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Abstract

We present an introduction to the manifold calculus of functors,
due to Goodwillie and Weiss. Our perspective focuses on the role
the derivatives of a functor F play in this theory, and the analogies
with ordinary calculus. We survey the construction of polynomial
functors, the classification of homogeneous functors, and results
regarding convergence of the Taylor tower. We sprinkle exam-
ples throughout, and pay special attention to spaces of smooth
embeddings.
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1 Introduction

We intend to explain some of the intuition behind one incarnation of
calculus of functors, namely the “manifold calculus” due to Weiss and
Goodwillie [18, 35]. Specifically, we will highlight some analogies be-
tween the ordinary calculus of functions f : R → R and the manifold
calculus of functors. The trouble with analogies is that they are not
equivalences, and some may lead the reader to want to push them fur-
ther. Some may indeed be pushed further than we are currently aware,
and some may lead to direct contradictions and/or bad intuition. An-
other risk is that it is considered bad manners to tell people how to
categorize various ideas: part of our mathematical culture seems to be
that we leave intuition for talks and personal communications and rigor
and precision for our papers, and with good reason: we cannot antic-
ipate the ways in which our work may be useful in the future, and so
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it may be best to convey it in as concise and precise a way as possi-
ble. We feel the relatively small risk of misleading the reader and the
faux pas of making permanent intuitive notions by publishing them is
a small price to pay for the possibility that this may entice some reader
to learn more about these ideas and try to use them. Finally, we would
like to emphasize that this is not meant to be a rigorous introduction
to calculus of functors. We will frequently omit arguments which would
distract us from our attempts to be lighthearted. We hope this work
makes digesting the actual details from the original sources easier for
newcomers.

The philosophy of calculus of functors is to take a functor F and re-
place it by its Taylor series, and we will begin our discussion of ordinary
calculus there and work backwards. Associated to a smooth function
f : R → R is its Taylor series at zero (we choose zero for convenience;
any center will work just fine):

(1) f(0) + f ′(0)x + f ′′(0)
x2

2!
+ · · ·+ f (n)(0)

xn

n!
+ · · · .

There are two natural questions to ask about this power series: (1)
does it converge, and if so, for what x?; and (2) if it converges, does
it converge to f? The Taylor series is computationally much easier
to work with than the function. A typical application is to truncate
the series at degree k, thus obtaining the kth degree Taylor polynomial
Tkf of the function f . If one is lucky and f (k+1)(x) can be controlled
to be small in some neighborhood of zero, then one can use Taylor’s
inequality to estimate the remainder. Specifically, if |f (k+1)(x)| ≤M in
a neighborhood of zero, then the remainder

Rk(x) = |f(x)− Tk(x)| ≤M
|x|k+1

(k + 1)!
.

Our first goal is to construct the analog of a Taylor series for a functor
F which associates to each open set U in a smooth manifold M a topo-
logical space (we will specify the categories and hypotheses on F soon).
A simple example to keep in mind is the space of maps, U 7→ Map(U,X)
for some space X. Our second goal will be to explore issues of conver-
gence in the special case of spaces of embeddings; here the functor of
interest is U 7→ Emb(U,N), the space of smooth embeddings of U in a
smooth manifold N . Here are some natural questions that arise based
on the above:
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1. What is the definition of the derivative of a functor, and how
should we compute it?

2. What is the definition of a polynomial functor?

3. Can we write the Taylor polynomial of a functor as a polynomial
whose coefficients are the derivatives?

4. What is a “good” approximation, and what should we mean by
convergence?

We will answer these questions and more. Despite our attempt at
lightheartedness, there will be no avoiding certain constructions un-
pleasant for the purposes of an introductory paper. The main culprit
here is homotopy limits and colimits, and we will assume the reader is
more or less familiar with these. If the reader has not seen these before
or has only a nodding acquaintance with them, let her not despair; we
will try to give some intuition about what role these objects play, though
it may still remain largely indigestible. Nevertheless, we have done two
things: (1) Provided an appendix with the statements and attempts at
explanation of results we have used in proofs, and (2) We have tried to
give alternate, hopefully simpler, constructions whenever possible, and
focused on special cases where intimate knowledge of homotopy limits
and colimits is not necessary. We also assume the reader is familiar with
the basics of differential topology, namely handlebody decompositions
of smooth manifolds, and the basics of transversality.

This paper is organized into two main parts. The first, Section 1.3
to Section 4, is concerned with developing the notion of derivatives and
polynomials, and tells us how to build a Taylor series for a functor, and
Theorem 4.2.1 even gives a reasonable description of its homogeneous
pieces. The usefulness of the definitions developed in these sections
pay off in the proof of Theorem 3.2.1, and this proof contains a useful
organizational principle important to later arguments, namely induction
on the handle dimension. The second part is devoted to the question
of convergence. We make a few general remarks about convergence in
Section 5, and then move on to the specific case of spaces of embeddings
in Section 6.

1.1 Further reading

This work is an introduction, not a sample of the state-of-the art, but
it is right for the reader to ask whether there is any point to this en-
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deavor, so what follows are some references to applications of manifold
calculus. Any omissions are due to the ignorance of the author. Weiss
himself wrote a more rigorous survey [34] with a different perspective
than this one. A survey with emphasis on spaces of embeddings and
related spaces is [11]. Another survey with many ideas from differential
topology which are useful for studying spaces of embeddings using man-
ifold calculus is [6]. For a survey on homotopy calculus, which shares
many of the same tools as manifold calculus, see [21]. As for applica-
tions of manifold calculus to spaces of embeddings, there are several
recent works, including [1], [2], [3], [5], [7], [13], [14], [15], [22], [24], [26],
[27], [28], [29], [30], [32], and [33]. For applications to spaces of link
maps and connections with generalizations of Milnor’s invariants, see
[16], [23], and [25].

1.2 Conventions

We will not be too careful about the category of spaces in which we
will work. For some purposes, the category Top of compactly generated
spaces will be fine. For other purposes, such as spaces of maps, we
work in the category of simplicial spaces (a k-simplex in Map(X, Y ) is
a map ∆k → Map(X, Y )). We will, by abuse, always let Top denote
the target category. We write k in place of {1, 2, . . . , k}. We let int(X)
stand for the interior of a subset X of some topological space. A space
X is k-connected if πi(X) vanishes for 0 ≤ i ≤ k for all choices of
basepoint in X. Every space is (−2)-connected, and nonempty spaces
are (−1)-connected. A map of spaces f : X → Y is k-connected if it is
an isomorphism on πi for 1 ≤ i < k and a surjection when i = k for all
possible choice of basepoints. Its homotopy fibers are therefore (k− 1)-
connected. Conversely, if for all choice of basepoints in Y , the homotopy
fiber of f is (k−1)-conected, then f is k-connected. In particular, every
map is (−1)-connected.

The union of a smooth manifold Lm with boundary with a “j-
handle” Hj = Dj × Dm−j is obtained by choosing an embedding e :
Sj−1 → ∂L and forming the identification space L ∪f Hj by attaching
Hj to ∂L along ∂Dj ×Dm−j ⊂ Hj . We refer to j as the dimension of
the handle, and refer to Dj ×{0} as the core of the handle. All smooth
compact manifolds admit a “handle decomposition”, which is a descrip-
tion of M as a union of handles of various dimensions together with
attaching maps to tell us how to embed the boundary of one handle in
the boundary of another (see [20]). We define the handle dimension of
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M to be the smallest integer j such that M admits a handle decompo-
sition with handles of dimension less than or equal to j. A handlebody
decomposition of a smooth manifold Mm is the analog of a cell struc-
ture on M , with j-handle playing the role of j-cell. Note that if P p is a
smooth compact submanifold of M , then the disk bundle of its normal
bundle is a smooth compact codimension 0 submanifold of M of handle
dimension at most p.

A j-dimensional handle Hj is a manifold with corners. That is,
∂Hj = ∂Dj × Dn−j ∪ Dj × ∂Dn−j , and this union happens along the
corner set ∂Dj × ∂Dn−j . More generally we will eventually encounter
what is called a smooth manifold triad. Roughly speaking, this is a
triple (Q, ∂0Q, ∂1Q), which is a smooth manifold Q of dimension q whose
boundary is decomposed as ∂0Q∪∂1Q and whose corner set is ∂0Q∩∂1Q.
Boundary points have neighborhoods which look locally like [0,∞) ×
Rq−1, and points in the corner set have neighborhoods which look locally
like [0,∞) × [0,∞) × Rq−2. In particular, we regard a j-handle Hj

as a smooth manifold triad with ∂0H
j = ∂Dj × Dn−j and ∂1H

j =
Dj × ∂Dn−j . We refer the reader to [18] for details.

1.3 Preliminaries

We need to discuss the axioms necessary to impose on our functors to
obtain an interesting and computable theory.

Definition 1.3.1 Let M be a smooth closed manifold of dimension m.
Define O(M) to be the category (poset) of open subsets of M . Its
objects are open sets U ⊂M , and morphisms U → V are the inclusion
maps U ⊂ V .

Manifold calculus studies contravariant functors F : O(M) → Top
which satisfy two axioms. Before we state them, let us consider a few
examples, all of which are basically some sort of space of maps.

Example 1.3.2 Let X be a space. The functor Map(−, X) : O(M)→
Top given by the assignment U 7→ Map(U,X) is a contravariant functor,
since an inclusion U ⊂ V gives rise to a restriction map Map(V,X) →
Map(U,X).

Example 1.3.3 Let N be a smooth manifold. The embedding functor
Emb(−, N) : O(M) → Top is given by U 7→ Emb(U,N). This is the
space of smooth maps f : U → N such that (1) f is one-to-one, and (2)
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df : TU → TN is a vector bundle monomorphism. A related example
is the space of immersions Imm(−, N) : O(M) → Top, given by U 7→
Imm(U,N). This is the space of smooth maps f : U → N which satisfy
(2). We think of an immersion as a local embedding.

The axioms we impose on our functors amount to something like
continuity. The first tries to say that our functors should take equiva-
lences to equivalences. At first glance, a category of open subsets of a
smooth manifold should have diffeomorphism be the notion of equiva-
lence. Of course, an inclusion map will never be a diffeomorphism, so
we ask for the next best thing. Let U, V ∈ O(M) with U ⊂ V . The
inclusion map i : U → V is called an isotopy equivalence if there is an
embedding e : V → U such that the compositions i ◦ e and e ◦ i are
isotopic to the identities of V and U respectively.

Definition 1.3.4 A contravariant functor F : O(M)→ Top is good if

1. It takes isotopy equivalences to homotopy equivalences, and

2. For any sequence of open sets U0 ⊂ U1 ⊂ · · · ⊂ Ui ⊂ · · · , the
canonical map F (

⋃
i Ui) → holimi F (Ui) is a homotopy equiva-

lence.

