : Rn × E × U → Rn and

σ : Rn × E → Rn×d are given functions, and W (·) is a d-dimensional
standard Brownian motion independent of ψ(·). The stochastic process
u(·) is a U−valued process called a control process, and the set U ⊂ Rm
is called the control (or action) space.
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Notation.

• For x ∈ Rn and a matrix A, we use the usual Euclidean norms

|x|2 :=
∑
k

x2k and |A|2 :=
∑
k,l

A2
k,l.

We will also denote by A′ the transpose of a square matrix A.

• We use P x,i,u(t, ·) to denote the transition probability of the pro-
cess (x(·), ψ(·)), i.e.,

P x,i,u(t, B × J) := P ((x(t), ψ(t)) ∈ B × J |x(0) = x, ψ(0) = i)

for every Borel set B ⊂ Rn and J ⊂ E. The associated conditional
expectation is written Ex,i,u(·).

Assumption 2.1.

(a) The control set U is compact.

(b) b(x, i, u) is continuous on Rn ×E ×U , and x 7→ b(x, i, u) satisfies
a Lipschitz condition uniformly in (i, u) ∈ E × U ; that is, there
exist a positive constant K1 such that

max
(i,u)∈E×U

|b(x, i, u)− b(y, i, u)| ≤ K1|x− y| for all x, y ∈ Rn.

(c) There exists a positive constant K2 such that, for each i ∈ E and
x, y ∈ Rn,

|σ(x, i)− σ(y, i)| ≤ K2|x− y|,

(d) There exists a positive constant K3 such that the matrix a(x, i) :=
σ(x, i)σ′(x, i) satisfies that, for each i ∈ E and x, y ∈ Rn,

x′a(y, i)x ≥ K3|x|2 (uniform ellipticity).

Remark 2.2. The Lipschitz conditions on b and σ in Assumption 2.1
imply that b and σ satisfy a linear growth condition. That is, there exists
a constant C ≥ K1 +K2 such that for all x ∈ Rn

sup
(u,i)∈U×E

(|b(x, i, u)|) + |σ(x, i))| ≤ C(1 + |x|).
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Control policies. For our present purposes, we can restrict our-
selves to consider stationary Markov policies, defined as follows.

Definition 2.3. Let F be the family of measurable functions f : Rn ×
E → U . A control policy of the form u(t) := f(x(t), ψ(t)) for some
f ∈ F and t ≥ 0 is called a stationary Markov policy. Actually, by an
abuse of terminology, f itself will be referred to as a stationary Markov
policy.

Infinitesimal generator. Let C2(Rn × E) be the space of real-
valued continuous functions ν(x, i) on Rn × E, which are twice contin-
uously differentiable in x ∈ Rn for each i ∈ E. For ν ∈ C2(Rn ×E) and
u ∈ U , let

Qν(x, i) :=
N∑
j=1

qijν(x, j),

where Q = [qij ] is the generator of the Markov chain ψ(·), and

Luν(x, i) :=
n∑
k=1

∂ν

∂xk
(x, i)bk(x, i, u) +

1

2

∑
k,l

akl(x, i)
∂2ν

∂xk∂xl
(x, i)

+Qν(x, i),

where bk is the k−th component of b, and akl is the k, l−component of
the matrix a(·, ·) defined in Assumption 2.1(d).

For each f ∈ F and (x, i) ∈ Rn × E let

(3) Lfν(x, i) := Lf(x,i)ν(x, i).

Under Assumption 2.1 for each stationary Markov policy f ∈ F there
exists an almost surely unique strong solution of (1)-(2); see [12, page
88-90]. On the other hand, even though x(t) itself is not necessarily
Markov, it is well known that the joint process (x(·), ψ(·)) is Markov;
see, for instance, [12, pp. 104-106]. The infinitesimal generator of the
Markov process (x(t), ψ(t)) is Lf in (3) for each stationary Markov policy
f ∈ F; see [12, page 48].

Recurrence and ergodicity. For the variance optimality crite-
rion, we require the following second order condition (a Lyapunov-like
condition) that ensures the positive recurrence of the controlled Markov-
modulated diffusion (1)-(2) (see [5], [14] and [15].)

