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A note on distributional equations in discounted

risk processes ∗

Gerardo Hernández del Valle Carlos G. Pacheco González

Abstract

In this paper we give an account of the classical discounted risk
processes and their limiting distributions. For the models consid-
ered, we set the Markov chains embedded in the continuous-time
processes; we also set distributional equations for the limit dis-
tributions. Additionally, we mention some applications regarding
ruin probabilities and optimal premium.
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1 Introduction

Let us introduce the model. We can think of costumers arriving ac-
cording to a renewal process and at their arrival they bring a reward
according to a i.i.d. sequence Xi’s. Then the discounted reward at time
t with discounted rate δ is

(1) Z(δ) :=

{
Z

(δ)
t =

Nt∑
i=1

Xie
−δTi , t ≥ 0

}
,

where N := {N(t), t ≥ 0} is a renewal process with interarrival times
τ1, τ2, . . .; which are independent identically distributed positive random
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variables (i.i.d. positive r.v.s.). The process N is defined through

(2) Nt := max

{
k :

k∑
i=1

τi ≤ t

}
.

Further, Ti :=
∑i

j=1 τj , i = 1, 2, . . ., which represents the arrival times
as mentioned before. Variables X1, X2, ... are i.i.d. positive r.v.s. and δ
is the continuous time interest rate. Throughout this paper we assume
that the interarrival times and claim sizes are independent, and we

denote by τ and X the generic random variables, such that τ
d
= τ1 and

X
d
= X1. To avoid technical problems we assume that P (τ = 0) < 1.

We use model (1) in the context of insurance; variable τ represent

a generic arrival and X a generic claim size, thus Z
(δ)
t is the present

value of the claims up to time t. One can see that process (1) is an
extension of the well-known renewal reward processes (see for instance
[2, 32]), and when δ = 0 it resembles a particular instance of the so-
called continuous–time random walk (one may find a summary on this
type of process in [29]). The renewal reward process is also called the
aggregate claim amount in the insurance jargon (see [26]). Processes
that resemble (1) have been studied with other names; for example, the
Markov shot noise processes in [30, 27], and when the renewal process
is Poisson it is called filtered Poisson processes in [16]. Process (1) have
renewal properties, feature that classifies it in a more general family
called regenerative processes, as labeled in [2]); or it is a particular
instance of a semi-Markov process, see e.g. [21]. Specifically, process
(1) has been studied previously in [5, 9, 17, 18, 31, 19].

Let Z∗ be the limit of Z
(δ)
t when t → ∞, when it is well defined,

intuitively one expects the following distributional equation to hold,

(3) Z∗ d
= e−δτ (Z∗ +X).

This equation is derived from a recursive random equation; regarding
recursive equations the reader might find interesting the many ideas in
[10].

In section 2, we give the details to derive previous equation using the
so-called embedded Markov chains; this technique has been well used in
other papers, see e.g. [12]. Following this idea, in section 3, we do the
same for the so-called discounted risk process. Then, we mentioned how
one can find the moments recursively (see e.g. [18]). In section 4 it is
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used the tools developed to give straight forward applications, namely
for studying the ruin probability and a perpetual cash flow. In addition,
in subsection 4.3 we study a model where rate income and severity are
sensitive to the price per contract, so that the insurer should choose an
optimal premium.

2 An embedded Markov chain

The term embedded Markov chain (EMC) refers to the concept of hav-
ing a discrete-time process embedded within a continuous-time process.
An important feature of model (1) is that it renews/regenerates at the
very time of an arrival Ti; this helps to identify Markov chains (MCs)
embedded in the process. The EMC helps to study the limit behavior
of process (1) by studying the corresponding stationary distributions.
The type of MCs that arise here can be compared to the so-called per-
petuities (see also [20]), and in turn they give rise to distributional equa-
tions (DEs), also called stochastic or random equations (some relevant
references about DEs are [1, 14, 30]). An important application of the
distributional equations is finding properties of stationary distributions,
such as moments or even the distribution itself (see e.g. [12, 22]).

Notice first that, since the trajectories are increasing, limt→∞ Z
(δ)
t

always exists by monotone convergence theorem, so that it convergences
in distribution. Also,

Proposition 2.1. If X has finite mean, then Z
(δ)
t converges in distri-

bution as t → ∞ to a random variable Z∗ with finite mean.