Another informal expression of the first axiom is that F behaves well
on thickenings. The reader may safely ignore the homotopy limit in the
second axiom in favor of this explanation: the functor F is determined
by its values on open sets U which are the interior of smooth compact
codimension 0 submanifolds of M . Indeed, for any open set U , one can
select an increasing sequence V0 ⊂ V1 ⊂ · · · ⊂ Vi ⊂ · · · ⊂ U such that⋃

i Vi = U , and each Vi is the interior of a smooth compact codimension
0 submanifold of M . This is a sensible thing to impose in light of our
main example of interest, Emb(−, N) : O(M) → Top. After all, we
are only interested in the values of Emb(U,N) when U is the interior
of some smooth compact manifold. It is also necessary for many of our
arguments to assume that U is of this form.

The structure of the category O(M) is much richer than the usual
topology on the real line R, so analogies between functions f : R → R
and functors F : O(M) → Top may seem a little weak. Still, there are
a few things to say that may be helpful. First, in light of the second
axiom above, we could consider the full subcategory of all open sets U
which are the interiors of smooth compact codimension 0 submanifolds
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of M , which we call OMan(M). We like to think of OMan(M) ⊂ O(M)
as the analog of the dense subset Q ⊂ R (after all, every continuous
function is determined by its values on a dense subset). For more on
this, see Theorem 3.2.1. We will work almost exclusively in the cate-
gory OMan(M), and so we will make a few remarks about its structure.
The objects U ∈ OMan(M) can be coarsely categorized based on their
handle dimension. This should be thought of as a more refined notion
of dimension of a manifold, and it plays a more important role in this
theory than does the ordinary dimension. In particular we will often
refer to the handle dimension of an open set U , which means the handle
dimension of the compact codimension 0 submanifold whose interior is
U . Another important subcategory is the full subcategory of open sub-
sets diffeomorphic with at most k open balls. This is the subcategory
of OMan(M) consisting of those sets U of handle dimension 0.

Definition 1.3.5 Let k ≥ 0. The objects of the full subcategory
Ok(M) ⊂ O(M) are those open sets U which are diffeomorphic with
at most k disjoint open balls in M .

We will return to the categories Ok(M) later, and their importance
will become clear once we define the notion of a polynomial functor.

2 Derivatives

2.1 Comparison with classical calculus

In order to build the Taylor series of a function f , we must discuss
derivatives. For a smooth function f : R → R, its derivative at 0 is
defined by

f ′(0) = lim
h→0

f(h)− f(0)
h

.

For our analogy, we will ignore the denominator of the difference quo-
tient in favor of the difference f(h)−f(0). We must decide three things:
what plays the role of 0, what plays the role of h, and what plays the
role of the difference f(h) − f(0). As for 0 and h, their analogs are,
respectively, the empty set ∅, and the simplest non-empty open set: a
set B which is diffeomorphic with an open ball. It is simplest in the
sense that it has a handle structure with a single 0-handle.

As for the difference f(h) − f(0), since ∅ ⊂ B, for a functor F we
have a map F (B) → F (∅). There are a few ways of computing the
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difference between two spaces with a map between them. The right
thing to do is to compute the homotopy fiber.

Definition 2.1.1 We define the derivative of F at ∅ to be

F ′(∅) = hofiber(F (B)→ F (∅)).
One reason this is natural is because the homotopy fiber, via the

long exact sequence in homotopy groups, describes the difference be-
tween two spaces in homotopy. If M is connected, then our first axiom
(together with a trick allowing us to relate two disjoint open balls in
the same path component) implies that the homotopy type of F ′(∅) is
independent of the choice of B.

Example 2.1.2 Let F (U) = Map(U,X). Let B be an open ball in
M . Then F ′(∅) = hofiber(Map(B,X) → Map(∅, X)) ' X, since
Map(∅, X) = ∗ and Map(B,X) ' X.

Example 2.1.3 Consider the functor E(U) = Emb(U,N) and let B
be an open ball in M . We have E′(∅) = hofiber(E(B) → E(∅)). An
embedding of B is determined by its derivative at a point in B by the
inverse function theorem, and so E(B), and hence E′(∅), is equivalent
to the space of injective linear maps Rm → Rn.

This process can be iterated, just as in ordinary calculus. Choose a
basepoint in F (M), which endows F (U) with a basepoint for all U ∈
O(M) via the map F (M) → F (U). For our purposes it is more useful
to have formulas for the higher derivatives only in terms of the functor
F , not its derivatives. Consider the following non-standard formula for
the second derivative of f : R→ R at 0:

f ′′(0) = lim
h1,h2→0

f(h1 + h2)− f(h1)− f(h2) + f(0)
h1h2

.

Once again for an analogy, we will throw away the denominator and
focus on the iterated difference f(h1 + h2) − f(h1) − f(h2) + f(0) =
f(h1 + h2) − f(h1) − (f(h2) − f(0)). Now all we need is an analog of
+, for which we will use disjoint union, so h1 +h2 becomes B1

∐
B2 for

two disjoint open balls B1, B2 ⊂ M . Then we iterate homotopy fibers
and define

(2) F ′′(∅) = hofiber
(
hofiber(F (B1

∐
B2)→ F (B1))

−→ hofiber(F (B2)→ F (∅))
)

.
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This iterated homotopy fiber is, by definition, the “total homotopy
fiber” of the following square diagram:

F (B1
∐

B2) //

²²

F (B1)

²²
F (B2) // F (∅)

The kth derivative of F at ∅ is the total homotopy fiber of a k-dimen-
sional cubical diagram involving k disjoint open balls. In order to make
this precise, we require a brief discussion of cubical diagrams. They are
ubiquitous in calculus of functors, and we will use them frequently.

2.2 Cubical diagrams and total homotopy fibers

Details about cubical diagrams can be found in [12, Section 1]. Other
aspects important to this work not appearing in this section have been
placed in the appendix to cause minimal distraction. For a finite set
T , let |T | be its cardinality and P(T ) denote the poset of non-empty
subsets of T . For instance, if T = 1 = {1}, this poset looks like ∅ → {1},
and if T = 2, then we can diagram this poset as a square

∅ //

²²

{1}

²²
{2} // {1, 2}

Here we have only indicated those morphisms which are non-identity
morphisms and minimal in the sense that they cannot be written as a
composition of multiple non-identity morphisms. A 0-cube is a space,
a 1-cube is a map of spaces and a 2-cube is a square diagram. In
general, the 2|T | subsets can be arranged to form a |T |-dimensional
cube whose edges are the inclusion maps as above. Experience suggests
understanding statements for k-cubes in the cases k = 2, 3 is usually
enough. We will focus almost exclusively on square diagrams.

Definition 2.2.1 Let T be a finite set. A |T |-cube of spaces is a co-
variant functor

X : P(T ) −→ Top .

We may also speak of a cube of based spaces; in this case, the target is
Top∗, the category of based spaces.
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We can view a |T |-cube X as a map (i.e. a natural transformation
of functors) of (|T | − 1)-cubes Y → Z as follows. Fix t ∈ T . Define
Y : P(T −{t})→ Top∗ by Y(S) = X (S). Define Z : P(T −{t})→ Top∗
by Z(S) = X (S ∪ {t}). There is clearly a natural transformation of
functors Y → Z, and we may write X = (Y → Z).

Definition 2.2.2 The total homotopy fiber, or total fiber, of a |T |-cube
X of based spaces is the space tfiber(X ) given by the following iterative
definition. For a 1-cube X∅ → X1, the total homotopy fiber is defined
to be the homotopy fiber of the map X∅ → X1. For a k-cube X ,
write it as a map of (k − 1)-cubes Y → Z, and define tfiber(X ) =
hofiber(tfiber(Y)→ tfiber(Z)).

This is well defined because the homotopy type of tfiber(X ) is in-
dependent of the choice of Y and Z above by [12, Proposition 1.2a].
This can be shown to be equivalent to the following definition, which is
more concise, obviously well-defined, but requires knowledge of homo-
topy limits.

Proposition 2.2.3 ([12, 1.1b]) For a |T |-cube X of based spaces, the
tfiber(X ) is the homotopy fiber of the map

a(X ) : X (∅) −→ holim
S 6=∅

X (S).

The reader is encouraged to prove this in the case of a square dia-
gram.

Definition 2.2.4 Let X be as above. If a(X ) is k-connected, we say
the cube is k-cartesian. In case k = ∞, (that is, if the map is a weak
equivalence), we say the cube X is homotopy cartesian.

For a space (0-cube) X, the convention is that k-cartesian means
(k − 1)-connected, and for a map (1-cube) X → Y to be k-cartesian
means it is k-connected, so its homotopy fibers are (k − 1)-connected.
A square

X∅ //

²²

X1

²²
X2

// X12

is homotopy cartesian if the map X∅ → holim(X1 → X12 ← X2) is a
homotopy equivalence. Such a square is often referred to as a homotopy
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pullback square because holim(X1 → X12 ← X2) is the space of all
(x1, γ, x2) such that xi ∈ Xi for i = 1, 2 and γ is a path in X12 between
the images of x1 and x2. In contrast, the pullback of X1 → X12 ← X2

is the space of all (x1, x2) ∈ X1 × X2 such that the images of the xi

in X12 are equal. There is a useful relationship between pullbacks and
homotopy pullbacks. If

X∅ //

²²

X1

²²
X2

// X12

is a pullback square, then it is a homotopy pullback if either X1 → X12

or X2 → X12 is a fibration. That is, in this case the map from the
pullback to the homotopy pullback is an equivalence. A similar criterion
can be formulated for general cubes, though it is more complicated.
A useful and familiar example of a homotopy pullback is obtained by
setting X2 to a point and letting X1 → X12 be a fibration whose fiber
over the image of X2 in X12 is X∅.

Viewing a (|T |+ 1)-cube Z as a map of |T |-cubes X → Y as in our
iterative definition of total homotopy fiber, choose a basepoint y ∈ Y(∅),
which bases each Y(S), and define a |T |-cube Fy(S) = hofiber(X (S)→
Y(S)).

Proposition 2.2.5 ([12, 1.18]) With X ,Y,Z as above, the (|T | + 1)-
cube X is k-cartesian if and only if for each choice of basepoint y ∈ Y(∅),
the |T |-cube S 7→ Fy(S) is k-cartesian.

For |T | = 1, this says that a map of spaces X → Y is k-connected
if and only if all of its homotopy fibers are k-cartesian, which means
(k − 1)-connected in the case of a 0-cube. We present one final fact
which will be useful in the proof of Theorem 6.2.1.

Proposition 2.2.6 ([12, 1.22]) Let X ,Y be |T |-cubes, and suppose we
have a map X → Y such that for all S 6= ∅, X (S) → Y(S) is k-
connected. Then the map holimS 6=∅X (S)→ holimS 6=∅ Y(S) is (k−|T |+
1)-connected.

Returning to our discussion of derivatives, we can now make a sen-
sible definition of the derivatives of F at ∅.

Definition 2.2.7 Let B1, . . . , Bk be pairwise disjoint open balls in M .
Define a k-cube of spaces by the rule S 7→ F (∪i/∈SBi). Define the
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kth derivative of F at the empty set, denoted F (k)(∅), to be the total
homotopy fiber of the k-cube S 7→ F (∪i/∈SBi).