Assumption 2.4. There exists a function w ∈ C2(Rn×E), with w ≥ 1,
and constants p ≥ q > 0 such that



Variance optimality for controlled Markov-modulated diffusions 55

(i) lim|x|→∞w(x, i) = +∞ for each i ∈ E, and

(ii) for each u ∈ U and (x, i) ∈ Rn × E

(4) Luw2(x, i) ≤ −qw2(x, i) + p.

Under the Assumption 2.4, for each f ∈ F, the Markov process
(x(·), ψ(·)) is Harris positive recurrent with a unique invariant probabil-
ity measure µf (dx, i) (see [15]) for which

µf (w
2) :=

N∑
i=1

∫
Rn

w2(x, i)µf (dx, i) <∞.

Definition 2.5. Let Bw(Rn × E) be the normed linear space of real-
valued measurable functions ν on Rn × E with finite w−norm, which is
defined as

‖ ν ‖w := sup
(x,i)∈Rn×E

| ν(x, i) |
w(x, i)

.

Remark 2.6. A consequence of Assumptions 2.1(d) and 2.4 (ii) states
that the condition of second order (4) implies the following first order
condition:

(5) Luw(x, i) ≤ −q1w(x, i) + p1,

for constants q1 = q
2 and p1 = p

2 , where p and q are the constants given
in Assumption 2.4. For details, see [7, Proposition 2.3].

Under Assumptions 2.1 and 2.4, Theorem 2.8 in [3] ensures that the
controlled Markov-modulated diffusion (1)-(2) is uniformly w−exponen-
tially ergodic, that is, there exist positive constants C and δ such that

(6) sup
f∈F
|Ex,i,f [ν(x(t), ψ(t))]− µf (ν)| ≤ Ce−δt ‖ ν ‖w w(x, i)

for all (x, i) ∈ Rn × E, ν ∈ Bw(Rn × E), and t ≥ 0, where µf (ν) :=∑N
i=1

∫
Rn ν(x, i)µf (dx, i).

3 Average Optimality Criteria

Let r : Rn × E × U → R be a measurable function, which we call the
reward rate. It satisfies the following conditions:
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Assumption 3.1.

(a) The function r(x, i, u) is continuous on Rn × E × U and locally
Lipschitz in x uniformly with respect to i ∈ E and u ∈ U ; that is,
for each R > 0, there exists a constant K(R) > 0 such that

sup
(i,u)∈E×U

|r(x, i, u)− r(y, i, u)| ≤ K(R)|x− y| for all |x|, |y| ≤ R.

(b) r(·, ·, u) is in Bw(Rn × E) uniformly in u; that is, there exists
M > 0 such that for each (x, i) ∈ Rn × E

sup
u∈U
|r(x, i, u)| ≤Mw(x, i).

Notation. For each Markov policy f ∈ F, x ∈ Rn and i ∈ E, we write

r(x, i, f) := r(x, i, f(x, i)).

The following definition concerns the long-run average optimality
criterion.

Definition 3.2. For each f ∈ F, (x, i) ∈ Rn × E, and T ≥ 0, let

JT (x, i, f) := Ex,i,f
[ ∫ T

0
r(x(t), ψ(t), f)dt

]
.

The long-run expected average reward given the initial state (x, i) is

(7) J(x, i, f) := lim inf
T→∞

1

T
JT (x, i, f).

The function

J∗(x, i) := sup
f∈F

J(x, i, f) for all (x, i) ∈ Rn × E

is referred to as the optimal gain or the optimal average reward. If there
is a policy f∗ ∈ F for which J(x, i, f∗) = J∗(x, i) for all (x, i) ∈ Rn×E,
then f∗ is called average optimal.

Remark 3.3. The following important results were proven in [3].
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(1) The w−exponential ergodicity (6) gives that the long-run expected
average reward (7) coincides with a constant g(f), which is defined
by

(8) g(f) := µf (r(·, ·, f)) =
N∑
i=1

∫
Rn

r(x, i, f)µf (dx, i).

for every f ∈ F. This is,

g(f) = J(x, i, f).

