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The minimum cost flow problem with interval

and fuzzy arc costs ∗

Carlos M. Ramos 1 Feliú D. Sagols

Abstract

We follow the total order for intervals and fuzzy numbers intro-
duced by Hashemi et al. in [1] and Ghatee et al. in [2] to solve the
minimum cost flow problem with either, interval or fuzzy arc costs
by using its crisp model, a minimum cost flow problem associated
to original imprecise problem. Numerical simulations compare the
performance of this method in real scenarios with the algorithm
proposed in [1].
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1 Introduction

The Minimum Cost Flow Problem (MCFP) is a basic problem in net-
work flow theory with several applications. The standard formulation
of the MCFP assumes that input data are known precisely. In this
paper we study a slight variation of this problem where the arc costs
are imprecisely known. There are previous related results in the litera-
ture. In [3] the MCFP with stochastic arc costs is studied and solution
methods are developed based on two optimality concepts: cycle marginal
costs, and network equilibrium. In [1] the MCFP with interval arc costs
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is considered and two solution methods are introduced based on ex-
tensions of some efficient combinatorial algorithms for the MCFP. Also
two performance indexes are used to measure the efficiency of these
methods in simulations performed on different scenarios. In [2] the
MCFP is established for fuzzy arc costs and, just as for the problem
with interval arc costs, the proposed solution modifies the negative-
cycle-canceling algorithm in order to allow the use of fuzzy numbers.
In this work we solve both approaches of the MCFP: with interval and
fuzzy arc costs. In both cases we solve the problem by transforming it
into a conventional MCFP. We use the performance indexes introduced
in [1] to compare both, the methodology in [1] and ours.

2 Intervals and fuzzy numbers

Intervals and fuzzy numbers are mathematical representations of impre-
cise quantities sucessfully applied to solve several problems in industrial
engineering and operations research. Interval and fuzzy mathematics
are generalizations of real aritmethic where numbers are replaced by
intervals or fuzzy numbers. Some basic fuzzy numbers concepts are
defined in Section 2.2. For all of the undefined concepts about fuzzy
numbers we follow [5].

2.1 Intervals arithmetic

A closed interval in R is a set [aL, aR] = {x ∈ R|aL ≤ x ≤ aR} where
aL and aR are the left and right limits of the interval. An interval
A = [aL, aR] is an interval number and is represented by AI = 〈a, aw〉
where a = aR+aL

2 and aw = aR−aL
2 ≥ 0 are the center and the width of

the interval number AI respectively.

It is common to use the following two operations on intervals.

Definition 2.1.1. Let 〈a, aw〉 and 〈b, bw〉 be interval numbers and λ ≥ 0
a real number. The addition of two interval numbers and the multipli-
cation of an interval number by an escalar satisfies, respectively

(1) 〈a, aw〉+ 〈b, bw〉 = 〈a+ b, aw + bw〉

(2) λ〈a, aw〉 = 〈λa, λaw〉 = 〈a, aw〉λ
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A review of intervals and their algebraic properties appears in [4].
An ordering on a special kind of interval numbers was introduced

by Hashemi et al. [1] based on a weighted scheme.

Definition 2.1.2. Let 〈a, aw〉 and 〈b, bw〉 be interval numbers and k, l
real positive numbers. A relation ≤k,l on intervals is

〈a, aw〉 ≤k,l 〈b, bw〉 ⇔ ka+ law ≤ kb+ lbw.

The relation ≤k,l on interval numbers is reflexive, transitive and
complete. The following definition and proposition establishes that this
relation is an ordering on a particular subset of interval numbers for a
special election of k and l.

Definition 2.1.3. Let IQ = {〈a, aw〉|a, aw ∈ Q} be the set of intervals
with rational entries.

Proposition 2.1.4 ([1]). Let π be a non-algebraic real positive number
and k = q1π

n1, l = q2π
n2, where q1, q2 ∈ Q+−{0} are non-zero rational

numbers and n1 6= n2 ∈ Z+. Then, the relation ≤k,l provides a total
order on IQ.

