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Categories of fractions revisited ∗

Tobias Fritz

Abstract

The theory of categories of fractions, as originally developed by
Gabriel and Zisman [1], is reviewed in a pedagogical manner giving
detailed proofs of all statements. A weakening of the category of
fractions axioms used by Higson [4] is discussed and shown to be
equivalent to the original axioms.
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1 Introduction

In category theory, the concept of localization is a tool for constructing
a new category from a given one. The idea is as follows: a category may
have a certain class of morphisms which are not all invertible, although
“morally” they “should” be invertible. As an example, one may consider
weak homotopy equivalences in the homotopy category of topological
spaces: some weak homotopy equivalences are homotopy equivalences,
and hence isomorphisms, but not all of them are [3]; on the other hand,
two weakly homotopy equivalent spaces behave in absolutely the same
way concerning the properties probed by maps from or to suitably nice
spaces, and hence should morally be isomorphic.

Given such a class of morphisms in a category, one can form a local-
ization of the original category, which is a new category which guaran-
tees all “morally invertible” morphisms to be invertible, while approx-
imating the original category as closely as possible. This idea can be
made precise in terms of a universal property; see Section 2.

Localizations exist not only for categories, but also for other kinds
of algebraic structures. For example for rings: adjoining formal inverses
for a certain class of ring elements yields a new ring from a given one.
Under certain conditions on the classW of elements to be inverted—the
so-called Ore conditions—there is a particularly nice way to describe the
elements of the localized ring in terms of an equivalence class of formal
fractions, where a formal fraction is defined to have an element of the
original ring in the numerator and an element ofW in the denominator.

It turns out that pretty much the same technique that works for
rings can also applied to categories. Under certain conditions, the lo-
calization of a category with respect to a class of morphisms can be
described in terms of “formal fractions”. If this construction is possi-
ble, the resulting localization is a category of fractions. In some cases,
such an abstract construction can be more useful than a concrete (in
the category-theoretical sense!) description of the localization. Further-
more, categories of fractions can be relevant for other general categorical
constructions; the theory of Verdier localization in the context of trian-
gulated categories is an example.

Due to the metamathematical nature of category theory, the objec-
tives in category theory are quite different from those in ring theory:
thinking of a category as representing the collection of models of a math-
ematical theory, we take the category of fractions as a tool to construct
a new mathematical theory from a given one.
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1.1 Summary

In Section 2, the concept of localization of a category is introduced and
compared with the process of taking a quotient category. Section 3
then gives a detailed account of the category of fraction axioms and
their consequences; in particular, all proofs are presented in complete
detail. Section 4 goes on to study a weakening of the category of fraction
axioms which was originally introduced by Higson [4] in the context of
bivariant K-theory of C∗-algebras. It is shown that this weakening is
equivalent to the usual set of axioms. This is the only new result of the
present work. Finally, Section 5 shows that a category of fractions is
additive in case the original category is additive.

1.2 Notation and terminology

In all commutative diagrams, the objects are simply denoted by fat
dots “•”. Unless noted otherwise, all diagrams commute. Identity
morphisms are pictured as double lines “ ”. The words “iso-
morphism” and “monomorphism” are abbreviated respectively as “iso”
and “mono”. A split mono is a morphism which has a left inverse; it
automatically is a mono. Domain and codomain of a morphism f are
written as dom(f) and cod(f), respectively.

2 Localization of categories

In some contexts it may happen that we have a category C which is —
in a sense depending on the situation — not well-behaved. For example,
it might be that it is too hard to do concrete calculations, or it might be
that C does not have some desired formal property. Then one can try
to find a second category Ĉ which has the same objects as C together
with a functor C → Ĉ which is the identity on objects, such that Ĉ
is better-behaved and approximates C in some appropriate sense also
depending on the situation. Then instead of working in C directly, one
can transport the morphisms from C to Ĉ via the functor C → Ĉ and
prove theorems about the morphisms in the well-behaved category Ĉ.
The price one has to pay is that in general some information about the
structure of C is lost on the way.

Now there are at least two concrete ways to make this precise. The
first one is the notion of a quotient category. Suppose we are given an
equivalence relation ∼ on every morphism set C(A,B) which is preserved
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under composition, meaning that

(1) (f1 ∼ f2) =⇒ (f1g ∼ f2g) ∧ (hf1 ∼ hf2) ∀f1, f2, g, h ∈ C

whenever these compositions are defined. Then, the composition of
equivalence classes is well-defined and defines the quotient category C/∼
together with the canonical projection functor C → C/∼. Any kind of
homotopy theory serves as a good example.