Example 2.2.8 We can compute the derivatives of the functor F (U) =
Map(U,X). We have already seen that F ′(∅) ' X. Let B1, B2 be
disjoint open balls. F ′′(∅) is the total homotopy fiber of the square

F (B1
∐

B2) //

²²

F (B1)

²²
F (B2) // F (∅)

Since each Bi is homotopy equivalent to a point ∗i, and Map(−, X) pre-
serves homotopy equivalences, this is equivalent to the total homotopy
fiber of the square

F (∗1
∐ ∗2) //

²²

F (∗1)

²²
F (∗2) // F (∅)

Clearly F (∗1
∐ ∗2) = X ×X, and by our calculation above, we see that

F ′′(∅) is the total homotopy fiber of the square

X ×X //

²²

X

²²
X // ∗

Here the vertical map X ×X → X is projection onto the second coor-
dinate, and the horizontal map is projection onto the first coordinate.
Using our iterative definition of homotopy fiber (and taking fibers verti-
cally), we see that F ′′(∅) = hofiber(X id→ X) ' ∗. Alternately, we could
observe that this square is both a pullback and a homotopy pullback.
A similar computation shows that F (k)(∅) ' ∗ for k ≥ 3. That is, all
derivatives but the first of F (U) = Map(U,X) vanish, which suggests
this should be a linear functor. It is, as we will see in the next section.

Example 2.2.9 Let us compute the first two derivatives of F (U) =
Map(U2, X). We have F ′(∅) = hofiber(Map(B2, X) → Map(∅, X)) '
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hofiber(X → ∗) ' X. F ′′(∅) is the total homotopy fiber of the square

Map((B1
∐

B2)2, X) //

²²

Map(B2
1 , X)

²²
Map(B2

2 , X) // Map(∅, X)

.

Since Map((B1
∐

B1)2, X) = Map(B2
1 , X) ×Map(B2

2 , X) ×Map(B1 ×
B2, X) × Map(B2 × B1, X), we have F ′′(∅) ' Map(B1 × B2, X) ×
Map(B2 × B1, X) ' X2. All of the higher derivatives are contractible.
In a similar fashion, one can compute the first k derivatives of F (U) =
Map(Uk, X); all derivatives of order greater than k are contractible.

2.3 Criticism of analogies

We justify our definition of derivatives based on the classification theo-
rem for homogeneous functors which appears below as Theorem 4.2.1,
in which the derivatives at the empty set play a central role. Despite the
importance of the derivatives as we have defined them, we have reason
to be interested in the derivative of F at an arbitrary open set. We even
have reason to be interested in something which formally resembles a
derivative (the homotopy fiber of a restriction map) as described above,
but which does not simply involve studying differences based on tak-
ing disjoint unions with open balls. It is natural to make the following
definition.

Definition 2.3.1 For an open set V ∈ O(M) and an open ball B dis-
joint from V , define

F ′(V ) = hofiber(F (V
∐

B)→ F (V )).

Although the disjoint union is an obvious candidate for the analog
of sum, it is not at all clear that we should ignore more general unions,
for example, the attaching of a handle. In fact, we should not. As
we have mentioned, it is enough for us to understand the values of a
functor on open sets V which are the interior of a compact codimension
0 submanifold L of M ; that is, when V ∈ OMan(M). For the purposes of
this informal discussion, we will replace V with L. We wish to consider
more generally hofiber(F (L ∪f H i)→ F (L)). The special case of i = 0
is the disjoint union of L with an m-dimensional disk. Similar criticisms
apply to the study of higher derivatives. More general differences will
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become important when we tackle the question of convergence and the
analog of a bound on f (k+1)(x) for x close to zero, which is important
in understanding the remainder Rk(x) = |f(x)− Tkf(x)|.

3 Polynomial Functors

3.1 Definitions and examples

A function f : R → R is linear if f(x + y) = f(x) + f(y) for all x, y.
More generally, we might say a function is linear if f(x + y) − f(x) −
f(y) + f(0) = 0. Making analogies as we did in Section 2, and being
more flexible about the analog of sum (and using an arbitrary union
in place of the disjoint union), this leads one to say that a functor
F : O(M)→ Top is linear if for all open V, W in M the total homotopy
fiber of

F (V ∪W ) //

²²

F (W )

²²
F (V ) // F (V ∩W )

is contractible. This implies that the second (and higher) derivatives
of F vanish by letting V and W be disjoint open balls, but linearity is
clearly a stronger condition. Linear functors are also called polynomial
of degree ≤ 1, or excisive. We pause for an example before formalizing
this definition.

Example 3.1.1 Let X be a space. The functor U 7→ Map(U,X) is
linear. This follows from the fact that Map(−, X) sends (homotopy)
pushout squares to (homotopy) pullback squares. See Proposition 7.2.2.

We can reformulate this in a way more suitable to our needs, and
although it may seem a bit strange at first, the proof of Theorem 3.2.1
should help the reader understand why the definition is presented this
way.

Definition 3.1.2 A functor F : O(M) → Top is polynomial of degree
≤ 1 if for all U ∈ O(M) and for all disjoint nonempty closed subsets
A0, A1 ⊂ U , the diagram

F (U) //

²²

F (U −A0)

²²
F (U −A1) // F (U − (A0 ∪A1))
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is homotopy cartesian.

To relate this back to the definition above, note that if we put W =
U −A0 and V = U −A1, then U = V ∪W , and U − (A0∪A1) = V ∩W .
The reason for this is that it is convenient for the purposes of inductive
arguments (we will see this first in the proof of Theorem 3.2.1) to think
about “punching holes” in an open set to reduce its handle dimension.
The definition of polynomial of higher degree generalizes the notion of
linearity.

Definition 3.1.3 A functor F : O(M) → Top is called polynomial of
degree ≤ k if for all V ∈ O(M) and for all pairwise disjoint nonempty
closed subsets A0, A1, . . . , Ak+1 ⊂ V , the map F (V )→ holimS 6=∅ F (V −
∪i∈SAi) is a homotopy equivalence; in the same way, the diagram S 7→
F (V − ∪i∈SAi) is homotopy cartesian.

To compare this with the definition of the kth derivative, let V be
k + 1 disjoint open balls and let the Ai be the components of V . Thus
a polynomial of degree ≤ k has contractible derivatives of order k + 1
and above.

Proposition 3.1.4 If F is polynomial of degree ≤ k, then it is polyno-
mial of degree ≤ k + 1.

This is certainly something that had better be true if this definition
is to make any sense. It is not completely trivial, but follows from the
fact that if two opposing (k + 1)-dimensional faces of a (k + 2)-cube are
homotopy cartesian, then that (k+2)-cube is itself homotopy cartesian.
Now let us consider several more examples.

Example 3.1.5 The functor U 7→ Map(Uk, X) is polynomial of degree
≤ k (but not polynomial of lower degree). This basically follows from
the pigeonhole principle. Let A0, . . . , Ak be pairwise disjoint nonempty
closed subsets of U . For a point (x1, . . . , xk) ∈ Uk, each xi is in at most
one Aj , hence there is some l such that xi ∈ U−Al for all i by the pigeon-
hole principle. Therefore Uk = ∪k

i=1(U − Ai)k. It follows immediately
that, Uk = colimS 6=∅(U −∪i∈SAi)k, and one can show that in fact Uk '
hocolimS 6=∅(U −∪i∈SAi)k. Since Map(−, X) preserves equivalences and
turns homotopy colimits into homotopy limits (Proposition 7.2.2), we
have an equivalence Map(Uk, X) ' holimS 6=∅Map((U − ∪i∈SAi)k, X).
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Example 3.1.6 We can generalize the previous example without doing
any extra work as follows. Let C(k, U) ⊂ Uk be the configuration space
of k points in U (those (x1, . . . , xk) ∈ Uk such that xi 6= xj for i 6= j).
The group Σk acts on C(k, U) by permuting the coordinates, and we let(
U
k

)
= C(k, U)/Σk denote the quotient by this action. This gives us the

space of unordered configurations of k points in U . The same argument
as in the previous example shows that both U 7→ Map(C(k, U), X) and
U 7→ Map(

(
U
k

)
, X) are polynomial of degree ≤ k.

Example 3.1.7 The functor U 7→ Emb(U,N) is not polynomial of de-
gree ≤ k for any k. We will indicate why for k = 1. Let A0, A1 ⊂ U
be pairwise disjoint closed subsets, and put Ui = U − Ai, and U12 =
U1 ∩ U2. We are asked to check whether the map Emb(U1 ∪ U2, N) →
holim(Emb(U1, N) → Emb(U12, N) ← Emb(U2, N)) is an equivalence.
That is, given fi ∈ Emb(Ui, N) with a homotopy between their restric-
tions to U12, is this enough to determine an element of Emb(U1∪U1, N)?
It is not, due to an obstruction, namely that f1(U1) and f2(U2) might
intersect in N . It is, however, true that the map Emb(U1 ∪ U2, N) →
holim(Emb(U1, N) → Emb(U12, N) ← Emb(U2, N)) has a certain con-
nectivity; see Section 6.3 and Theorem 6.3.5

Example 3.1.8 The functor U 7→ Imm(U,N) is polynomial of degree
≤ 1. Let A0, A1 ⊂ U be pairwise disjoint closed, and put Ui = U − Ai,
and U01 = U0 ∩ U1. Then the square

Imm(U0 ∪ U1, N)

²²

// Imm(U0, N)

²²
Imm(U1, N) // Imm(U01, N)

is clearly a pullback, since being an immersion is a local condition,
and immersions of U0 and U1 which agree on their intersection make
an immersion of the union. It is a homotopy pullback because the
restriction map Imm(U0, N)→ Imm(U01, N) is a fibration. This fact is a
reformulation of the Smale-Hirsch theorem. This isn’t quite technically
correct; the Smale-Hirsch theorem does not apply to the restriction map
of open sets. However, this can be overcome without too much difficulty.
See [35, Lemma 1.5].
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3.2 Characterization of polynomials

Theorem 3.2.4 below is a structure theorem for polynomials, and later
we will discuss a structure theorem for homogeneous polynomials, Theo-
rem 4.2.1. Theorem 3.2.1, a structure theorem for linear functors (poly-
nomials of degree ≤ 1), which contains aspects of the proofs of both
Theorem 3.2.4 and Theorem 4.2.1, will be given below, and it has a
simple parallel for ordinary linear functions f : R→ R. The techniques
of its proof are used many times in this paper.

Consider the following proof that every continuous linear function
f : R → R is of the form f(x) = ax. Let a = f(1). Linearity implies
f(n) = an for n a natural number. If p and q are natural numbers with
q 6= 0, then ap = f(q p

q ) = qf(p
q ) by linearity, and so f(p

q ) = ap
q . By

density of Q in R and continuity of f , this implies f(x) = ax for all real
x.