2.2 Fuzzy numbers arithmetic

A fuzzy set Ã in the universe X is characterized by a membership (cha-
racteristic) function µÃ : X → [0, 1] which associates with each point

in X a “membership grade” in the interval [0, 1]. A fuzzy number Ã is
a fuzzy set in the universe R with membership function µÃ where

1. µÃ is piecewise continuous

2. There exists a unique x0 ∈ R with µÃ(x0) = 1

3. µÃ(λx1+(1−λ)x2) ≥ min(µÃ(x1), µÃ(x2)) ∀x1, x2 ∈ R, ∀λ ∈ [0, 1]

A fuzzy number M̃ is said to be an LR fuzzy number if and only if

µM̃ (x) =

L
(m− x

mL

)
for x ≤ m, mL > 0

R
(x−m
mR

)
for x ≥ m, mR > 0

where L,R : R→ [0, 1] are symmetric and non-increasing on [0,+∞)
functions such that L(0) = R(0) = 1. Quantities m, mL and mR are
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called the mean value, and the left and right spreads of M respectively.
Let us denote M̃ = (m,mL,mR)LR.

For LR fuzzy numbers there are two basic operations too [5].

Definition 2.2.1. Let (a, aL, aR)LR and (b, bL, bR)LR be LR fuzzy num-
bers and λ ≥ 0 a real number. The addition of two LR fuzzy numbers
and the multiplication of a fuzzy number by escalar satisfies, respec-
tively

(3) (a, aL, aR)LR +̃ (b, bL, bR)LR = (a+ b, aL + bL, aR + bR)LR

(4) λ(a, aL, aR)LR = (λa, λaL, λaR)LR = (a, aL, aR)LRλ

Analogous to interval numbers it is possible to define an ordering on
a subset of LR fuzzy numbers.

Definition 2.2.2. Let (a, aL, aR)LR and (b, bL, bR)LR be LR fuzzy num-
bers and k, l, r real positive numbers. A relation ≤k,l,r on LR fuzzy
numbers may be defined as

(a, aL, aR)LR ≤k,l,r (b, bL, bR)LR ⇔ ka+ laL + raR ≤ kb+ lbL + rbR.

Definition 2.2.3. Let LRQ = {(m,mL,mR)LR|m,mL,mR ∈ Q} be
the set of LR fuzzy numbers with rational entries.

Proposition 2.2.4 ([2]). Let π be a non-algebraic real positive number
and k = q1π

n1, l = q2π
n2 and r = q3π

n3 where q1, q2, q3 ∈ Q+−{0} are
non-zero rational numbers and n1 6= n2 6= n3 ∈ Z+. Then, the relation
≤k,l,r provides a total order on LRQ.

3 The minimum imprecise-cost flow problem

Let G = (N,A) be a directed graph where N and A are sets of nodes
and arcs respectively. Each arc (i, j) ∈ A has a cost ci,j , and an integral
capacity ui,j . Each node i ∈ N has a supply or demand represented as
an integer bi. If bi is negative (resp. positive or zero) then the node i is
a demander (resp. supplier or transient) node. Moreover, the sum of

supplies and demands is assumed to be zero, i.e.,
∑
i∈N

bi = 0.
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The cost vector is denoted by c = (ci,j)(i,j)∈A. Similarly u =
(ui,j)(i,j)∈A and b = (bi)i∈N denote respectively the capacities and sup-
plies vector. The 5-tuple N = (N,A, u, c, b) is a network.

The minimum cost flow problem on network N = (N,A, u, c, b) con-
sists in determining the flow xi,j on each arc (i, j) ∈ A that solves the
following problem.

Minimize:

(5)
∑

(i,j)∈A

ci,jxi,j

Subject to:

(6)
∑

{j:(i,j)∈A}

xi,j −
∑

{j:(j,i)∈A}

xj,i = bi ∀ i ∈ N

(7) 0 ≤ xi,j ≤ ui,j ∀ (i, j) ∈ A

The flow vector x = (xi,j)(i,j)∈A is feasible if and only if it satisfies
the contraints (6) - (7) and it is an optimal flow if its total transporting
cost (5) is minimal among the costs of all feasible flows.

It is well-known that the MCFP can be solved efficiently in (strongly)
polynomial time. The running times for several algorithmic implemen-
tations appears in [7, 8].