The second way is a concept called localization. It may be familiar
from ring theory. Suppose we are given a category C and a subclass of
morphisms called W, which “morally” ought to be isos, but in C not
necessarily all of them are; using the letter W is supposed to suggest a
reading like “weak equivalence” [5]. We try to turn all the morphisms
in W into isos by adjoining formal inverses for them. More precisely,
we are looking for a category Ĉ = C[W−1] equipped with a localization
functor Loc : C → C[W−1] which has the following universal property:

(a) Loc(w) is an iso for all w ∈ W,

(b) if F : C → D is any functor which maps W to isos, then F factors
uniquely over Loc as in the diagram

C Loc //

F ��

C[W−1]

∃!
{{

D

(2)

In case such a functor exists, the category C[W−1] is called the “local-
ization of C with respect to W”. It serves as the desired approximation
Ĉ to C.

Since C[W−1] is defined via a universal property, it is certainly
unique (up to a unique iso). Proving existence is the nontrivial part.

Theorem 2.1. C[W−1] and Loc always exist.

Proof. (from [2, III.2.2] and [1, 1.1]). The category C[W−1] can be
constructed in two steps: start with the category of paths—call it
P(C,W−1)—which has as objects the objects of C, and as morphisms fi-
nite strings 〈l1, . . . , ln〉 of composable literals, where a literal lk is either
a morphism of C (includingW) or a formal inverse of a morphism inW.
Composition of these morphisms is defined as concatenation of strings.
For every object A ∈ C, we also have the empty string 〈〉A which starts
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and ends at A and is the identity morphism of A in P(C,W−1). This
whole definition can be summarized by saying that P(C,W−1) is the
free category generated by the graph C ∪W−1.

There is a canonical map C → P(C,W−1) which is the identity on
objects and maps every morphism f ∈ C to the corresponding single-
literal string 〈f〉. This map already has the desired universal prop-
erty (b). However, neither is this map a functor nor does it map W to
isos. We can easily fix both of these issues by taking a quotient cate-
gory of P(C,W−1) in which these properties are enforced. To this end,
we introduce the equivalence relation ∼ on strings generated by closure
under composition together with the elementary equivalences

(a) 〈 〉A ∼ 〈 idA〉 ∀A ∈ Obj(C),

(b) 〈g, f〉 ∼ 〈gf〉 ∀f, g ∈ C for which the composition gf exists,

(c) 〈w,w−1〉 ∼ 〈 〉cod(w) , 〈w−1, w〉 ∼ 〈 〉dom(w) ∀w ∈ W.

Then it is clear that the induced map Loc : C → P(C,W−1)/∼ is a
functor and maps W to isos.

As for universality, suppose we are given some functor F : C → D
mapping W to isos. It induces a unique functor P(C,W−1) → D.
This functor maps the above elementary equivalences to equalities, thus
uniquely factors over the quotient category P(C,W−1)/∼.

Remark 2.2. (a) For locally small C, the localization C[W−1] need
not be locally small. Even under the conditions to be discussed
in the next section, it may well happen that the localization has
proper classes as the collections of morphisms between some pairs
of objects. Showing that this does not happen in a concrete case
seems to be a hard problem; one case where local smallness is
known is for model categories and localizing with respect to the
class of weak equivalences (see [5, p.7 and 1.2.10]).

(b) The canonical quotient functor C → C/∼ is full by definition of
C/∼. However, this is usually not true for a localization functor
Loc : C → C[W−1].

3 Categories of fractions

In all diagrams dealing with categories of fractions, a wiggly arrow
// denotes a morphism in W, while a straight arrow // is

any morphism of C.
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In certain situations, the localization C[W−1] can be described much
more explicitly, which implies a large gain of control over the structure
of this category. We say that W ⊆ C allows a calculus of left fractions,
if the following conditions are satisfied:

(L0) W contains all identity morphisms and is closed under compo-
sition. In other words, W is a subcategory of C containing all
objects.

(L1) Given any w ∈ W and an arbitrary morphism f with dom(f) =
dom(w), we can find w′ ∈ W with dom(w′) = cod(f) and some
morphism f ′ with cod(f ′) = cod(w′), such that the diagram

• w //

f

��

•
f ′

��
•

w′
// •

commutes.