Let p : Z → M be a fibration, and let Γ(M, Z; p) be its space
of sections. For example, if Z = M × X and p is the projection,
Γ(M,Z; p) = Map(M, X). The following theorem says that all lin-
ear functors F such that F (∅) = ∗ are the space of sections of some
fibration. Or, more roughly, that they are all (twisted) mapping spaces.

Theorem 3.2.1 Let F : O(M) → Top be a good functor such that
F (∅) = ∗ and which is polynomial of degree ≤ 1. Then there is a
fibration p : Z → M for some space Z and a natural transformation
F (U)→ Γ(U,Z; p) which is an equivalence for all U ∈ O(M).

Proof. First we make the natural transformation F (U) → Γ(U,Z; p).
Let O(1)(V ) denote the category of open subsets of V which are diffeo-
morphic to exactly one open ball. Note that all inclusions in this cat-
egory are isotopy equivalences, and that the realization |O(1)(V )| ' V .
Let Z = hocolimU∈O(1)(M) F (U). Since F takes isotopy equivalences
to homotopy equivalences, Z quasifibers over |O(1)(M)| ' M with
space of sections equivalent to holimU∈O(1)(M) F (U) by Theorem 7.1.6.
There is a natural transformation F (V ) → holimU∈O(1)(V ) F (U) since
F (V ) ' holimU∈O(V ) F (U) by Theorem 7.1.5 and O(1)(M)→ O(M) in-
duces the map in question. We define Γ(V ) = holimU∈O(1)(V ) F (U). We
now must show F (V )→ Γ(V ) is an equivalence. To do so, it is enough
by the second part of Definition 1.3.4 to check that it is an equivalence
when V is the interior of a compact codimension zero submanifold L of
M . We will proceed by induction on the handle dimension of V .
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Let k be the handle dimension of L. The base case to consider is
k = 0, when V is a disjoint union of finitely many open balls. For this,
we will induct on the number of components l of V . The base case is
l = 1, and in this case V is a final object in the category O(1)(V ), and so
the map F (V ) → Γ(V ) is an equivalence by Theorem 7.1.5. For l > 1,
let A0, A1 be two distinct components of V , and put VS = V − ∪i∈SAi

for S ⊂ {0, 1}. Consider the following diagram

F (V ) //

²²

Γ(V )

²²
holimS 6=∅ F (VS) // holimS 6=∅ Γ(VS)

Since both F and Γ are polynomial of degree ≤ 1, the vertical maps
are equivalences, and by induction, each map F (VS) → Γ(VS) is an
equivalence, and hence the induced map of homotopy limits over S is an
equivalence by Theorem 7.1.4. Therefore the top arrow is an equivalence
as well.

The general case proceeds in a similar fashion. Let k > 0 be the han-
dle dimension of V , and let l denote the number of handles of dimension
k. Let e : Dk ×Dm−k → L be one of these k-handles. Let D0, D1 ⊂ Dk

be disjoint disks, and put A′i = Di × Dm−k. Then A0 = V ∩ A′0 and
A1 = V ∩ A′1 are nonempty disjoint closed subsets of V , and if we put
VS = V − ∪i∈SAi, then for S 6= ∅, VS is the interior of a compact codi-
mension zero submanifold LS which can be given a handle structure
with fewer than l handles of dimension k (see Figure 1 for a picture in
a slightly different case). Once again consider the following diagram.

F (V ) //

²²

Γ(V )

²²
holimS 6=∅ F (VS) // holimS 6=∅ Γ(VS)

The vertical arrows are equivalences because F and Γ are polynomial
of degree ≤ 1. For S 6= ∅, the map F (VS)→ Γ(VS) is an equivalence by
induction on l, and hence so is the bottom horizontal arrow. It follows
that the top arrow is an equivalence as well. ¤

Remark 3.2.2 The idea of this proof is philosophically similar to that
which classifies continuous linear functions. We first constructed the
desired functor Γ by averaging (taking a homotopy limit) the values
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of F on single open balls (akin to a = f(1); we took an average to
ensure functoriality), and we see from the proof that Γ, and hence F ,
is completely determined by the value of F on an open ball. Then
we showed using linearity with a handle induction argument that this
implied that F (V ) → Γ(V ) was an equivalence for V ∈ OMan(M) (our
analog of Q). Finally we used continuity to conclude the result for
general open sets V .

Remark 3.2.3 We have already seen that Imm(M,N) is polynomial
of degree ≤ 1. We may ask how to express it as a space of sections. In
this case, an immersion f is a section of a bundle over M whose fiber at
x ∈ M is the space of vector bundle monomorphisms TxM → Tf(x)N .
This is, once again, a version of the Smale-Hirsch Theorem.

A proof similar to that in Theorem 3.2.1 characterizes polynomials
in terms of their values on finitely many open balls, and it also utilizes
a similar handle induction argument.

Theorem 3.2.4 ([35, Theorem 5.1]) Suppose F1 → F2 is a natural
transformation of good functors and that Fi is a polynomial of degree
≤ k for i = 1, 2. If F1(V )→ F2(V ) is an equivalence for all V ∈ Ok(M),
then it is an equivalence for all V ∈ O(M).

Note that a polynomial p : R→ R of degree k such that p(0) = 0 is
determined by its values on k distinct points; similarly, our polynomial
functors F are completely determined by their values on the category
of at most k open balls.

3.3 Approximation by polynomials

Now we will construct the kth Taylor polynomial TkF for a functor F .
Proceeding with an ordinary Taylor polynomial in mind, we would like
to construct a functor TkF which has the following properties:

• The derivatives F (i)(∅) and (TkF )(i)(∅) agree for 0 ≤ i ≤ k.

• TkF is polynomial of degree ≤ k.

• There is a natural transformation F → TkF , so that we may
discuss the “remainder” RkF = hofiber(F → TkF ).



Manifold calculus 21

Looking back at our discussion of derivatives, we computed F (i)(∅)
by looking at the total homotopy fiber of a cubical diagram of the values
of F on at most i disjoint open balls. One way to ensure that the
derivatives of order at most k of F and TkF agree is to make the values
of F (V ) and TkF (V ) agree when V is a disjoint union of at most k open
balls. With this in mind, for V ∈ O(M), recall the poset Ok(V ) of open
subsets of U which are diffeomorphic with at most k open balls in V . It
is a subposet of O(V ), and we want the values of F and TkF to agree
on these subcategories.

Definition 3.3.1 Let TkF (V ) = holimU∈Ok(V ) F (U).

This is a (homotopy) Kan extension of F along the inclusion of the
subcategory Ok(V ) → O(V ). It says that the value of TkF at a given
open set V is an “average” of the values of F on at most k open balls
contained in V . Note that if V itself is diffeomorphic with at most
k open balls, then V is a final object in Ok(V ), and so TkF (V ) =
holimU∈Ok(V ) F (U) ' F (V ), so we really have correctly prescribed the
values of TkF the way we said we would.

It is not clear from Definition 3.3.1 that TkF is a polynomial of
degree ≤ k, but it turns out that this is so. The proof is not trivial.
Let us content ourselves with knowledge that an ordinary polynomial
of degree k such that p(0) = 0 is completely determined by its values
on at most k points, and it is clear from the definition of TkF as an
extension over the subcategory of at most k “points” that the analog of
this is true.

There is a natural transformation F → TkF given by observing that
the inclusion Ok(V )→ O(V ) induces a map of homotopy limits

F (V ) ' holimU∈O(V ) F (U)→ holimU∈Ok(V ) F (U) = TkF (V )

and noting that the first equivalence follows since V is a final object in
O(V ) (see Theorem 7.1.5 in the appendix).

Note that O0(V ) contains only the empty set for all V , and so
T0F (V ) = F (∅) for all V .

Example 3.3.2 Since F (V ) = Map(V, X) is polynomial of degree ≤ 1,
F (V )→ T1F (V ) is an equivalence by Theorem 3.2.4, since their values
agree when V is a single open ball.
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Example 3.3.3 The linearization of embeddings is immersions. That
is, T1 Emb(V,N) ' Imm(V, N). The natural transformation

Emb(V, N)→ Imm(V,N)

is an equivalence when V is a single open ball, and hence T1 Emb(U,N)
= holimV ∈O1(U) Emb(V,N) is equivalent to holimV ∈O1(U) Imm(V,N) '
Imm(U,N), with the last equivalence given by the fact that Imm(−, N)
is polynomial of degree ≤ 1, as in the previous example.

3.4 The Taylor tower

Armed with a definition of TkF , we can now form the “Taylor tower”
of F , the analog of the Taylor series. The inclusion Ok−1(V )→ Ok(V )
induces a map TkF (V )→ Tk−1F (V ), and so we obtain a tower of func-
tors

· · · → TkF → Tk−1F → · · · → T1F → T0F.

Since V is a final object in O(V ), we may identify F (V ) with
holimO(V ) F , and the inclusion Ok(V )→ O(V ) induces maps F → TkF
which are compatible with one another. Hence there is a natural trans-
formation F → holimk TkF , and we would like to know under what cir-
cumstances this map is an equivalence; that is, when the Taylor tower of
F converges to F . This is the subject of Section 5. Before we embark on
questions of convergence, it will be useful to understand the differences
hofiber(TkF → Tk−1F ).

4 Homogeneous Functors

4.1 Definitions and examples

An explicit description of polynomial functors is perhaps too much to
hope for, so we will content ourselves with a classification of homogenous
functors. Fortunately there is a parallel with ordinary calculus here
too. For f : R → R, consider the kth homogeneous piece of its Taylor
series, Lkf(x) = Tkf(x) − Tk−1f(x) = f (k)(0)xk

k! . The classification of
homogeneous functors shares a similar form. Roughly speaking, it is the
space of sections of a fibration over

(
M
k

)
whose fibers are the derivatives

F (k)(∅). We will state this more precisely below, but first we define what
it means for a functor to be homogeneous and consider some examples.
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Definition 4.1.1 A functor E : O(M) → Top is homogeneous of de-
gree k if it is polynomial of degree ≤ k and Tk−1E(V ) ' ∗ for all V .

Example 4.1.2 For a good functor F , choose a basepoint in F (M).
This bases F (V ) for all V ∈ O(M). The functor LkF = hofiber(TkF →
Tk−1F ) is homogeneous of degree k. That it is polynomial of degree
≤ k follows from the fact that TkF and Tk−1F are both polynomial of
degree ≤ k. To see that Tk−1LkF (V ) ' ∗ for all V , first observe that
Tk−1 commutes with homotopy fibers (see Theorem 7.1.3; homotopy
limits commute), and next observe that Tk−1TkF ' Tk−1F . Indeed,
Tk−1TkF (V ) = holimW∈Ok−1(V ) holimU∈Ok(W ) F (U), and since W is dif-
feomorphic with at most k− 1 open balls, it is a final object in Ok(W ),
and so holimU∈Ok(W ) F (U) ' F (W ).