If instead of using numbers in the entries of the cost vector c we
use interval numbers (resp. fuzzy numbers) a minimum interval-cost
flow problem (resp. minimum fuzzy-cost flow problem), MICFP (resp.
MFCFP) for short, is defined on network N . We have a minimum
imprecise-cost flow problem on network N if we have either a MICFP
or a MFCFP on N . The notion of feasible flow remains inaltered in this
case, however the objective function∑

(i,j)∈A

ci,jxi,j

is an interval or fuzzy number and the flow x is optimal if its cost is the
minimum among all costs of feasible flows with respect to the ≤k,l or
≤k,l,r ordering.
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4 The crisp model for a minimum imprecise-
cost flow problem

Suppose we have a minimum imprecise-cost flow problem on a network
N = (N,A, u, ĉ, b) with imprecise arc cost vector ĉ, and that all arc
costs ĉi,j are in IQ (resp. LRQ). Let k and l (resp. k, l and r) be
numbers such that the Hashemi’s order is a total order on IQ (resp.
LRQ).

For each arc (i, j) ∈ A, let us define the crisp cost c̄i,j as

c̄i,j =

{
kci,j + lcwi,j , if ĉi,j = 〈ci,j , cwi,j〉
kci,j + lcLi,j + rcRi,j , if ĉi,j = (ci,j , c

L
i,j , c

R
i,j)LR

so we can establish the crisp model associated to the original minimum
imprecise-cost flow problem as

Minimize:

(8)
∑

(i,j)∈A

c̄i,jxi,j

Subject to:

(9)
∑

{j:(i,j)∈A}

xi,j −
∑

{j:(j,i)∈A}

xj,i = bi ∀ i ∈ N

(10) 0 ≤ xi,j ≤ ui,j ∀ (i, j) ∈ A

which is a conventional minimum cost flow problem where the restric-
tions (9) - (10) are the same as in the imprecise problem but now with
real arc costs in the objective (8) instead of imprecise values.

Proposition 4.1. Let x∗ = (x∗i,j)(i,j)∈A be a feasible flow which is an
optimal solution for the crisp model (8) - (10) associated to a MFCFP.
Then x∗ also is an optimal solution for the MFCFP.

Proof. Let k, l, and r be numbers inducing a total order on LRQ (as in
Proposition 2.2.4).

Notice that a flow is a feasible flow in the crisp model if and only if
it is a feasible flow in the MFCFP.

Let x∗ = (x∗i,j)(i,j)∈A be an optimal flow for the crisp model. Then
x∗ is a feasible flow for the MFCFP too.



The minimum cost flow problem with interval and fuzzy arc costs 63

If the optimal solution for the MFCFP is y∗ = (y∗i,j)(i,j)∈A and∑
(i,j)∈A

ĉi,jy
∗
i,j <k,l,r

∑
(i,j)∈A

ĉi,jx
∗
i,j . Then we have that

∑
(i,j)∈A

(
ci,j , c

L
i,j , c

R
i,j

)
LR

y∗i,j <k,l,r
∑

(i,j)∈A

(
ci,j , c

L
i,j , c

R
i,j

)
LR

x∗i,j

⇔
∑

(i,j)∈A

(
ci,jy

∗
i,j , c

L
i,jy
∗
i,j , c

R
i,jy
∗
i,j

)
LR

<k,l,r

∑
(i,j)∈A

(
ci,jx

∗
i,j , c

L
i,jx
∗
i,j , c

R
i,jx
∗
i,j

)
LR

⇔
( ∑

(i,j)∈A

ci,jy
∗
i,j ,

∑
(i,j)∈A

cLi,jy
∗
i,j ,

∑
(i,j)∈A

cRi,jy
∗
i,j

)
LR

<k,l,r( ∑
(i,j)∈A

ci,jx
∗
i,j ,

∑
(i,j)∈A

cLi,jx
∗
i,j ,

∑
(i,j)∈A

cRi,jx
∗
i,j

)
LR

⇔ k
∑

(i,j)∈A

(ci,jy
∗
i,j) + l

∑
(i,j)∈A

(cLi,jy
∗
i,j) + r

∑
(i,j)∈A

(cRi,jy
∗
i,j) <

k
∑

(i,j)∈A

(ci,jx
∗
i,j) + l

∑
(i,j)∈A

(cLi,jx
∗
i,j) + r

∑
(i,j)∈A

(cRi,jx
∗
i,j)

⇔
∑

(i,j)∈A

(
kci,j + lcLi,j + rcRi,j

)
y∗i,j <

∑
(i,j)∈A

(
kci,j + lcLi,j + rcRi,j

)
x∗i,j

⇔
∑

(i,j)∈A

c̄i,jy
∗
i,j <

∑
(i,j)∈A

c̄i,jx
∗
i,j

which is a contradiction to the optimality of x∗ for the crisp model.
Therefore, x∗ is an optimal solution for the MFCFP.