Proof. By Fatou´s Lemma,

(4) E(Z∗) ≤
∞∑
i=1

E(Xi)E(e−δTi).

Finally, we know that E(e−δTi) = Ei(e−δτ ) and that E(e−δτ ) < 1, then

(5) E(Z∗) ≤ E(X)

∞∑
i=1

Ei(e−δτ ) < ∞.

Having E(X) < ∞ will be necessary in next section, when asking
for the positive safety loading condition.



4 Gerardo Hernández del Valle and Carlos G. Pacheco González

Proposition 2.2. Let Yn be the process Z(δ) evaluated at the time of

the n arrival, that is, Yn := Z
(δ)
Tn

. Then the following identity holds

(6) Yn+1
d
= Xne

−δτn + e−δτnYn, n = 0, 1, . . . ,

with Y0 := 0. Here Xn, τn and Yn are independent for each n.

Proof. Using the definition of the process

Z
(δ)
Tn+1

=

NTn+1∑
i=1

Xie
−δTi =

n+1∑
i=1

Xie
−δTi

d
= Xe−δτ +

n+1∑
i=2

Xie
−δTi d

= Xe−δτ + e−δτ
n+1∑
i=2

Xie
−δ

∑i
k=2 τk

d
= Xe−δτ + e−δτZ

(δ)
Tn

.

Hence, equation (6) can be set.

Remark 2.3. It is said that process Y := {Y0, Y1, . . .} of previous
result is an embedded Markov chain of process Z(δ). There are results
regarding ergodic properties of stochastic processes through embedded
Markov chains (see for instance [6]). Since the paths of Z(δ) are piecewise
constant between arrivals, we shall study the limit behavior of Z(δ) by
studying the stationary distribution of Y .

Remark 2.4. Relation (6) is an identity of distributions which itself
provides a method for approximating samples of Z∗ by running the MC.
This is possible due to the fact that the stationary distribution of the
MC is the limiting distribution of Zt as t → ∞. An extensive study on
stochastic equations of this type can be found in Vervaat [30].

The following result is easy to see from previous results, however the
same idea is used later in Theorem 3.1.

Proposition 2.5. Let

(7) Z∗ := lim
t→∞

Z
(δ)
t .

Then we have the following distributional equation

(8) Z∗ d
= Xe−δτ + e−δτZ∗.
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Proof. Notice that (Xi, τi, Yi) → (X, τ, Z∗) as i → ∞. Since f(x, t, y) :=
xe−δt + e−δty is a continuous function, we can apply the continuous
mapping theorem (see [4]) to obtain (8) from (6)

Remark 2.6. Often, the following class of distributional equation arises
in insurance applications (see for example [12, 14, 30]):

(9) Z∞
d
= AZ∞ +B,

where A,B and Z∞ are random variables, and Z∞ may or may not be
independent of (A,B). The question is to find the distribution of Z∞
given the distribution of (A,B).

A typical application of the distributional equation (8) is using it
for computing the moments of Z∗.

Corollary 2.7. Suppose that X has all its moments finite and that the
Laplace transform of τ exists. Then, the k-moment of Z∗ satisfies the
following recursive formula

(10) E((Z∗)k) =
E
(
e−kδτ

)
1− E (e−kδτ )

k−1∑
i=0

(
k

i

)
E(Xk−i)E((Z∗)i),

for k=1,2,. . . .

Proof. This is done by a direct use of the Newton´s binomial theorem to
the distributional equation (9). First, expanding the binomial, taking
expectations and then solving for the k-moment.

The procedure described in Corollary 2.7 for finding moments through
distributional equations is quite common in the literature, see for ex-
ample [20, p. 465] or [22, 30]. Notice that using the distributional
equations one may also attempt to find the characteristic function or
the moment generating function.

3 The present value distribution

Using process (1), a popular model in insurance is the so-called total
surplus (we also call it discounted risk process) given by

(11) Ut = η + r(t)− Z
(δ)
t , t ≥ 0,
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where r(t) :=
∫ t
0 ρe

−δsds is the present value of the incomes received by
the company, which is determined with the premium rate ρ. Variable
η is the initial capital of the company. In [31] model (11) is called the
renewal risk process. Process U = {Ut, t ≥ 0} in (11) represents the
present value of the total surplus (earnings or losses) of the company
up to time t.