(L2) Given w ∈ W and parallel morphisms f1, f2 such that f1w = f2w,
there exists w′ ∈ W such that w′f1 = w′f2.

• w // •
f1
((

f2

66 • w′ // •

These conditions are exact analogues of the Ore conditions in the
theory of (not necessarily commutative) rings [6, p. 3].

Remark 3.1. Condition (L0) is not an essential restriction: if (L1)
and (L2) hold for some class of morphisms W, then both also hold for
the C-subcategory generated by W ∪ {idA, A ∈ Obj(C)}. Hence W can
be replaced by this subcategory.

Proof. We assume that W satisfies (L1) and (L2), but not necessar-
ily (L0). Then W ∪ {idA, A ∈ Obj(C)} certainly also satisfies (L1)
and (L2), so it is enough to show that closing W under composition

gives a morphism class Ŵ which also satisfies (L1) and (L2).

Let w1, w2 ∈ W be composable to w = w2w1. Given any f with
dom(f) = dom(w1), two applications of (L1) show that we can find
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w′1, w
′
2 ∈ W and f ′, f ′′ ∈ C such that the diagram

• w1 //

f

��

• w2 //

f ′

��

•
f ′′

��
•

w′1

// •
w′2

// •

commutes. Now w′ = w′2w
′
1 ∈ Ŵ and f ′′ have the required properties

with respect to w = w2w1 and f . Applying this argument inductively,
we get the claim.
Concerning (L2), we similarly consider the situation f1w2w1 = f2w2w1,

and obtain

• w1 // • w2 // •
f1
((

f2

66 •
w′1 // •

w′2 // •

where, thanks to (L2), we could choose w′1 such that w′1f1w2 = w′1f2w2,
and then w′2 such that w′2w

′
1f1 = w′2w

′
1f2, as desired.

Definition 3.2. A roof (f, w) between two objects dom(f) and dom(w)
is a diagram of the form

•

•

f
??

•

w
__

From now on, we assume that W ⊆ C satisfies (L0), (L1) and (L2),
and derive some consequences from this assumption.

The way to think of a roof (f, w) is as being a formal “left fraction”
w−1f , defining a formal morphism from the lower left object to the lower
right object. Then (L1) intuitively states that it is possible to turn any
formal “right fraction” fw−1 into a left fraction w′−1f ′, since w′f = f ′w
together with invertibility of w and w′ implies fw−1 = w′−1f ′.

Definition 3.3. Two roofs (f1, w1) and (f2, w2) are equivalent if there
are morphisms g and h forming a third roof (gf1, gw1) = (hf2, hw2) as
in the diagram

•

•

g
??

•
h

__

•

f1
??

f2

44

•
w1

jj

w2

__

hw2=gw1

oo
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Note that it is not required for g or h to be elements of W, only the
composition gw1 = hw2 has to be in W. The equality of (gf1, gw1) =
(hf2, hw2) is expressed by commutativity of the two squares in the di-
agram.

The goal of this section is to establish that the equivalence classes
of roofs form a category under the appropriate composition operation,
and that this category is the localization C[W−1]. This will be done in
a sequence of small steps. Intuitively, the first step is to show that the
roof (f ′, w′) one obtains from using (L1) to turn a formal right fraction
fw−1 into a formal left fraction w′−1f ′ is unique up to equivalence. This
will let us define the composition of equivalence classes of roofs later on.

Lemma 3.4. Any two ways to choose f ′ and w′ in (L1) define equiva-
lent roofs.

Proof. Imagine two possible choices (f ′1, w
′
1) and (f ′2, w

′
2) as in the par-

tially commutative diagram

•

•
ŵ

OO

•

g
??

•

w̃
__

•

f ′1
??

f ′2

44

•
w′1

jj
w′2

__

•
w

gg

f

77

By (L1), g and w̃ were chosen such that gw′1 = w̃w′2. This is not yet an
equivalence of roofs, since, in general, gf ′1 6= w̃f ′2. However, we do know
that gf ′1w = w̃f ′2w, so by (L2) we can choose ŵ such that ŵgf ′1 = ŵw̃f ′2.
This makes (f ′1, w

′
1) and (f ′2, w

′
2) equivalent via ŵg and ŵw̃.