Corollary 4.2. Let x∗ = (x∗i,j)(i,j)∈A be a feasible flow that is an optimal
solution for the crisp model (8) - (10) associated to a MICFP. Then x∗

also is an optimal solution for the MICFP.

Proof. Analogous to proof of Proposition 4.1.

The last results are rewriten as follows.

Theorem 4.3. The optimal solution for a minimum imprecise-cost flow
problem is given by the optimal solution for the associated crisp model.
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Theorem 4.3 yields a simple method to solve a minimum imprecise-
cost flow problem: we can directly use polynomial-time combinatorial
algorithms to obtain the optimal solution for the associated crisp model.
The optimal flow found is optimal for the original minimum imprecise-
cost flow problem too.

5 Numerical simulation results

The crisp model methodology was tested on networks with interval arc
costs consisting of 20 nodes and exactly 40 arcs. The nodes in these
networks had two as average degree. These networks were randomly
generated using the following procedure (see [3] for details).

1. Label the nodes in the network from 1 through n.

2. Set b1 = b and bn = −b for a positive integer b. The remaining
nodes are transient nodes.

3. Generate n− 1 directed arcs (i, i+ 1) for all i = 1, · · · , n− 1 and
set ui,i+1 = b, and ĉi,i+1 = 〈c, cw〉 where c and cw are positive
rational constants.

4. Generate the remainning n+1 arcs (i, j) by selecting their tail and
head nodes randomly, each node should have the same probability
to be selected, but parallel arcs and loops must be avoided. Arc’s
capacities, center costs, and cost widths are uniformly drawn from
[0, b], [0, c] and [0, cw] respectively.

To measure the accuracy of the crisp model for the prediction of
optimal flows in an imprecise environment we follow the scenario idea
used in [1]. Let N = (N,A, u, ĉ, b) be a network with interval arc costs;
the network Ns = (N,A, u, cs, b) is a scenario of N if and only if each
arc cost csi,j belongs to the interval arc cost 〈ci,j , cwi,j〉 for all (i, j) ∈ A.
Two performance indexes for a set of scenarios S of N are defined in [1]
as follows.

Let V ∗(N ′) be the optimal value of a instance of one of the problems
MCFP, MICFP or MFCFP on a given network N ′. An instance of the
MICFP on network N solved by the crisp model has an interval as
optimal cost, i.e., V ∗(N ) = 〈V, V w〉 for an interval 〈V, V w〉. The first
performance index denoted I1(N ), is the proportion of scenarios of N
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|S| 1000 3000 5000

k l I1 I2 I1 I2 I1 I2
1 4π 1.0 0.0 1.0 0.0 1.0 6.0
1 3π 1.0 1.0 1.0 1.0 1.0 0.0
1 2π 1.0 5.0 1.0 5.0 1.0 0.0
1 π 1.0 0.0 1.0 0.0 1.0 0.0
1 π/2 1.0 4.0 1.0 3.9 1.0 7.0
1 π/3 1.0 1.0 1.0 1.0 1.0 9.0
1 π/4 1.0 0.0 1.0 8.9 1.0 18.0

Table 1: Results of the MICFP in the random networks with 20 nodes.

whose optimal costs are in the interval V ∗(N ). More precisely,

I1(N ) =
| {Ns ∈ S : V ∗(Ns) ∈ V ∗(N )} |

|S|
.

As much as this index is close to one, the crisp model predicts the cost
of shipment more accurately.