(2) Under Assumptions 2.1, 2.4, and 3.1, Theorem 4.2 in [3] ensures
the existence of optimal average reward policies. Denoting by g∗ the
optimal average reward and by Fao the family of average optimal
policies, we have:

g∗ := sup
f∈F

g(f) = sup
f∈F

J(x, i, f) for all (x, i) ∈ Rn × E.

(3) We define, for each f ∈ F, the bias of f as the function
(9)

hf (x, i) :=

∫ ∞
0

[Ex,i,fr(x(t), ψ(t), f)− g(f)]dt for (x, i) ∈ Rn×E.

Note that this function is finite-valued because (6) and the Assump-
tion 3.1(b) give, for all t ≥ 0,

(10) | Ex,i,fr(x(t), ψ(t), f)− g(f) |≤ e−δtCMw(x).

Hence, by (9) and (10), the bias of f is such that

|hf (x, i)| ≤ δ−1CMw(x), and so ‖ hf (x, i) ‖w≤ δ−1CM.

This means that the bias hf is a finite-valued function and, in fact,
it is in Bw(Rn × E).

(4) In addition, by Proposition 5.2 in [3] we known that for each f ∈ F,
the pair (g(f), hf ) is the unique solution of the following Poisson
equation

(11) g(f) = r(x, i, f) + Lfhf (x, i) for (x, i) ∈ Rn × E.
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4 Variance Optimality

In this section we study the existence of a stationary policy that mini-
mizes the limiting average variance in the class Fao of average optimal
policies.

Remark 4.1. We define the normed linear space Bw2(Rn × E) of real-
valued measurable functions ν on Rn×E with finite w2−norm, similarly
to the normed linear spaces Bw(Rn × E), with w2 in lieu of w.

Remark 4.2. Under the Assumptions 2.1, 2.4, and 3.1, the process
(x(·), ψ(·)) is uniformly w2−exponentially ergodic, i.e, there exist posi-
tive constants C and δ such that

sup
f∈F
|Ex,i,f [ν(x(t), ψ(t))]− µf (ν)| ≤ Ce−δt ‖ ν ‖w2 w2(x, i)

for all (x, i) ∈ Rn × E, ν ∈ Bw2(Rn × E), and t ≥ 0. The proof of this
result is similar to that given in [3, Theorem 2.8] with w2 in lieu of w.

Definition 4.3. For each f in F, the limiting average variance of f
given the initial state (x, i) ∈ Rn × E, is the function

(12) σ2(x, i, f) := lim
T→∞

1

T
Ex,i,f

(∫ T

0
r(x(t), ψ(t), f)dt− JT (x, i, f)

)2
.

The following theorem, which is proved in Section 5, states that the
limiting average variance equals a constant.

Theorem 4.4. Under Assumptions 2.1 and 2.4, for each f in F and
an arbitrary initial state (x, i) ∈ Rn × E, the limiting average variance
σ2(x, i, f) equals the constant

(13) σ2(f) := 2
n∑
i=1

∫
Rn

(r(x, i, f)− g(f))hf (x, i)µf (dx, i).

The following definition concerns the variance optimality criterion.

Definition 4.5. We say that a stationary policy f∗ is variance optimal
if f∗ ∈ Fao and, moreover,

(14) σ2(f∗) = min
f∈Fao

σ2(f).
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We define for each (x, i) ∈ Rn × E the set

U∗(x, i) := {u ∈ U | g = r(x, i, u) + Luh(x, i)},

with g ∈ R and h ∈ C2(Rn × E) ∩ Bw(Rn × E). By [3, Lemma 6.2] for
each (x, i) ∈ Rn × E, U∗(x, i) is a nonempty compact set.

Proposition 4.6. Suppose that Assumptions 2.1, 2.4, and 3.1 are sat-
isfied. Then

(i) There exist g, σ2 ∈ R, h ∈ C2(Rn × E) ∩ Bw(Rn × E), and φ ∈
C2(Rn × E) ∩ Bw2(Rn × E), that satisfy the system of equations

(15) g = max
u∈U
{r(x, i, u) + Luh(x, i)},

(16) σ2 = min
u∈U∗(x,i)

{2(r(x, i, u)− g)h(x, i) + Luφ(x, i)}

for all (x, i) ∈ Rn × E.