It is known that Ut admits the representation

Ut := η +

∫ t

0
e−δsdYs,

where Ys := ρ +
∑N(s)

i=1 Xi, see e.g. [15]. At this point, it would be
guarantied for the insurance company that limt→∞ Ut > 0 almost surely;
from previous equation we notice that this condition is achieved if the
positive safety loading condition holds, that is if

ρ− λE(X)

λE(X)
> 0,

with λ := 1/E(τ) (see [13]). From now on we assume that our model
satisfies this condition.

When t → ∞, Ut may converge to a random variable, which is
interpreted as the total earnings or losses of the perpetuity, that is to
say, the total outcome of the business; the interested reader can find a
more extensive discussion of this in [24]. A natural question is to find the
so-called present value distribution, which is defined as the distribution
of

(12) U∗ := lim
t→∞

Ut.

Finding the present value distribution has been done for a general class
of models based on the Poisson process; important references are [11,
12, 14, 15]. Specially in [12] one finds a good account.

One can see that if Z
(δ)
t converges in distribution as t → ∞, so does

Ut. To this end we have the following (see also [25]).

Theorem 3.1. Let Z be the process specified in (1). When limt→∞ Z
(δ)
t

exists in distribution, we have the following distributional equation

(13) U∗ d
= α− e−δτ (X + α− U∗) ,
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where α = η + ρ
δ . Moreover, the distribution of U∗ coincides with the

stationary distribution of the following MC

(14) Wn+1 = α− e−δτn+1 (Xn+1 + α−Wn) ,

with W0 ∈ R.

Proof. First, we will exploit the renewal property to obtain an identity
in distribution. Then, we appeal to the continuous mapping theorem to
set equation (13), which itself gives rise to the MC (14).

By using the definition of Tn, n = 1, 2, . . ., we have

UTn = η +

∫ Tn

0
ρe−δsds−

NTn∑
i=0

Xie
−δTi

= η +

∫ Tn

0
ρe−δsds−

(
X1e

−δτ1 +

n∑
i=2

Xie
−δTi

)

d
= η +

∫ Tn

0
ρe−δsds−

(
Xe−δτ + e−δτ

n−1∑
i=1

Xie
−δTi

)

= η +

∫ Tn

0

ρe−δsds−

(
Xe−δτ + e−δτ

(
n−1∑
i=1

Xie
−δTi ± η ±

∫ Tn−1

0

ρe−δsds

))

= η+

∫ Tn

0
ρe−δsds−

(
Xe−δτ + e−δτ

(
−UTn−1 + η +

∫ Tn−1

0
ρe−δsds

))
.

Thus, when taking limits we have distributional equation (13).

Remark 3.2. Notice that the moments of U∗ may be computed using
equation (13) as in Corollary 2.7, however this approach does not give
a formula as friendly as recurrence (10). It is more convenient to use
the fact that

(15) U∗ = α− Z∗, with α = η +
ρ

δ
,

which yields

(16) E
(
(U∗)k

)
= (−α)k

k∑
i=0

(
k

i

)
(−1)iE

(
(Z∗)k−i

)
, k = 1, 2, . . . .
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0 5 10 15 20 25 30 35
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

−25 −20 −15 −10 −5 0 5 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 1: Histograms of Z∗ and U∗.

Corollary 2.7 and Remark 3.2 find the moments of Z∗ and U∗, re-
spectively. An interesting point is to find the actual limit distribution,
i.e. finding the solutions (8) and (13). Next, we use the Markov chains
to perform numerical approximations.

Example 3.3. In figure 1 we show the approximations of Z∗ and U∗ for
a model where the claim sizes and the interarrival times are exponential,
both with parameters 1; and we have taken δ = 0.1, η = 5 and ρ = 0.3.
We have run 106 times the corresponding Markov chains (6) and (14),
and obtained numerically the histograms with partition 200.