Lemma 3.5. The equivalence of roofs from Definition 3.3 is an equiv-
alence relation.

Proof. Reflexivity and symmetry are obvious. For transitivity, suppose
we are given an equivalence between (f1, w1) and (f2, w2), and one be-
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tween (f2, w2) and (f3, w3), as in the partially commutative diagram

•

•
ŵ

OO

•

k

88

•

w̃

ff

•

g
88

•

h

ff
g′

88

•

h′
ff

•

f1

__
f2

?? f3
44

•

w1

jj
w2

__

w3

??
gw1=hw2

PP

g′w2=h′w3

OO

Here, the equivalence between (f1, w1) and (f2, w2) is assumed to be
implemented by g and h, while the one between (f2, w2) and (f3, w3) is
implemented by g′ and h′. The commutativity conditions for the two
equivalences are

(3) gf1 = hf2, gw1 = hw2; g′f2 = h′f3, g′w2 = h′w3

In the upper part of the diagram, k and w̃ were obtained by apply-
ing (L1) to the two wiggly arrows gw1 = hw2 and g′w2 = h′w3. The
corresponding commutativity assertion of (L1) then is khw2 = w̃g′w2.
By virtue of (L2), we can then find the drawn ŵ such that ŵkh = ŵw̃g′.
Together with the relations (3), this means that the compositions ŵkg
and ŵw̃h′ of the morphisms which go up along the sides implement an
equivalence between (f1, w1) and (f3, w3).

Under a closer look, the above argument is actually a special case
of the argument used to prove Lemma 3.4. In fact, we could also have
applied Lemma 3.4 directly to the two roofs (h, hw2) and (g′, g′w2), since
both are (L1)-complements of the formal right fraction iddom(w2)w

−1
2 .

Remark 3.6. We can also take a 2-categorical point of view which gives
some more intuitive insight on the notion of equivalence of roofs. We
get something resembling a 2-category as follows: on the objects of C
we define a 1-morphism to be a roof in C with respect to W. For a roof
(f, w), we define dom((f, w)) = dom(f) and cod((f, w)) = dom(w). A
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2-morphism from a roof (f1, w1) to a parallel roof (f2, w2) is then defined
to be a commutative diagram

• %% •

•

f1
??

f2

55

•
w1

ii
w2

__

The existence of such a 2-morphism makes (f1, w1) and (f2, w2)
equivalent; we call such a 2-morphism an elementary equivalence. A 2-
morphism from (f1, w1) to (f2, w2) can be composed with a 2-morphism
from (f2, w2) to (f3, w3). This resembles the vertical composition in a
2-category. Now the observation is that two roofs are equivalent if and
only if they can be connected by a finite path of 2-morphisms, where
each 2-morphism is either traversed from its domain to its codomain or
in the reverse direction. To see this, note that the third roof (gf1, hw2)
in the diagram of Definition 3.3 is connected to each of the other two
roofs by a 2-morphism. The other implication direction follows from the
transitivity statement of Lemma 3.5 and the fact that two parallel roofs
connected by a single 2-morphism are equivalent. Hence Lemma 3.5 can
also be reinterpreted as a connectivity statement about the category of
parallel roofs between some pair of objects.

In what follows, we will define a (weakly associative) composition of
1-morphisms. A horizontal composition of 2-morphisms does not seem
to exist in general, although it seems related to the upcoming proof that
the composition of 1-morphisms is well-defined up to equivalence.

We end this remark by pointing out again that this 2-categorical
picture is a non-rigorous intuition.

Lemma 3.4 also allows the definition of composition for equivalence
classes of roofs:

Definition 3.7. Given two roofs (f1, w1) and (f2, w2) which are com-
posable in the sense that dom(w1) = dom(f2), we define their composi-
tion as

(f2, w2) ◦ (f1, w1) ≡ (f̃f1, w̃w2)
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where f̃ and w̃ in

•

•

f̃
??

•

w̃
__

•

f1
??

•
w1

__

f2

??

•

w2

__

were obtained by means of (L1).

Thanks to lemma 3.4, the equivalence class of (f̃ , w̃) is unique.
Therefore, so is the equivalence class of (f̃f1, w̃w2).

Lemma 3.8. This composition does not depend on the equivalence class
of either of the two roofs.