(ii) A policy f∗ in F is variance optimal if and only if f∗ attains the
maximum and the minimum in (15) and (16), respectively. The
minimal limiting average variance σ2(f∗) equals σ2 in (16).

Proof. (i) The existence of a constant g and a function h ∈ C2(Rn ×
E)∩Bw(Rn×E) that satisfy (15) follows from Theorem 4.2 in [3]. The
latter theorem also yields the existence of a stationary policy f ∈ F that
attains the maximum in the right-hand side of (15), i.e.,

g = r(x, i, f) + Lfh(x, i) for all (x, i) ∈ Rn × E.

Now suppose that f is in Fao. Then by Proposition 5.3 in [3] the
bias of f satisfies that

(17) hf (x, i) = h(x, i)− µf (h) for all (x, i) ∈ Rn × E.

Thus, using (8), the limiting average variance of f verifies that

σ2(f) = 2

n∑
i=1

∫
Rn

(r(x, i, f)− g(f))hf (x, i)µf (dx, i)

= 2

n∑
i=1

∫
Rn

(r(x, i, f)− g)h(x, i)µf (dx, i).(18)
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This implies that σ2(f) is the expected average reward of the policy f
when the reward rate is the function

r′′(x, i, u) := 2(r(x, i, u)− g)h(x, i) for all (x, i) ∈ Rn × E.

Hence, to find a solution of (16) we need to solve a new average reward
control problem. This problem has the following components: the dy-
namic system (1), the action sets U∗(x, i), and the reward rate r′′(x, i, u).
Note that

|r′′(x, i, u)| = 2|(r(x, i, u)− g)h(x, i)|
≤ 2(Mw(x, i) + g)|h(x, i)|
≤ 2(Mw(x, i) + g)||h(x, i)||ww(x, i)
≤ 2w2(x, i)||h||w(M + g).

where the first inequality is by assumption 3.1(b) and the second in-
equality holds since h ∈ Bw(Rn × E).
Therefore r′′(x, i, u) verifies the assumption 3.1(b) when w is replaced
with w2. The control problem with the above components satisfies the
assumptions 2.1, 2.4 and 3.1 replacing w with w2. Hence, by [3, Theorem
4.2], there exists (σ2, φ), with σ2 ∈ R and φ ∈ C2(Rn×E)∩Bw2(Rn×E),
that satisfy the equation (16).

(ii) By [3, Theorem 4.2] there exists a policy f∗ ∈ F that attains the
maximum in (15). Note that a stationary policy f∗ is in Fao if and only
if f∗(x, i) is in U∗(x, i) for all (x, i) ∈ Rn ×E. Moreover, by [3, Lemma
6.2 (a)] , U∗(x, i) is a compact set for each (x, i) ∈ R×E. Hence, by [3,
Theorem 4.2] , f∗ is variance optimal.

Now, by (16) we have

(19) σ2 ≤ 2(r(x, i, f)− g)h(x, i) + Lfφ(x, i).

Then, by Dynkin’s formula for diffusions with Markovian switchings [12,
p. 48], for each T > 0 we obtain

Ex,i,fφ(x(T ), ψ(T )) = φ(x, i) + Ex,i,f
[ ∫ T

0
Lfφ(x(s), ψ(s))ds

]
,

and using (19)

Ex,i,f
[ ∫ T

0
2(r(x(s), ψ(s), f)− g)h(x(s), ψ(s))ds

]
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≥ σ2t+ φ(x, i)− Ex,i,fφ(x(T ), ψ(T )).

Replacing (17) in the latter inequality gives

Ex,i,f
[ ∫ T

0
2(r(x(s), ψ(s), f)− g)hf (x(s), ψ(s)ds

]
+µf (h)Ex,i,f

[ ∫ T

0
2(r(x(s), ψ(s), f)− g)ds

]
≥ σ2T + φ(x, i)− Ex,i,fφ(x(T ), ψ(T )).

Thus, multiplying by T−1 both sides of this inequality and letting T →
∞, it follows from (13) and the w−exponencial ergodicity (6), that for
all f ∈ Fao,

σ2(f) ≥ σ2.