Example 4.1.3 The functor U 7→ Map(U2, X) is polynomial of degree
≤ 2, so its quadratic approximation T2 Map(U2, X) ' Map(U2, X).
However, it is not homogeneous of degree 2, because, as we showed
above, it has a non-trivial first derivative, which would necessarily van-
ish were it homogeneous. In fact, T1 Map(U2, X) ' Map(U,X). Let
U → U2 be the diagonal map. This gives rise to a restriction

Map(U2, X)→ Map(U,X).

Note that when U is a single open ball, Map(U2, X) → Map(U,X) is
an equivalence, and since Map(U,X) is polynomial of degree ≤ 1, it
follows from Theorem 3.2.4 that T1 Map(U2, X) ' Map(U,X). There-
fore L2 Map(U2, X) = hofiber(Map(U2, X) → Map(U,X)). Similarly,
U 7→ Map(Uk, X) is not homogeneous of degree k unless k = 1.

Example 4.1.4 We compute

L3 Map(U3, X) = hofiber(T3 Map(U3, X)→ T2 Map(U3, X)).

As in the previous example, T3 Map(U3, X) ' Map(U3, X). Let ∆(U) ⊂
U3 denote the fat diagonal. ∆(U) = {(x1, x2, x3)|xi = xj for some i 6=
j}. We would like to claim that U 7→ Map(∆(U), X) is a model for
T2 Map(U3, X), and while this is in spirit the case, our answer will be
slightly different.

We proceed as follows: For S ⊂ {1, 2, 3}, let

∆S(U) = {(x1, x2, x3) |xi = xj for all i, j ∈ S}.
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Then ∆(U) = colim1<|S|∆S(U) (the union of these spaces covers ∆(U),
and we define ∆̃(U) = hocolim1<|S|∆S(U). Thus, since Map(−, X)
turns homotopy colimits into homotopy limits by Proposition 7.2.2, con-
sequently Map(∆̃(U), X) = holim1<|S|Map(∆S(U), X). It is clear that
Map(∆S(U), X) is a polynomial of degree ≤ 4−|S|, and since 1 < |S| ≤
3, for all S under consideration, holim1<|S|Map(∆S(U), X) is polyno-
mial of degree ≤ 2 because each functor in the diagram is polynomial
of degree ≤ 2. Note that U3 ' hocolim1≤|S|∆S(U), and hence there
is a natural transformation of functors Map(U3, X) → Map(∆̃(U), X)
given by the obvious inclusion of categories.

By inspection, when U is a union of at most two open balls, the
map Map(U3, X)→ Map(∆̃(U), X) is an equivalence, and so by Theo-
rem 3.2.4, T2 Map(U3, X) ' Map(∆̃(U), X). It follows that

L3 Map(U3, X) ' hofiber(Map(U3, X)→ Map(∆̃(U), X)).

Spaces of maps are special cases of sections of bundles, and we can
generalize further to include examples such as these.

Example 4.1.5 Let p : Z → (
M
k

)
be a fibration with a section. Let

Γ(
(
M
k

)
, Z; p) denote its (based) space of sections. The assignment U 7→

Γ(
(
U
k

)
, Z; p) is polynomial of degree ≤ k. Define

Γ
(

∂

(
U

k

)
, Z; p

)
= hocolim

N∈N
Γ

((
U

k

)
∩Q,Z; p

)
.

One may think of this as the space of germs of sections near the fat
diagonal. It turns out that Tk−1Γ(

(
U
k

)
, Z; p) ' Γ(∂

(
U
k

)
, Z; p), and hence

Γc

((
U

k

)
, Z; p

)
= hofiber

(
Γ

((
U

k

)
, Z; p

)
→ Γ

(
∂

(
U

k

)
, Z; p

))
.

is homogeneous of degree k. We refer to Γc as the space of compactly
supported sections.

4.2 Classification of homogeneous polynomials

The last example in the previous section is quite general, according to
the classification of homogeneous functors.
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Theorem 4.2.1 ([35, Theorem 8.5]) Let E be homogeneous of degree
k. Then there is an equivalence, natural in U ,

E(U) −→ Γc

((
U

k

)
, Z; p

)
,

where Γc is the space of compactly supported sections of a fibration p :
Z → (

U
k

)
. The fiber over S of the fibration p is the total homotopy fiber of

a k-cube of spaces made up of the values of E on a tubular neighborhood
of S. In particular, if E(U) = hofiber(TkF (U)→ Tk−1F (U)), then the
fibers of the classifying fibration are the derivatives F (k)(∅).

This has a pleasing analogy with the kth homogeneous component
xk

k! f
(k)(0) of the Taylor series centered at 0 for a smooth function f ,

where
(
U
k

)
plays the role of xk

k! , and, of course, F (k)(∅) plays the role of
f (k)(0). We will not discuss the proof of Theorem 4.2.1, but remark that
most of the required tools are on display in the proof of Theorem 3.2.1.
The classifying fibration p : Z → (

U
k

)
is the pullback of a fibration

p : Z → (
M
k

)
, induced by the inclusion U →M .

5 Convergence and Analyticity

Now that we can construct a Taylor tower for a functor F and under-
stand a bit about its structure, we are ready to ask whether or not
it approximates the functor F in a useful way. The Taylor series of a
function f : R → R need not converge to f ; in fact, the series need
not converge at all. We will discuss the extent to which an approxima-
tion by polynomial functors does a suitable job of approximating the
homotopy type of the values of a given functor. The reader may already
suspect that a “suitable” approximation is one which approximates the
homotopy type of through a range. On R, |x−y| measures the difference
of x and y, and in Top, a useful “metric” for measuring the difference
between spaces X and Y with respect to a map f : X → Y is to ask for
the connectivity of the homotopy fiber hofiber(f).

Two natural questions to ask are:

1. Does the Taylor tower of a functor F converge to anything?

2. Does the Taylor tower converge to F?

Information about the first question can be obtained from Theo-
rem 4.2.1, the characterization of homogeneous functors, and there is
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an easy answer if one can compute the connectivity of the derivatives
of a functor. The second is much more difficult. This section will first
discuss some generalities regarding convergence, including the useful
notion of ρ-analyticity, where the integer ρ is analogous to a radius of
convergence. Section 6 will tackle the convergence question for spaces
of embeddings, so the reader has a sense of what types of arguments go
into proving convergence results in a specific example.

5.1 Convergence of the series

For a smooth function f : R→ R with Taylor series
∑

ak
xk

k! , the radius
of convergence r is the largest value of r such that

∑
ak

xk

k! converges
absolutely for |x| < r. Thus there are two possibilities for the conver-
gence of the series: either it converges only at 0, or it converges on an
open interval centered at 0.

We would not speak of convergence of the Taylor series of a functor
F unless the homotopy type of TkF stabilizes with k; that is, unless the
maps TkF → Tk−1F have connectivity increasing to infinity with k. For
a functor F , we are interested in the homotopy type of holimk TkF , and
whether the homotopy type of TkF “stabilize” as k increases. One way
to detect this is to study the maps TkF → Tk−1F . If their connectivities
increase to infinity with k, then we would say that the Taylor series
converges, and Theorem 4.2.1 is useful in giving us a means to attack
this. In particular, if the derivatives have increasing connectivity, this
will ensure these maps are highly connected.

Proposition 5.1.1 For a good functor F , if F (k)(∅) is ck-connected,
then LkF (M) is (ck − km)-connected. More generally, if U has handle
dimension j, then LkF (U) is (ck − kj)-connected.

The homogeneous classification theorem tells us that LkF (M) =
hofiber(TkF (M)→ Tk−1F (M)) is equivalent to the space of compactly
supported sections of a fibration over

(
M
k

)
whose fibers are the deriva-

tives F (k)(∅). Thinking of a section space as a twisted mapping space,
standard obstruction theory arguments (see Proposition 7.2.1) show
that if ck is the connectivity of F (k)(∅), then LkF (M) is (ck − km)-
connected (see Proposition 7.2.1 for the basic idea). In any case, the
Taylor tower of F converges for all U of handle dimension ≤ j if ck−kj
tends to infinity with k.

We can see that the analog of the radius of convergence has some-
thing to do with handle dimension, although we have not yet tackled



Manifold calculus 27

this in a serious way. This is organized more systematically below as
the notion of ρ-analyticity of a functor.

5.2 Convergence to the functor

We would certainly say that TkF converges to F if the canonical map
F → holimk TkF is an equivalence. In this case, the connectivity of
LkF informs us about the connectivity of the “remainder” RkF =
hofiber(F → TkF ).

Proposition 5.2.1 For a good functor F , if F → holimk F is an equiv-
alence and Lk+1F is ck-connected, where ck is an increasing function of
k, then F → TkF is ck-connected.

Proof. Since Lk+1F = hofiber(Tk+1F → TkF ) is ck-connected, Tk+1

→ TkF is (ck + 1)-connected, and since ck is an increasing function of
k, it follows that TlF → TkF is (ck + 1)-connected for all l > k. Since
F → holimk TkF is an equivalence, F → TkF is ck-connected as well. ¤

Although it may be difficult to establish a homotopy equivalence
F → holimk TkF , in practice it is feasible to understand the connec-
tivity of LkF by Proposition 5.1.1, since it reduces to computing the
connectivity of the derivatives F (k)(∅). Hence even with a lack of
knowledge of convergence, we can formulate conjectures about the con-
nectivities of the maps F → TkF based on the connectivity of LkF .
Understanding the difference between F and TkF is a natural ques-
tion in ordinary calculus as well. We are often interested in the error
Rk(x) = |f(x) − Tkf(x)| for certain x. For f smooth on [−r, r] and

satisfying |f (k+1)| ≤ Mk on (−r, r), we have Rk(x) ≤ Mk
rk+1

(k+1)! . If

Mk
rk+1

(k+1)! → 0 as k → ∞, then we would say that f is analytic on

(−r, r); that is, its Taylor series converges to it. We wish, therefore, to
answer the following questions:

1. What is the analog of the radius of convergence?

2. What should we mean by a bound on f (k+1) within the radius of
convergence?

3. How can we estimate the “error” RkF = hofiber(F → TkF )?
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Briefly, the answer to the first question is that the radius of conver-
gence is a positive integer ρ. An open set V which is the interior of a
smooth compact codimension 0 submanifold L of M is within the radius
of convergence if the handle dimension of L is less than ρ. The answer
to the second lies in our criticism given in the last section of Section 2 of
our definition of the derivatives of F . Our definition of derivative only
allows the attaching of a handle of dimension 0 (disjoint union), while
we will need to understand what happens for more general unions. A
similar comment applies to higher derivatives. We will expand on all of
this below.

To answer the third question, note that we are asking about the
extent to which a given functor F fails to be polynomial of degree ≤ k.
We have two options available to us. The first is to study the homotopy
fiber of F (V ) → TkF (V ). This has the advantage that it is a natural
transformation of functors, and it is the connectivity of this map we
are ultimately interested in. Unfortunately, the target is a homotopy
limit over a category not very accessible to computation. The other
option is to study the extent to which the functor F fails to satisfy the
definition of a polynomial. This is much more computationally feasible,
because it involves values of the original functor on certain kinds of
cubical diagrams.