4 Applications

Now we present some applications of the embedded Markov chains and
the distributional equations. First, we find a bound for the ruin prob-
ability. Then, we discuss about the probability of ending negative in
perpetual cash flow. Finally, we give an example to show that the in-
come rate (i.e. ρ) may not be set too high or too low.

4.1 A bound for the ruin probability

Calculating the ruin probability has generated a great deal of interest
in risk theory for discounted and non-discounted sums. Since the cele-
brated works of Lundberg and Crámer, many articles and books have
been published to address this problem; few references are [3, 13, 20, 26],
and a concise summary can be found in [7].

Consider model (11). The ruin probability is defined as follows:
Given the initial capital η, variable χη is the first time when Ut goes
below 0 (when the company goes bankrupt or ruined). It is expressed
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as P (χη < ∞) where

(17) χη = inf {s : Us < 0} .

Ruin probability has been studied extensively with model (1) when
the interarrival times are exponential r.v.s and δ = 0 (see e.g. [13]).
Here we take δ > 0 but now we assume that τ is exponentially dis-
tributed. Under these assumptions, Harrison [15] gives bounds for the
ruin probability in terms of the present value distribution.

Proposition 4.1.1. Using model (11) with τ being an exponential ran-

dom variable, suppose that Z∗ d
= limt→∞ Z

(δ)
t is well defined. Then the

following upper bound for the ruin probability holds

(18) P (χη < ∞) ≤ P (Z∗ > η + ρ/δ)

P (Z∗ > ρ/δ)
.

Proof. By Corollary 2.4 in [15] we have that

(19) P (χη < ∞) ≤ H(−η)

H(0)
,

where H is the distribution function of −η + limt→∞ Ut. Recall that
limt→∞ r(t) = ρ/δ.

Previous sections give grounds for finding numerically the bound for
the ruin probability. This is easily achieved by approximating P (Z∗ >
z) using the embedded Markov chain of process Z(δ), which is explained
in Remark 2.4 and carried out in Example 3.3.

4.2 The probability of long-run negative dividends

We now turn to the study of the long time behavior of Ut as t → ∞,
which is the perpetual cash flow (such as in pension schemes); we may
think of this as the “total/final outcome of the business”. In this paper
we study the probability of ending up loosing at the infinite horizon:

(20) P (U∗ < 0).

We call quantity (20) the business-ruin probability. The name is moti-
vated from the fact that U∗ may represent the total discounted dividends
of a company, and if it is negative, it means that the business did not
work.
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Despite the aforementioned motivation, in the case of the insurance
company, it is quite not realistic to take t → ∞, because the insurer
would not continue operating in case of bankruptcy (i.e. when Ut < 0).

Compare to the classical concept of ruin probability, the business-
ruin probability is a less stringent version. This, due to the fact that
process U can go below 0 but may end up positive as t → ∞. Therefore,
the event of going business-ruin implies that process U went negative
at some point, thus

(21) P (U∗ < 0) ≤ P (χη < ∞),

where χη = inf {s : Us < 0}.
A natural question is to find an income rate ρ that guaranties certain

level of total earnings. Moreover, we may find ρ that helps to achieve
low probability of ending up loosing or a high probability of ending up
earning. Notice that U∗ depends on the rate ρ, and we can write U∗(ρ)
to emphasize this. The following definition gives criteria to choose an
income rate.

Definition 4.2.1. For ε ∈ (0, 1), whenever it exists we call the quantity
ρε the ε-percentile income rate if it is such that

(22) P (U∗(ρε) ∈ A) = ε,

for some Borel setA. And we call ρβ , with β>0, the β-mean income rate
if it is such that

(23) E(U∗(ρβ)) = β.

Generally, we would be interested in an income rate that allows us
to either minimize the potential loss, maximize profit, or simply such
that we reach a minimum level of profit. The previous definition takes
into account these ideas, see next remark.

Remark 4.2.2. For the ε-percentile income rate, one needs to be more
specific. For instance, if we are interested on minimizing loss, a natural
choice for A is (−∞, θ], where θ ≥ 0 is a minimum level of tolerance.
Likewise, we can set A = [θ,∞) if we want to achieve certain level of
profit. In any case, the calculation of ρε requires the knowledge of the
distribution of U∗ (the present value distribution).