Hence, inff∈Fao σ
2(f) ≥ σ2. Now let us consider f∗ in Fao that minimizes

(16) and proceeding as above we obtain that σ2(f∗) = σ2, and so

(20) σ2(f∗) = σ2 ≤ inf
f∈Fao

σ2(f).

This completes the proof of part (ii). 2

Remark 4.7. Equation (15) is called average reward Hamilton-Jacobi-
Bellman equation, which is also known as the Bellman equation or the
dynamic programming equation.

5 Proof of Theorem 4.4

To prove Theorem 4.4 first note that the Dynkin’s formula applied to
hf , the equation Poisson (11), and the ergodicity exponential (6) given
that the total expected payoff of f ∈ F over the time interval [0, T ],
when the initial state is x ∈ Rn (recall Definition 3.2) can be write as

JT (x, i, f) = Tg(f) + hf (x, i) +O(e−δT )

where O(·) is a residual term converging to zero as t → ∞. Replacing
this last equation in the limiting average variance (12), we obtain that

(21) σ2(x, i, f) := lim
T→∞

1

T
Ex,i,f

(∫ T

0
r(x(t), ψ(t), f)dt− Tg(f)

)2
.
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We define, for f ∈ F and T ≥ 0

(22) Y f (T ) :=

∫ T

0
r(x(s), ψ(s), f)ds− Tg(f).

Then, replacing (22) in (21) we have

(23) σ2(x, i, f) := lim
T→∞

1

T
Ex,i,f

[
Y f (T )

]2
.

Seeing the equation (23) the first that comes to mind for of the
Theorem 4.4 is to use the moment generating function associated to
the process Y f (T ). However, a key problem with moment generating
functions is that moments and the moment generating function may
not exist. By contrast, the characteristic function of the process Y f (T )
always exists, and thus may be used instead.

Hence, the main idea in the proof of Theorem 4.4 consists to use the
characteristic function, Cz(T ) := eizY

f (T ), z ∈ R, of the process Y f (T ).
To show, using Ito’s formula, Poisson equation (11), and integration by
parts that Cz(T ) satisfies a certain integral equation. Then, consider the
Taylor series of the Cz(t) and substitute into of the integral equation

obtained to find a expression for Ex,i,f
[
Y f (T )

]2
which gives the result.

To begin, we need the following lemma.

Lemma 5.1. Let Y f (·) be as in (22), and let hf be the bias function
defined in (9). Then

(24) lim
T→∞

1

T
Ex,i,f [hf (x(T ), ψ(T ))Y f (T )] = 0.

Proof. By Ito’s Lemma for semimartingales (see [8] section 8.10, page
234, or [12] section 1.8, page 48),

hf (x(T ), ψ(T )) = hf (x, i) +

∫ T

0
Lfhf (x(s), ψ(s))ds

−
∫ T

0

∑
0≤s<T

qψ(s),ψ(s+)[hf (x(s), ψ(s
+))

− hf (x(s), ψ(s))])ds

+

∫ T

0

n∑
k=1

d∑
l=1

∂hf
∂xk

(x(s), ψ(s))σkl(x(s), ψ(s))dWl(s)

+
∑

0≤s<T
[hf (x(s), ψ(s

+))− hf (x(s), ψ(s))].(25)
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On the other hand, by Theorem 1 in [1] we obtain that∑
0≤s<T

[hf (x(s), ψ(s
+))− hf (x(s), ψ(s))] =

∫ T

0

∑
j∈E

[hf (x(s), j)

−hf (x(s), ψ(s))](q0 − v)(ds, j) +

∫ T

0

∑
j∈E

qψ(s),j [hf (x(s), j)

− hf (x(s), ψ(s))]ds,(26)

where q0 is the jump measure of ψ and v is the compensator of q0.
Replacing (26) in (25) and noting that hf (x, i) satisfies the Poisson

equation (11), we have

hf (x(T ), ψ(T )) = hf (x, i) +

∫ T

0
(r(x(s), ψ(s), f)− g(f))ds

+

∫ T

0

n∑
k=1

d∑
l=1

∂hf
∂xk

(x(s), ψ(s))σkl(x(s), ψ(s))dWl(s)

+

∫ T

0

∑
j∈E

[hf (x(s), j)− hf (x(s), ψ(s))](q0 − v)(ds, j).(27)

For notational ease we define

NT :=

∫ T

0

n∑
k=1

d∑
l=1

∂hf
∂xk

(x(s), ψ(s))σkl(x(s), ψ(s))dWl(s)

and

MT :=

∫ T

0

∑
j∈E

[hf (x(s), j)− hf (x(s), ψ(s))](q0 − v)(ds, j).