Let x = (xi,j)(i,j)∈A be the optimal flow in the MICFP on network
N obtained by solving its associated crisp model, and xs = (xsi,j)(i,j)∈A
be the optimal flow for scenario Ns. The second performance index
denoted I2(N ), is the maximum difference between arc flow entries in
x and in xs normalized per cost unit. More precisely,

I2(N ) = max
Ns∈S

max
(i,j)∈A

|xi,j − xsi,j | csi,j
max
(i,j)∈A

csi,j

 .

The method yields a better solution as the second index is close to zero.
In Table 1 we report the results produced by the crisp model metho-

dology to solve some instances of the MICFP’s and the values obtained
for I1(N ) and I2(N ). We choose similar values for k and l as used in
[1, 2], and for each pair of values k and l a random network with interval
arc costs is created and then a set S of scenarios is generated. Finally
the indexes I1 and I2 are calculated.

Now let us consider the MCFP on network N where the arc costs are
all LR fuzzy numbers, i.e., a MFCFP. For every α ∈ [0, 1] the α-level set
(or α-cut) of a fuzzy set Ã is the ordinary set Ãα = {x ∈ X | µÃ(x) ≥ α}
and when Ã is an LR fuzzy number Ãα is always a closed interval.
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α 0.0 0.25 0.5 0.75

k l r I1 I2 I1 I2 I1 I2 I1 I2
1 4π 16π2 1.0 9.5 1.0 0.0 1.0 12.0 1.0 0.0
1 3π 9π2 1.0 11.2 1.0 0.0 1.0 0.0 1.0 0.0
1 2π 4π2 1.0 10.0 1.0 3.0 1.0 0.0 1.0 0.0
1 π π2 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0
1 π/2 π2/4 1.0 12.0 1.0 0.0 1.0 4.0 1.0 0.0
1 π/3 π2/9 1.0 20.0 1.0 0.0 1.0 0.0 1.0 0.0
1 π/4 π2/16 1.0 9.0 1.0 4.0 1.0 15.0 1.0 0.0

Table 2: Results for 5000 α-escenarios in the MFCFP on random net-
works with 20 nodes.

Extending the scenario idea for networks with fuzzy arc costs we can
take each cost csi,j of scenario Ns in the interval defined by an α-cut of
the fuzzy cost c̃i,j . Actually this gives us an α-scenario Ns(α) for each
possible value of α.

By a similar procedure applied on a randomly generated network N
with triangular fuzzy arc costs we measured the performance indexes I1
and I2 for several α-scenarios of the MFCFP. The results obtained for
some possibility level α are show in Table 2.

In both, Tables 1 and 2, we obtained I1 = 1 for all experiments.
This improves the results reported in [1] where a value of one was never
reached for I1. On the other hand, in the same reference no value
reported for I2 is zero, but there are several entries in Tables 1 and 2
where this optimal value is reached. Thus, in more than 40% of the
entries in Table 1 we obtained the best possible value for I2 by using
the crisp model and the same happened for more than 50% of entries
in Table 2. The authors of [1] never got zero values. The combination
I1 = 1 and I2 = 0 appears in 48% of the results reported in Tables 1
and 2, hence in almost 50% of all experiments performed we obtained
accurate solutions.

6 Conclusion

Minimum cost flow problems are important in network optimization
due to their wide range of applications. In this paper we assumed that
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arc costs in the network are imprecise values that could be described
by intervals as well as by LR fuzzy numbers. We solved the minimum
cost flow problem with imprecise arc costs by applying the crisp model
methodology and transforming it into a crisp minimum cost flow pro-
blem. This transformation was based on the total order introduced in
[1, 2] for a special kind of intervals and fuzzy numbers. Although in this
paper we choose the k, l and r values accordingly to the recommenda-
tions in [1, 2], it is an important question to ask for a proper way to do
this selection, because in a floating arithmetic system it is impossible to
represent non-algebraic numbers even if they are computable.

Our choosing of k, l and r as powers (including exponent 0) of
rational multiples of π is motivated (and supported) by the positive
results reported in Tables 1 and 2. Yet, we believe a deeper study is in
order because the use of a floating point system has radical consequences
on the truthfulness of Propositions 2.1.4 and 2.2.4.

Finally, numerical simulation showed that the use of the crisp model
methodology improves upon the extension of the combinatorial algo-
rithm proposed in [1] and [2], and it is at least comparable to the existing
methods.
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