Proof. For both pairs of roofs, it is sufficient to consider the case that
they are connected by an elementary equivalence as described in Re-
mark 3.6. Thus suppose we are given the lower half of the diagram

•

• g1 // •

f̃
??

•

w̃
__

•g2oo

•

f ′1
??

f1

55

•

w1

__

w′1

ii
f2

??

f ′2

55

•

w′2
__

w2

ii

which represents two pairs of elementarily equivalent roofs. After pos-
sible renamings (f1, w1) ↔ (f ′1, w

′
1) and (f2, w2) ↔ (f ′2, w

′
2), we can

assume that g1 goes from cod(f ′1) to cod(f1), while g2 similarly points
from cod(f ′2) to cod(f2).

Applying (L1) to the pair w1, f2 yields f̃ and w̃. Then (f̃f1, w̃w2)
is a possible roof representing the composition (f2, w2) ◦ (f1, w1). Sim-
ilarly, (f̃g1f

′
1, w̃g2w

′
2) is a possible roof representing the composition

(f ′2, w
′
2) ◦ (f ′1, w

′
1). By commutativity, these roofs coincide, so in partic-

ular they are equivalent.

Theorem 3.9. If W ⊆ C admits a calculus of left fractions, then the
category C[W−1] can be described as the category with the same objects
as C, morphisms equivalence classes of roofs, and composition as de-
fined above. The localization functor Loc : C → C[W−1] is given by
f 7→ (f, id).
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Proof. Associativity of composition follows from the symbolic diagram

•

•

??

•

__

•

??

•

__ ??

•

__

•

??

•

__ ??

•

__ ??

•

__

where the three lower roofs are those to be composed; the rest of the
diagram is obtained by three applications of (L1). Then the large roof
from the left to the right formed by composing the morphisms along
the sides is a representative for the composition of the three lower roofs
in both possible ways of bracketing. This shows associativity. Further-
more, the equivalence classes of the roofs (id, id) obviously play the rôle
of identity morphisms. Therefore, taking equivalence classes of roofs as
morphisms on Obj(C) gives a well-defined category C[W−1].

Concerning functoriality, Loc preserves identities by definition, and
preserves composition by the diagram

•

•

g
??

•

•

f
??

•

g
??

•

which says that the roof (gf, id) is a representative for the equivalence
class of (g, id) ◦ (f, id).

Under Loc, the image of some w ∈ W is (w, id), and this image has
as its inverse element the class of (id, w) since (w,w) is a representative
of both (id, w) ◦ (w, id) and (w, id) ◦ (id, w), and there is an obvious
equivalence (w,w) ∼ (id, id). In particular, Loc maps W to isos.

It remains to check universality. Suppose we have some functor
F : C → D which maps W to isos. First we need to show that F
uniquely extends to roofs. By the desired commutativity of (2), any
such extension has to map the roof (f, id) to F (f). Similarly, since the
class [(id, w)] is the inverse of the class [(w, id)], any such extension maps
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(id, w) to F (w)−1. But now (f, w) is a representative of the composition
(id, w) ◦ (f, id), so we need (f, w) 7→ F (w)−1F (f).

We still have to check that this assignment is well-defined on equiv-
alence classes and that it is functorial. Consider an elementary equiva-
lence of roofs as in Remark 3.6,

•

g

%% •

•

f1
??

f2

55

•
w1

ii
w2

__

Then in D we have F (w2) = F (g)F (w1), so F (w1)
−1 = F (w2)

−1F (g).
Then the calculation

(4) F (w1)
−1F (f1) = F (w2)

−1F (g)F (f1) = F (w2)
−1F (f2)

shows that the equivalent roofs get mapped to identical morphisms in
D.

Functoriality follows by very similar reasoning. Given a pair of com-
posable roofs together with their composition as in Definition 3.7, it
holds that

(5) F (f̃)F (w1) = F (w̃)F (f2)

so that we get

(6) F (w̃)−1F (f̃) = F (f2)F (w1)
−1

Applying first the functor and composing the roofs afterwards yields

(7)
(
F (w2)

−1F (f2)
)
◦
(
F (w1)

−1F (f1)
)

while for the other direction we end up with F (w̃w2)
−1F (f̃f1), which

coincides with (7) by (6) and functoriality of F .