Next we multiply by hf (x(T ), ψ(T )) on both sides of (27) and taking
expectations we find that

Ex,i,f [hf (x(T ), ψ(T ))Y f (T )] = Ex,i,f [h2f (x(T ), ψ(T ))]

− Ex,i,f [hf (x(T ), ψ(T ))]hf (x, i)
− Ex,i,f [hf (x(T ), ψ(T ))NT ]

− Ex,i,f [hf (x(T ), ψ(T ))MT ].(28)

From the w2-exponential ergodicity, we have that
(29)
Ex,i,f [h2f (x(T ), ψ(T ))]/T → 0 and Ex,i,f [hf (x(T ), ψ(T ))]/T → 0.
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Now, by Remark 2.2 and Remark 3.3(3) we obtain that NT is square
integrable martingale and, moreover

Ex,i,f
[ ∑
0≤s<T

|hf (x(s), ψ(s+))− hf (x(s), ψ(s))|
]
<∞.

Then, it follows from Theorem 26.12 in [2] that MT is a martingale and,
furthermore, it can shown thatMT is also a square integrable martingale.
Then, applying the Cauchy-Schwarz inequality to the third and fourth
summand of the right-hand side of (28) we get(

Ex,i,f
[
hf (x(T ), ψ(T ))NT

])2
≤ Ex,i,f [h2f (x(T ), ψ(T ))]

· Ex,i,f [N2
T ],(30)

(
Ex,i,f

[
hf (x(T ), ψ(T ))MT

])2
≤ Ex,i,f [h2f (x(T ), ψ(T ))]

· Ex,i,f [M2
T ].(31)

Finally, the orthogonality property of martingale differences of NT

and MT yields

(32) Ex,i,f [N2
T ] = O(T ),

and

(33) Ex,i,f [M2
T ] = O(T ).

Therefore, (24) follows from (29)-(33) 2

Proof of the Theorem 4.4. For z ∈ R we define the characteristic
function of process Y f (t) defined in (22) as

(34) Cz(T ) := eizY
f (T ).

Note that

(35) dCz(T ) = izdY f (T )Cz(T ) = iz[r(x(t), ψ(t), f)− g(f)]Cz(T )dt.

This implies

(36) Cz(T ) = 1 + iz

∫ T

0
[r(x(t), ψ(t), f)− g(f)]Cz(t)dt.
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As the bias function hf of f ∈ F satisfies the Poisson equation (11), from
(36) we obtain

(37) Cz(T ) = 1− iz
∫ T

0
Lfhf (x(t), ψ(t))Cz(t)dt.

Applying Ito’s formula to hf in the interval [0, T ] we obtain

dhf (x(t), ψ(t)) = Lfhf (x(t), ψ(t))

−
∑

0≤t<T
qψ(t),ψ(t+)[hf (x(t), ψ(t

+))− hf (x(t), ψ(t))])

+
n∑
k=1

d∑
l=1

∂hf
∂xk

(x(t), ψ(t))σkl(x(t), ψ(t))dWl(t)

+
∑

0≤t<T
[hf (x(t), ψ(t

+))− hf (x(t), ψ(t))],(38)

and multiplication of (38) by Cz(t) gives

Lfhf (x(t), ψ(t))Cz(t) = dhf (x(t), ψ(t))C
z(t)

+ Cz(t)
∑

0≤t<T
qψ(t),ψ(t+)[hf (x(t), ψ(t

+))− hf (x(t), ψ(t))])

− Cz(t)
n∑
k=1

d∑
l=1

∂hf
∂xk

(x(t), ψ(t))σkl(x(t), ψ(t))dWl(t)

− Cz(t)
∑

0≤t<T
[hf (x(t), ψ(t

+))− hf (x(t), ψ(t))].(39)