The calculation of ρβ is direct from equation (13). Equating the
expectation E(U∗) to β, and solving for ρβ we have that
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Proposition 4.2.3. The β-mean income rate is given by

(24) ρβ = δ2
(β − η)

(
1− E(e−δτ )

)
+ E(X)E(e−δτ )

1− E(e−δτ )
.

Example 4.2.4. In Example 3.3, for ρ = 0.3, we have that P (U∗ <
0) ≈ 0.71. Thus the ε−percentile premium rate is ρε = 0.3 with ε ≈ 0.71.
This is an unfavorable scenario for the company, because with a high
probability the business will end up loosing.

4.3 A control problem for the insurance company

The income rate ρ is a quantity that depends on the price per contract.
That is, the rate of income is a factor that can be determined by how
cheap or expensive the actual price of the contract is.

Let p be the price per contract. Price p may be so expensive that no
one would be able to afford it (and thus no income would be obtained);
or, the price could be so cheap that even though many would buy it, the
income rate would not be enough to pay the potential losses. The value
of p would affect the income rate ρ and the frequency of arrivals, defined
by τ . Thus, the company does not want to set a very expensive or very
cheap price per contract, rather it needs to find an optimal price.

Consider the distributional equation (13). If we take expectation of
both sides of (13), and solve for E(U∗) we obtain

(25) E(U∗) =
η + ρ

δ − E(e−δτ )(E(X) + η + ρ
δ )

1− E(e−δτ )
.

Here, ρ and E(e−δτ ) are functions of p. Then, an optimal price p can
be found by maximizing (25).

Now, we give a model that is specified by p.
Suppose that τ is an exponential r.v. with mean 1

λ(p) , where

(26) λ(p) =
a

pb
, for a > 0, b > 0.

Moreover, suppose that ρ(p) is given by

(27) ρ(p) = pce−dp, for c > 0, d ≥ 0.

If p is small (cheap), more people would buy a contract, and thus more
potential loses might arrive in the future. If p is large (expensive),
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Figure 2: E(U∗) as function of p

less people would buy the insurance, thus the company would have less
losses. These phenomena are reflected in (26) and (27).

Now we have that

E
(
e−δτ

)
=

λ(p)

λ(p) + δ
.

Furthermore, if X ∼ exp(µ), formula (25) becomes

(28) E(U∗) =

(
η +

ρ(p)

δ
− λ(p)

λ(p) + δ

(
µ+ η +

ρ(p)

δ

))
λ(p) + δ

δ
.

Using Example 3.3 and setting a = 0.05, b = 0.1, c = 0.5 and d = 0.05 to
define functions (26) and (27), in Figure 4.3 we plot E(U∗) as function
of p. We can see that E(U∗) attains a maximum: the optimal price per
contract. Related to this application, see [28] for control problems in
insurance.
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México D.F. 07000, MÉXICO,
cpacheco@math.cinvestav.mx

References

[1] Aldous D.J.; Bandyopadhyay A., A survey of max-type recursive
distributional equations, Annals of Applied Probability 15 No. 2
(2005), 1047–1110.

[2] Asmussen S., Applied Probability and Queues, Springer, 2003.

[3] Asmussen S., Ruin Probabilities, World Scientific, 2000.

[4] Billinsley P., Convergence of Probability Measures, John Wiley &
Sons, 1968.

[5] Boogaert P.; Haezendonck J.; Delbaen F., Limit theorems for the
present value of the surplus of an insurance portfolio, Insurance:
Mathematics and Economics 7 (1988), 131–138.

[6] Borovkov A. A., Ergodicity and Stability of Stochastic Processes,
John Wiley & Sons, 1998.

[7] Cai J., Cramér-Lundberg asymptotics, Encyclopedia of Actuarial
Science (2004), John Wiley & Sons.

[8] Cai J., Ruin probabilities and penalty functions with stochastic
rates of interest, Stochastic Processes and their Application 112
(2004), 53–78.

[9] Delbaen F.; Haezendonck J., Classical risk theory in an economic
environment, Insurance: Mathematics and Economics 6 (1987),
85–116.

[10] Diaconis P.; Freedman D., Iterated random functions, SIAM Rev
41 (1999), 45–76.



14 Gerardo Hernández del Valle and Carlos G. Pacheco González
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