Suppose F : O(M)→ Top is a functor and ρ > 0 is an integer. For
k > 0, let P be a smooth compact codimension 0 submanifold of M , and
Q0, . . . , Qk be pairwise disjoint compact codimension 0 submanifolds of
M − int(P ). Suppose further that Qi has handle dimension qi < ρ. Let
US = int(P ∪QS).

Definition 5.2.2 The functor F is ρ-analytic with excess c if the (k +
1)-cube S 7→ F (US) is (c +

∑k
i=0(ρ− qi))-cartesian.

This is the analog of a bound on f (k)(x) for x close to 0. In this case,
close to zero means having small handle dimension, and the (k+1)-cube
S 7→ F (US) certainly resembles a more general (k + 1)st derivative-like
expression. We will see shortly that ρ gives the radius of convergence
of the Taylor tower of F . Note that this definition is concerned with
something close to the kth derivative of F at P , although we allow
ourselves to study multirelative differences not just involving disjoint
open balls, but arbitrary manifolds with bounded handle dimension. It
is this definition that gives us our answer to the second question above,
as we will see in the next theorem, which is the estimate for the error
RkF = hofiber(F → TkF ).
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Theorem 5.2.3 ([18, Theorem 2.3]) If F is ρ-analytic with excess c,
and if U ∈ O(M) is the interior of a smooth compact codimension 0
submanifold of M with handle dimension q < ρ, then the map F (U)→
TkF (U) is (c + (k + 1)(ρ− q))-connected.

Corollary 5.2.4 ([18, Corollary 2.4]) Suppose F is ρ-analytic with ex-
cess c. Then for each U ∈ O(M) which is the interior of a com-
pact codimension 0 submanifold of handle dimension < ρ, the map
F (U)→ holimk TkF (U) is an equivalence.

This follows since the connectivities of the maps F (U) → TkF (U)
increase to infinity with k if the handle dimension of U is less than ρ.
Thus we see how the handle dimension can be thought of as the radius
of convergence, where an open set is measured by its handle dimension.

We will not give the proof of Theorem 5.2.3, although we would
like to make a few remarks. The strategy of the proof is similar to the
inductive proof of Theorem 3.2.1. We are interested in the connectivity
of the map F (U) → TkF (U), and as usual, it suffices to study the
special case where U is the interior of a smooth compact codimension 0
submanifold L of M . Using a handle decomposition, we select pairwise
disjoint closed subsets A0, . . . , Ak such that for S 6= ∅, US = U−∪i∈SAi

is the interior of a compact smooth codimension 0 submanifold whose
handle dimension is strictly less than the handle dimension of L. We
then consider the diagram

F (U) //

²²

TkF (U)

²²
holimS 6=∅ F (US) // holimS 6=∅ TkF (US)

.

The right vertical arrow is an equivalence since TkF is polynomial of
degree ≤ k, and by induction we can get a connectivity estimate for the
bottom horizontal arrow. We have a connectivity for the left vertical
arrow by assuming F is ρ-analytic. Together these give an estimate for
the connectivity of F (U) → TkF (U). The next section is devoted to
understanding how to obtain connectivity estimates for the left vertical
arrow in the case k = 1, 2 for the functor F (U) = Emb(U,N). In
particular, the difficult task is verifying that a given functor is ρ-analytic
for some ρ, which gives a connectivity estimate for the left vertical arrow.
Before we embark on this, let us state one more corollary regarding
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convergence. This next result is the analog of the uniqueness of analytic
continuation.

Corollary 5.2.5 ([18, Corollary 2.6]) Suppose F1 → F2 is a natural
transformation of ρ-analytic functors, and that F1(U) → F2(U) is an
equivalence whenever U ∈ Ok(M) for some k. Then F1(V ) → F2(V )
is an equivalence for each V which is the interior of a smooth compact
codimension 0 submanifold of handle dimension less than ρ.

Proof. Suppose V ∈ O(M). Consider the following diagram.

F1(V ) //

²²

F2(V )

²²
holimk TkF1(V ) // holimk TkF2(V )

Since F1(U)→ F2(U) is an equivalence whenever U is in Ok(M) for any
k, it follows from Theorem 3.2.4 that TkF1 → TkF2 is an equivalence for
all k. Hence the lower horizontal arrow is an equivalence for all V . If
the handle dimension of V is less than ρ, then F1(V )→ holimk TkF1(V )
and F2(V ) → holimk TkF2(V ) are equivalences by Corollary 5.2.4, so
F1(V )→ F2(V ) is an equivalence. ¤

6 Convergence for Spaces of Embeddings

The following is a theorem due to Klein and Goodwillie about the con-
vergence of the Taylor tower of the embedding functor. A version for
spaces of Poincaré embeddings has appeared in [14], which is an impor-
tant step in proving the result below, which will appear in [13].

Theorem 6.0.6 The functor U 7→ Emb(U,N) is n − 2 analytic with
excess 3−n. Hence, if M is a smooth closed manifold of dimension m,
and N a smooth manifold of dimension n, then the map

Emb(M, N) −→ Tk Emb(M, N)

is [k(n −m − 2) + 1 −m]-connected. In particular, if n −m − 2 > 0,
then the canonical map

Emb(M, N) −→ holimk Tk Emb(M,N)

is a homotopy equivalence.
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The proof of this theorem goes beyond the scope of this work, al-
though we wish to present some of the ideas involved in arriving at
such estimates. Note that the estimate for the map Emb(M, N) →
Tk Emb(M,N) can be conjectured using Proposition 5.2.1; we will com-
pute the connectivity of the derivatives of embeddings below. Note also
that in the case m = 1 and n = 3 (essentially knot theory), we do not
have convergence (although the theorem still gives a non-trivial answer).

One can obtain the connectivity of Emb(M, N) → T1 Emb(M, N)
“by hand” without too much work, and some of the ideas that go into
one version of this computation (the second proof of Theorem 6.2.1
below) are important in obtaining estimates for all k. We will also
discuss a weaker estimate for the map Emb(M, N) → T2 Emb(M, N).
The techniques required for the results above are far beyond the scope
of this work, and involves important relationships between embeddings,
pseudoisotopies, and diffeomorphisms, as well as some surgery theory.

6.1 Connectivity of the derivatives of embeddings

The first step in understanding some of the ideas that go into establish-
ing the analyticity of the embedding functor is to compute the connec-
tivity of the derivatives of the embedding functor.

Theorem 6.1.1 Let U =
∐

i Bi ⊂ M be a disjoint union of k open
balls. For S ⊂ k, let US = U − ∪i∈SBi. The k-cube S 7→ Emb(US , N)
is ((k − 1)(n − 2) + 1)-cartesian. That is, if E(U) = Emb(U,N), then
E(k−1)(∅) is (k − 1)(n− 2)-connected.

Let us begin with an observation that will simplify things. For a
subset S of k, the projection map

∏
i/∈S Bi×Emb(US , N)→ Emb(US , N)

is an equivalence because balls and products of balls are contractible
(if S = k, we take

∏
i/∈S Bi to be a point). Let C(j, N) denote the

configuration space of j points in N . The map
∏

i/∈S Bi×Emb(US , N)→
C(k − |S|, N)× Imm(US , N) which is induced by the map which sends
((x1, . . . , xk), f) to ((f(x1), . . . , f(xk), (dfx1 , . . . , dfxk

)) is an equivalence
for all S (where again the product of balls is taken to be a point if
S = k). Hence S 7→ Emb(US , N) is j-cartesian if and only if S 7→
C(k− |S|, N)× Imm(US , N) is j-cartesian. The cube S 7→ Imm(US , N)
is homotopy cartesian whenever k ≥ 2 because Imm(−, N) is polynomial
of degree ≤ 1. Therefore S 7→ Emb(US , N) is K-cartesian if and only if
S 7→ C(k−|S|, N) is j-cartesian for k ≥ 2. For illustration, we will only
prove this in the case where k = 2. The cases k ≥ 3 are straightforward
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enough, and all that they require is an application of the Blakers-Massey
Theorem 7.3.2.
Proof. For k = 2, we are looking at the square

Emb(U,N) //

²²

Emb(U0, N)

²²
Emb(U1, N) // Emb(∅, N)

By the remarks preceding the proof, this square is j-cartesian if and
only if

C(2, N) //

²²

C(1, N)

²²
C(1, N) // C(∅, N)

is j-cartesian. The maps in this diagram are fibrations, and taking fibers
vertically over p ∈ C(1, N) yields the 1-cube N −{p} → N , which is an
(n−1)-connected map, and hence the original square is (n−1)-cartesian
by Proposition 2.2.5. ¤

As we mentioned, the Blakers-Massey Theorem 7.3.2 needs to be
applied for higher k. For instance, the case k = 3 ends with fibering
over (p, q) ∈ C(2, N) and observing that the square

N − {p, q} //

²²

N − p

²²
N − q // N

is a homotopy pushout and is (2n− 3)-cartesian by the Blakers-Massey
Theorem 7.3.2.

6.2 Connectivity estimates for the linear and quadratic
stages for embeddings

We will give two proofs of the following theorem. The second requires
a disjunction result from the next section, but beyond this, it is almost
identical to the proof of Theorem 3.2.1.

Theorem 6.2.1 The map Emb(M, N)→ T1 Emb(M, N) is (n− 2m−
1)-connected. In fact, if V ⊂M is the interior of a compact codimension
0 handlebody with handle dimension k, then the map is (n − 2k − 1)-
connected.
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The first proof is much easier and employs general position argu-
ments, although it only gives the connectivity estimate in terms of the
dimension of M , not the stronger statement involving the handle di-
mension. The second uses a bit more machinery, but reduces the proof
to the special case where M is the disjoint union of balls via an induc-
tion argument on the handle dimension, but requires a disjunction result
from the next section. Hopefully this further convinces the reader of the
importance of derivatives. Its methods are also important in organizing
the proof of the connectivity estimate for Emb(M, N)→ Tj Emb(M, N)
for all j.

First Proof. We have already mentioned that

T1 Emb(M, N) ' Imm(M, N).

Let h : Sk → Imm(M, N) be a map with adjoint H : M × Sk → N .
Consider the map H̃ : M ×M × Sk → N ×N defined by H̃(x, y, s) =
(H(x, s),H(y, s)). We can arrange, by a small homotopy, for H to be
smooth and H̃ to be transverse to the diagonal. Let D = H̃−1(∆(N))
be the inverse image of the diagonal. It is a submanifold of M×M×Sk

of dimension 2m+k−n, which is empty if k < n−2m, and in this case,
the map h clearly has image in Emb(M,N). A similar argument shows
that a homotopy h : Sk × I → Imm(M, N) lifts to Emb(M, N) if k <
n−2m−1, and it follows that the inclusion Emb(M,N)→ Imm(M, N)
is (n− 2m− 1)-connected. ¤
Second Proof. We will induct on k. For the base case k = 0, let l be
the number of components of V . The result is trivial, and the map in
question is an equivalence, when l = 0, 1. Suppose l ≥ 2. Consider the
sequence

(3) Emb(V, N)→ Tl Emb(V, N)→ Tl−1 Emb(V, N)→
· · · → T1 Emb(V, N).