Replacing (39) in (37) we have

Cz(T ) = 1− iz
{∫ T

0
dhf (x(t), ψ(t)C

z(t)dt

+

∫ T

0
Cz(t)

∑
0≤t<T

qψ(t),ψ(t+)[hf (x(t), ψ(t
+))− hf (x(t), ψ(t))])dt

−
∫ T

0
Cz(t)

n∑
k=1

d∑
l=1

∂hf
∂xk

(x(t), ψ(t))σkl(x(t), ψ(t))dWl(t)dt

−
∫ T

0
Cz(t)

∑
0≤t<T

[hf (x(t), ψ(t
+))− hf (x(t), ψ(t))]dt

}
.(40)
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Using integration by parts we get∫ T

0
dhf (x(t), ψ(t))C

z(t)dt = hf (x(T ), ψ(T ))C
z(T )− hf (x, i)

+

∫ T

0
hf (x(t), ψ(t))dC

z(t).(41)

Therefore, replacing (41) in (40), taking expectations, and using the
arguments in the proof of Lemma 5.1 we obtain

Ex,i,f [Cz(T )] = 1− izEx,i,f
[
hf (x(T ), ψ(T ))C

z(T )− hf (x, i)

+

∫ T

0
hf (x(t), ψ(t))dC

z(t)dt
]
.(42)

Finally, substituting (35) in (42) we obtain

Ex,i,f [Cz(T )] = 1− izEx,i,f
[
hf (x(T ), ψ(T )C

z(T )− hf (x, i)

+

∫ T

0
hf (x(t), ψ(t))iz[r(x(t), ψ(t), f)− g(f)]Cz(t)dt

]
.

Consider now the Taylor series of Cz(t) in the last equality

Ex,i,f
[ ∞∑
k=0

(izY f (T ))k)

k!

]
= 1

− izEx,i,f
[
hf (x(T ), ψ(T ))

( ∞∑
k=0

(izY f (T ))k)

k!

)
− hf (x, i)

+

∫ T

0
hf (x(t), ψ(t))iz[r(x(t), ψ(t), f)− g(f)]

( ∞∑
k=0

(izY f (T ))k)

k!

)
dt
]
.

Equating second order terms in z we have

Ex,i,f [Y f (T )2] = 2Ex,i,f [hf (x(T ), ψ(T ))Y f (T )]

+2Ex,i,f
[ ∫ T

0
hf (x(t), ψ(t))[r(x(t), ψ(t), f)− g(f)]dt

]
.(43)

It is easy prove that hf (x, i)[r(x, i, f(x, i))− g(f)] is in Bw2(Rn×E)
and also that x(·) is w2− exponentially ergodic (recall Remark 4.2).
Hence multiplying (43) by 1/t and letting t→∞ the result (13) follows
from Lemma 5.1 and the w2−exponential ergodicity of x(·). �
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6 An Example

Now we give an example to illustrate our results. This example is an
extension of the one presented in [3]. Consider the scalar linear system

(44) dx(t) = [b(ψ(t))x(t) + βu(t)]dt+ σdW (t), x(0) = x, ψ(0) = i,

where b : E → R and the coefficients β, σ are given positive constants.
The control u(t) takes values in the compact set U := [0, a], with a > 0.
The controlled Markov-modulated diffusion (44) satisfies the Assump-
tion 2.1.

Now let r(x, i, u) := u be the reward rate. Choose a function w(x, i)
that satisfies Assumptions 2.4 and 3.1, respectively. Our goal is to find
stationary policies u(t) := f(x(t), ψ(t)) that minimize the limiting aver-
age variance. To this end, first, we find stationary policies that optimize
the long-run expected average reward and within this set we search vari-
ance optimal policies. To do this, we will use the equation (15), which
in the present case takes the form

(45) g = max
u∈[0,a]

{u+ hx(x, i)[b(i)x+ βu] +
1

2
σ2hxx(x, i) +Qh(x, i)}.

For the particular case when hx(x, i) < −1/β for all i ∈ E and x ∈
Rn, the control policy f∗(x, i) = 0 is the unique policy that attains
the maximum in (45) (hence, it is the unique average optimal policy).
Consequently, by uniqueness of f∗, f∗ it is also variance optimal.
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