If W ⊆ C satisfies (L0) (which is self-dual) and additionally the
conditions (R1) and (R2), which are defined to be the category-theoretic
duals of (L1) and (L2), then we say that W allows a calculus of right
fractions. In this case, the dual theorem holds: C[W−1] can be described
in terms of equivalence classes of roofs (w, f) which now represent right
fractions fw−1. If all five of the (L∗) and (R∗) conditions hold, we say
that W admits a calculus of left and right fractions.
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4 Weakening the requirements

In [4], a notion of category of fractions is introduced which, on first
sight, is seemingly weaker in its premises than the one discussed in
the previous section. While keeping (L0) and (L1), the axiom (L2) is
replaced by the condition

(L2’) Denote byWL the class of morphisms in C generated byW and all
split monos in C. Then given w ∈ W and parallel morphisms f1, f2
such that f1w = f2w, there exists w′ ∈ WL such that w′f1 = w′f2.

• w // •
f1
((

f2

66 • w′ // •

Proposition 4.1. Given w′ ∈ WL, we can find k ∈ C such that
kw′ ∈ W.

Proof. Let us consider the cases how w′ might look like, one by one and
in increasing order of difficulty. If already w′ ∈ W, we are done since
we can take k = idcod(w′). If w′ = mŵ, where m is a split mono and
ŵ ∈ W, we can take k to be a left-inverse of m, so we are done as well.

The only non-trivial type of situation occurs when w′ is a compo-
sition of morphisms in W and split monos such that morphisms of W
come after split monos. The prototype for this situation is a morphism
like w′ = ŵm, with ŵ ∈ W and m a split mono. By assumption, m has
a left inverse e, which means em = id. Now apply (L1) to the pair ŵ, e,

• ŵ //

e

��

•

k

��
•

w̃
//

m

AA

w′

??

•

which gives the morphism k and some morphism w̃ ∈ W. The commu-
tativity assertion of (L1) states in this case w̃e = kŵ, so after composing
with m on the right we have w̃ = w̃em = kŵm = kw′ ∈ W.

Now for the general case. By definition of WL and (L0), our w′ is
of the form

(8) w′ = wnmn · · ·w1m1
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where the mj are split monos and wj ∈ W. Starting from the left, we
can iteratively apply the previous argument and use (L0) to compose
the morphisms in W to a single morphism in W, until we have only a
single morphism in W left.

Corollary 4.2. (a) Given (L0) and (L1), the assertions (L2) and
(L2’) are equivalent.

(b) Two roofs (f1, w1) and (f2, w2) are equivalent if and only if there
is a diagram

•

•

g
??

•

h
__

•

f1
??

f2

44

•
w1

jj
w2

__

where now we only demand commutativity and hw2 ∈ WL (instead
of hw2 ∈ W).

Proof. These are both immediate consequences of the previous propo-
sition.

Remark 4.3. As already noticed in [4, 1.2.4], when (L0) holds the
axiom (L1) is in fact equivalent to the following variant where w ∈ WL:

(L1’) Given any w ∈ WL and an arbitrary morphism f with dom(f) =
dom(w), we can find w′∈ W and some morphism f ′ with cod(f ′) =
cod(w′), such that the diagram

• w //

f

��

•
f ′

��
•

w′
// •

commutes.

Clearly, (L1) is trivially implied by this. For the other implication
direction, by Remark 3.1 it is sufficient to show that (L1’) holds if w is
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any split mono as in the diagram

• w
//

f

��

•

fe

��

e
~~

• •

with e some left-inverse of w. Then by (L0) we have w′ ≡ idcod(f) ∈ W,
so together with f ′ ≡ fe this does the job; commutavity few = f holds
since e is left-inverse to w.

5 Additive categories of fractions

Often, the working mathematician deals with additive categories. In
particular, they may want to do localization completely within the
framework of additive categories. In other words, given an additive cat-
egory C and a class of “moral isomorphisms”W in C, is there an additive
category C[W−1] and an additive localization functor Loc : C → C[W−1]
which maps W to isos and is the universal additive functor with this
property? And if yes, how can this localization be constructed?

For simplicity, we only consider the case of the category of fractions.
Then, in fact, the localization constructed in Theorem 3.9 already is
additive. Inituitively, the reason is that one can find a “common de-
nominator” for pairs of roofs representing parallel morphisms in C[W−1].
The purpose of this section is to turn this intuitive explanation into a
formal proof.

In the following, C is an additive category, and W ⊆ C is a class
of morphisms satisfying (L0), (L1) and (L2) (or the alternatives (L1’)
and (L2’) discussed in the previous section).