The map Emb(V, N) → Tl Emb(V,N) is an equivalence since V is a
final object in Ol(V ). By the classification Theorem 4.2.1 of homoge-
neous functors, we have that Lj Emb(V, N) = hofiber(Tj Emb(V,N)→
Tj−1 Emb(V,N)) is equivalent to Γc(

(
V
j

)
,Emb(j)(∅)). Since V has han-

dle dimension 0,
(
V
j

)
also has handle dimension 0, and the fibers are

thus (j−1)(n−2)-connected; in other words, the map Tj Emb(V, N)→
Tj−1 Emb(V,N) is ((j−1)(n−2)+1)-connected. This is true no matter
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D2

A0

A2

A3

∂D1∂D1
L

D0 A1
D3

D1

Figure 1: A picture of four disks Di in the core of a 1-handle D1 ×D1

attached to L along ∂D1 ×D1 and their corresponding thickenings Ai.
The Di are subsets of the core D1 × {0} (which itself is depicted as
the curve in the middle of the handle), and Ai = Di ×D1 ⊂ D1 ×D1.
Note that removing k ≥ 1 of the Ai leaves a manifold with (k−1) extra
0-handles, but one fewer 1-handle

what basepoint is chosen, provided m < n. It follows that the composed
map Emb(V, N)→ T1 Emb(V,N) is (n− 1)-connected.

Now suppose k > 0. Let V = int(L). For j = 1 to s, let ej :
Dk × Dn−k → L denote each of the s k-handles. Assume e−1

j (∂L) =
∂Dk×Dn−k for all j. Since k > 0, we may choose pairwise disjoint closed
disks D0, D1 in the interior of Dk, and put Aj

i = ej(Di × Dn−k) ∩ V .
Then each Aj

i is closed in V , and if we set Ai = ∪s
j=1A

j
i , then for each

nonempty subset S of {0, 1}, VS = V −∪i∈SAi is the interior of a smooth
compact codimension 0 submanifold of M of handle dimension strictly
less than k. See Figure 1 for a low-dimensional picture where there are
four disks Di instead of just two.

In the following square diagram,

Emb(V, N) //

²²

T1 Emb(V, N)

²²
holimS 6=∅ Emb(VS , N) // holimS 6=∅ T1 Emb(VS , N)

the right vertical arrow is again an equivalence because T1 Emb(−, N) is
polynomial of degree≤ 1, and by induction for all S 6= ∅, Emb(VS , N)→
T1 Emb(VS , N) is (n−2(k−1)−1)-connected, and by Proposition 2.2.6,
the map of homotopy limits has connectivity n− 2(k− 1)− 1− 2 + 1 =
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n−2k. By Theorem 6.3.5, the left vertical map is (n−2k−1)-connected,
and it follows that the top horizontal map is (n− 2k − 1)-connected.¤

The base case of the induction on handle dimension above required
an argument which was different than the inductive step. In particular
it required knowledge of the higher derivatives, and we do not see a way
around this. Attempts to mimic the inductive step for the base case
yield connectivity estimates which are less than those desired.

Theorem 6.2.2 The map Emb(M,N)→ T2 Emb(M,N) is (2n−3m−
3)-connected. In fact, if V ⊂ M is the interior of a compact codimen-
sion 0 submanifold of M whose handle dimension is k, then the map
Emb(V, N)→ T2 Emb(V, N) is (2n− 3k − 3)-connected.

The second proof of Theorem 6.2.1 can be adapted with very few
changes. The only changes (besides the connectivity estimates them-
selves) are that the pairwise disjoint closed subsets chosen are three in
number, and instead of referencing Theorem 6.3.5, we reference Theo-
rem 6.3.6. However, Theorem 6.3.6 is weaker than what we need, and
we can really only claim to prove a weaker version of Theorem 6.2.2,
stated below. The issue here is that there is a stronger version of The-
orem 6.3.6 which we are unable to prove by elementary means.

Theorem 6.2.3 With hypotheses as in Theorem 6.2.2, the map

Emb(V, N)→ T2 Emb(V, N)

is (2n− 4k − 3)-connected.

6.3 Some disjunction results for embeddings

For the second proof of Theorem 6.2.1 we needed an estimate for how
cartesian the square E

Emb(V,N) //

²²

Emb(V0, N)

²²
Emb(V1, N) // Emb(V01, N)

is. Here V = V∅ is the interior of some smooth compact codimension
0 submanifold of M with handle dimension k, and, for S 6= ∅, the
VS are the interiors of compact codimension 0 submanifolds of handle
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dimension less than k. As in the proof of Theorem 6.2.1, let V = int(L).
We chose each Ai to be a union of products of a k-dimensional disk
with an (m − k)-dimensional disk. Note that LS = L − ∪i∈SAi is not
compact, but its interior is the interior of a smooth compact codimension
0 submanifold of M . This is important to note because below we will
work not with the open sets that appear in E , but with their closed
counterparts L and the Ai.

Let us first consider a formally similar situation. Suppose Q0 and
Q1 are smooth closed manifolds of dimensions q0 and q1 respectively,
and let QS = ∪i/∈SQi for S ⊂ {0, 1}. Consider the square S = S 7→
Emb(QS , N):

Emb(Q0 ∪Q1, N) //

²²

Emb(Q0, N)

²²
Emb(Q1, N) // Emb(∅, N).

It is enough by Proposition 2.2.5 to choose a basepoint in Emb(Q0 ∪
Q1, N) and take fibers vertically and compute the connectivity of the
map of homotopy fibers. By the isotopy extension theorem, the map
Emb(Q0∪Q1, N)→ Emb(Q1, N) is a fibration with fiber Emb(Q0, N −
Q1). We will show that Emb(Q0, N − Q1) → Emb(Q0, N) in Theo-
rem 6.3.5, and hence the square S, is (n − q0 − q1 − 1)-cartesian. Al-
though the squares E and S are formally similar, it is not clear how to
use Theorem 6.3.5 to give an estimate for how cartesian the square E is.

First note that we can generalize the situation in the square S to a
relative setting. That is, suppose Q0, Q1 and N have boundary, and
that embeddings ei : ∂Qi → ∂N have been selected to have disjoint
images. Let Emb∂(QS , N) be the space of embeddings f : QS → N
such that the restriction of f to ∂QS is equal to eS , and such that
f−1(∂N) = ∂QS . Then it is also true that

Emb∂(Q0 ∪Q1, N) //

²²

Emb∂(Q0, N)

²²
Emb∂(Q1, N) // Emb∂(∅, N)

is (n− q0 − q1 − 1)-cartesian; in particular, the proof of this is identical
to that of Theorem 6.3.5 with the exception of repeating the phrase
“relative to the boundary” over and over.
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We can make a further generalization to the case of compact man-
ifold triads (defined in Section 1.2). Suppose the Qi are compact n-
dimensional manifold triads of handle dimension qi, where n − qi ≥ 3,
and Y is an n-dimensional smooth manifold with boundary. In this case
embeddings ei : ∂0Qi → ∂N have been chosen, and we let Emb∂0(QS , N)
stand for the obvious thing.

Theorem 6.3.1 ([18, Theorem 1.1]) The diagram

Emb∂0(Q0 ∪Q1, N) //

²²

Emb∂0(Q0, N)

²²
Emb∂0(Q1, N) // Emb∂0(∅, N)

is (n− q0 − q1 − 1)-cartesian.

This can be generalized to the case where the dimension of the Qi is
m ≤ n, essentially by a thickening of the m-dimensional Qi by the disk
bundle of an (n−m)-plane bundle.

Proposition 6.3.2 ([18, Observation 1.3]) If dim(Qi) = m ≤ n then
Theorem 6.3.1 is true.

The rough idea of the proof is to assume that Y is embedded in Rn+k

and let Grn−m = colimk Grn−m+k(Rn+k) be a limit of Grassmannians.
Consider the map Emb(QS , Y )→ Map(QS , Grn−m) given by assigning
an embedding f to its normal bundle νf . The homotopy fiber of this map
over some η can be identified with the space of embeddings of the disk
bundle of η over QS . Since S 7→ Map(QS , Grn−m) is homotopy cartesian
(because Map(−, X) is polynomial of degree ≤ 1), by Proposition 2.2.5,
the square of homotopy fibers is (n− q0 − q1 − 1)-cartesian if and only
if the square S 7→ Emb∂(QS , Y ) is (n − q0 − q1 − 1)-cartesian. Note,
however, that this introduces more corners, since the closed disk bundle
of a smooth manifold with boundary is already a compact manifold triad
itself. The new corners due to the disk bundle are introduced along the
corner set of the original compact manifold triad. It will do no harm to
ignore this.

Without changes whatsoever we can assume the Qi are submanifolds
of an m-dimensional manifold M . Now we are in a position to describe
a situation which is directly related to the square E , and we generalize
this situation further by introducing a new manifold P . Suppose that
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P is a smooth compact codimension 0 manifold triad in M , Q0, Q1 are
smooth compact codimension 0 manifold triads in M− int(P ), and that
the handle dimension of Qi satisfies n− qi ≥ 3. Put QS = ∪i/∈SQi.

Proposition 6.3.3 The square S 7→ Emb(P∪QS , N) is (n−q0−q1−1)-
cartesian.

Proof. The square S 7→ Emb(P, N) is homotopy cartesian since all maps
are equivalences, and hence S 7→ Emb(P ∪QS , N) is (n− q0 − q1 − 1)-
cartesian if and only if the square of homotopy fibers

S 7→ hofiber(Emb(P ∪QS , N)→ Emb(P, N))

is (n− q0 − q1 − 1)-cartesian for all choices of basepoint in Emb(P, N).
The map Emb(P ∪ QS , N) → Emb(P, N) is a fibration with fiber
Emb∂0(QS , N−P ), which is (n−q0−q1−1)-cartesian by Theorem 6.3.1.
¤

We finally arrive at the technical statement which relates the open
sets in square E with the closed sets we have been considering.

Corollary 6.3.4 ([18, Corollary 1.4]) Let P, Q0, Q1 be as in Propo-
sition 6.3.3, and set VS = int(P ∪ QS). Then S 7→ Emb(VS , N) is
(n− q0 − q1 − 1)-cartesian.

To connect this explicitly with the square E , we choose the Qi to
be the Ai considered in Theorem 6.2.1, and P to be the closure of
L−(A0∪A1). We now proceed to give the promised disjunction results.

Theorem 6.3.5 Suppose P and Q are smooth compact submanifolds of
an n-dimensional manifold N of dimensions p and q respectively. The
inclusion map Emb(P,N−Q)→ Emb(P,N) is (n−p−q−1)-connected.