We start by constructing “common denominators” and using them
to define an addition operation on equivalence classes of roofs.

Given parallel roofs (f1, w1) and (f2, w2), we apply (L1) to the pair
w1, w2 and obtain a diagram

•

•

g
??

•

w̃
__

•

f1
??

f2

44

•

w2

__

w1

jj(9)
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which commutes only in the sense that gw1 = w̃w2. There is an equiva-
lence (f1, w1) ∼ (gf1, w̃w2), and similarly (f2, w2) ∼ (w̃f2, w̃w2). Thus
we have identified w̃w2 as a “common denominator”. Now we can define
the sum of (f1, w1) and (f2, w2) as

(10) (f1, w1) + (f2, w2) ≡ (gf1 + w̃f2, w̃w2) .

It needs to be checked that the class of (gf1+w̃f2, w̃w2) does not depend
on the particular choice of g and w̃. Thanks to Lemma 3.4, the class
[(g, w̃)] is well-defined by w1 and w2. Now if (g′, w̃′) is another choice
connected to (g, w̃) by an elementary equivalence h, then we have the
diagram

•
h

%% •

•

g
??

g′

55

•
w̃

ii
w̃′

__

•

f1
??

f2

22

•

w2

__

w1

ll

which commutes only in the sense that gw1 = w̃w2, g′w1 = w̃′w2,
hg = g′ and hw̃ = w̃′. The equation g′f1 + w̃′f2 = h(gf1 + w̃f2) shows
that h likewise implements an equivalence

(g′f1 + w̃′f2, w̃
′w2) ∼ (gf1 + w̃f2, w̃w2) ,

as was to be shown.
While it has been proven that the definition (10) produces a well-

defined class of roofs from every pair of roofs, it is still unclear whether
the sum depends on the particular representatives of the summands or
only on their classes.

Lemma 5.1. The class of the sum only depends on the classes of the
summands and not on the particular representatives.

Proof. Still using the same notation, it is sufficient to consider an ele-
mentary equivalence between (f1, w1) and some (f ′1, w

′
1):

•
h

%% •

•

f ′1
??

f1

55

•
w′1

ii
w1

__
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Then taking the common denominator of (f1, w1) and (f2, w2) as above
yields the partially commutative diagram

•

•
h

%% •

g
??

•

w̃
__

•
f ′1

OO

f1

88

f2

33

•w′1

kk

w1

gg

w2

OO

Now the sum of (f1, w1) and (f2, w2) is the class of

(11) (gf1 + w̃f2, w̃w2)

while the sum of (f ′1, w
′
1) and (f2, w2) is the class of

(12) (ghf ′1 + w̃f2, w̃w2)

which coinides with (11) by commutativity of the diagram.

Theorem 5.2. Suppose C is additive and allows a calculus of left frac-
tions with respect to W. Then the category of fractions C[W−1] is addi-
tive.

Proof. A category is additive if it is preadditive, has a zero object, and
has a biproduct for every pair of objects.

It was already shown how to add equivalence classes of roofs and
that this operation is well-defined. Its associativity can be seen from a
diagram of the symbolic form

•

•

??

•

__

•

??

•

__ ?? ^^

•

?? 44 22

•

^^iill

Its commutativity is evident from (9) by realizing that g and w̃ play
identical rôles in (9): it is not relevant that w̃ ∈ W, but only that
w̃w2 ∈ W. Neutral elements of the addition operation are given by the
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equivalence classes [(0, id)]. An additive inverse of [(f, w)] is [(−f, w)].
Hence the category of fractions is preadditive.

The localization functor was defined as Loc : f 7→ (f, id). For paral-
lel morphisms f, g ∈ C, adding roofs gives [(f, id)]+[(g, id)] = [(f+g, id)];
in other words, Loc is additive. In particular, Loc maps biproduct di-
agrams to biproduct diagrams. Then since the functor is surjective on
objects, C[W−1] has biproducts. Any null object of C also is a null
object in C[W−1]. All in all, this makes C[W−1] additive.

Remark 5.3. In an additive category, we can obviously replace the
axiom (L2) by the slightly simpler requirement

(L2”) Given w ∈ W and a morphism f such that fw = 0, there exists
w′ ∈ W (or w′ ∈ WL) such that w′f = 0.

• w // • f // • w′ // •
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