An important special case is when both P and Q = ∗ are points,
which says that N − ∗ → N is (n − 1)-connected. The rough idea,
expanded in the proof below, is that any map Sk → N misses a point if
k < n, and that the same is true of any homotopy Sk × I if k < n− 1.
The former proves the map of homotopy groups is surjective if k < n
and the latter that it is injective if k < n− 1.

Proof. We will not fuss about basepoints. The following argument can
be adapted to accomodate them. Let Sk → Emb(P,N). We may regard
this as a map Sk × P → N , and by a small homotopy we can make it



Manifold calculus 39

both smooth and transverse to Q ⊂ N . If k + p < n − q, equivalently,
k < n − p − q, transverse intersection means empty intersection, and
hence we have a map Sk ×P → N −Q, which gives us our desired map
Sk → Emb(P,N − Q). A similar argument shows that any homotopy
Sk × I → Emb(P, N) lifts to Emb(P, N −Q) if k < n− p− q− 1, hence
the map in question is (n− p− q − 1)-connected. ¤

We can piggyback on the previous result to obtain the following
generalization.

Theorem 6.3.6 The square of inclusion maps

Emb(P, N − (Q0 ∪Q1)) //

²²

Emb(P, N −Q0)

²²
Emb(P, N −Q1) // Emb(P, N)

is (2n− 2p− q1 − q2 − 3)-cartesian.

Once again the special case where P , Q0 = ∗0 and Q1 = ∗1 are all
points is a good one to consider before embarking on the proof. In that
case, we claim that the square of inclusion maps

N − (∗0 ∪ ∗1) //

²²

N − ∗0

²²
N − ∗1 // N

is (2n − 3)-cartesian. The square is clearly a homotopy pushout, and
since the maps N − (∗0 ∪ ∗1) → N − ∗i are (n − 1)-connected for i =
0, 1, by the Blakers-Massey Theorem, the square is (2n − 3)-cartesian.
Unfortunately, in the general case the square will not be a homotopy
pushout, but it is close to being one, and we will use a generalization of
the Blakers-Massey Theorem to complete the proof.

Proof. We claim that the square in question is (2n− 2p− q0 − q1 − 1)-
cocartesian (see Definition 7.3.1 in the appendix). Given this, since the
maps Emb(P, N − (Q0 ∪Q1))→ Emb(P, N −Qi) are (n− p− qj − 1)-
connected for i = 0, 1 and j = 1, 0 respectively by Theorem 6.3.5,
it follows by the generalized Blakers-Massey Theorem 7.3.3 that the
square is min{2n− 2p− q0− q1− 1, 2n− 2p− q0− q1− 3}-cartesian, and
the result follows.
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Now we will establish the estimate for how cocartesian this square
is. Let h : Sk → Emb(P,N) be a map, and H : P × Sk → N its
adjoint. We wish to construct a lift to hocolim(Emb(P, N − Q0) ←
Emb(P, N − (Q0 ∪Q1))→ Emb(P, N −Q1)). It is enough if H has the
property that for all s ∈ Sk, H(P ×{s}) ⊂ N −Qi for some i (possibly
both).

By a small homotopy, we can make the map H : P×Sk → N smooth
and transverse to Q0 and Q1. For i = 0, 1, let Wi = H−1(Qi). Then W0

and W1 are disjoint submanifolds of P ×Sk of dimensions p+k + q0−n
and p + k + q1 − n respectively. Consider the map d : W0 × W1 →
Sk × Sk induced by projection to Sk. Again by a small homotopy of H
we can arrange for this map to be transverse to the diagonal, and let
D = d−1(∆(Sk)). The dimension of D is 2p + q0 + q1 − 2n + k, which
is negative (and hence D is empty) if k < 2n − 2p − q0 − q1, so that h
lifts if k ≤ 2n− 2p− q0− q1− 1. A similar argument shows a homotopy
h : Sk× I → Emb(P,N) lifts if k ≤ 2n− 2p− q0− q1− 2, and hence the
square is (2n− 2p− q0 − q1 − 1)-cocartesian. ¤

Remark 6.3.7 Theorem 6.3.6 tells us that the 3-cube S 7→ (Emb(P ∪
QS , N)→ Emb(QS , N)) is (2n−2p−q0−q1−3)-cartesian. Relabel and
put Q2 = P and q2 = p, and for R ⊂ {0, 1, 2} write R 7→ Emb(QR, N),
where QR = ∪i/∈RQi. The estimate 2n−2q2−q0−q1−3 is not symmetric
in the qi; that is, it depended upon us choosing a way to view this 3-
cube as a map of squares. We could therefore slightly improve our
result by letting P = Qi, where Qi minimizes the handle dimension
among Q0, Q1, Q2. Although this is a slight improvement, it is not the
best possible, which is probably not surprising in light of the asymmetry
in the qi. One can prove that the 3-cube R 7→ Emb(QR, N) is (2n −
q0 − q1 − q2 − 3)-cartesian.

Let us end by remarking that a lack of convergence does not nec-
essarily mean the Taylor tower does not contain anything interesting.
In fact, for embeddings of I in R2 × I relative to the boundary (where
Theorem 6.0.6 doesn’t give convergence because the codimension is 2),
[33] shows that the Taylor series for the embedding functor contains
finite type invariants of knots. On a related note, one can study mul-
tivariable functors such as (U, V ) 7→ Link(U, V ; N). Here U and V are
open subsets of smooth closed manifolds P and Q, and Link(U, V ;N)
is the space of “link maps” U → N , V → N whose images are disjoint.
It is not known whether its (multivariable) Taylor series converges to
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it, but it is clear that its polynomial approximations are interesting,
since, for example, hofiber(Link(P, Q; N)→ T1 Link(P, Q;N)) contains
the information necessary to define the generalized linking number. See
[25] and [17].

7 Appendix

This section contains a collection of facts about homotopy limits and
cubical diagrams. It is by no means exhaustive, even for the purposes
of this paper. What we have included is most of what one needs to be
able to understand this work, and we have tried to include only those
facts which seem more widely useful in calculus of functors. Proofs are
generally omitted, and if given, are very sketchy and are just meant
to outline the major ideas and/or give an intuitive understanding. As
many references as possible are given.

7.1 Homotopy limits and colimits

The standard reference for homotopy limits and colimits is [4]. Others
include [8], [9], [19], and [31]. We begin with an explicit description of
the homotopy limit and homotopy colimit. We assume the reader has a
passing familiarity with simplicial sets and their realizations, as well as
over/under categories. We present these models because they involve
expressions which are easy for a beginner to grasp, and while other
models for homotopy limits and colimits are better for other purposes,
these are good for getting one’s hands dirty with categories with finitely
many objects and morphisms. For a category D, we write |D| for the
realization of its nerve.

Definition 7.1.1 ([4, XI.3.2 and XII.2.1]) Let C be a small category
and F : C → Top a covariant functor. The homotopy limit of F , denoted
holimC F , is

(4) lim(
∏
c

Map(|C ↓ c|, F (c))

→
∏

c→c′
Map(|C ↓ c|, F (c′))←

∏

c′
Map(|C ↓ c′|, F (c′))).

Dually, the homotopy colimit of F , denoted hocolimC F , is

colim(
∐
c

|c ↓ C| × F (c)←
∐

c→c′
|c′ ↓ C| × F (c)→

∐

c′
|c′ ↓ C| × F (c′)).



42 Brian A. Munson

The maps in these diagrams are induced by the identity map and
functoriality of various functors. That is, c → c′ induces maps F (c) →
F (c′), |c′ ↓ C| → |c ↓ C|, and |C ↓ c| → |C ↓ c′|. Note that Map(−,−) is
contravariant in the first variable and covariant in the second. One nice
feature of this definition is that it only requires the reader to understand
limits and colimits of very simple diagrams, namely lim(X1 → X12 ←
X2) and colim(X1 ← X∅ → X2), which are the fiber product of X1 with
X2 over X12 and the union of X1 with X2 along X∅ respectively.

The ordinary limit (inverse limit) and colimit (direct limit) of F can
be defined by replacing all realizations of over/under categories above
with a point. Indeed, the limit is a subspace of the product

∏
c∈C F (c)

and the colimit is a subspace of the coproduct
∐

c∈C F (c).
An important special case is when C = P(2) is the poset of subsets

of {1, 2}. Let X : P({1, 2})→ Top be a covariant functor, and write XS

in place of X (S). Let P0(2) be the subposet of nonempty subsets, and
let P1(2) be the subposet of proper subsets. We depict the diagram of
spaces as follows.

X∅
f1 //

f2

²²

X1

g1

²²
X2 g2

// X12

Although it is somewhat tedious, it is straightforward to show the
following from the definition of homotopy limit and homotopy colimit.

Proposition 7.1.2 We have

(5) holim
P0(2)

F = {(x1, γ, x2) ∈ X1 ×Map(I, X12)×X2

| γ(0) = g1(x1), γ(1) = g2(x2)}

and
hocolim
P1(2)

F = (X1

∐
X∅ × I

∐
X2)/ ∼

where for x ∈ X∅, (x, 0) ∼ f1(x) and (x, 1) ∼ f2(x). In particular, if
X2 = ∗ is the one-point space, then holimP0(2) F is the homotopy fiber
of g1 over g2(∗), and hocolimP1(2) F is the homotopy cofiber of f1.

Thus homotopy (co)fiber is a special case of homotopy (co)limit. It
is also true that homotopy (co)limits commute.
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Theorem 7.1.3 Suppose F : C × D → Top is a bifunctor. Then there
are homeomorphisms

holim
C

holim
D

F ∼= holim
C×D

F ∼= holim
D

holim
C

F

and
hocolim

C
hocolim

D
F ∼= hocolim

C×D
F ∼= hocolim

D
hocolim

C
F.

In particular, homotopy limits commute with homotopy fibers and
homotopy colimits commute with homotopy cofibers. The following
theorem establishes the homotopy invariance of homotopy limits and
colimits.

Theorem 7.1.4 ([4, XI.5.6 and XII.4.2]) Suppose F → G is a natu-
ral transformation of functors from C to Top. If F (c) → G(c) is an
equivalence for all c ∈ C, then this induces equivalences

holim
C

F −→ holim
C

G

and
hocolim

C
F −→ hocolim

C
G.

This fact is not true for ordinary limits and colimits; one can view
the construction of the homotopy limit/colimit as a way to remedy
this. Nevertheless, there are conditions under which the categorical
(co)limit is equivalent to the homotopy (co)limit; we will not pursue
this here, but point out that we have encountered this situation already
for square diagrams, where it was enough if the square were a categorical
pushout/pullback and a map from the initial object/to the final object
were a cofibration/fibration.

Theorem 7.1.5 ([4, XI.4.1 and XII.3.1]) Suppose F : C → Top is co-
variant. If C has an initial object ci, then holimC F ' F (ci). If C has a
final object cf , then hocolimC F ' F (cf ).

If F is contravariant, then we need to switch “initial” with “final”
in the above statement. The corresponding facts about ordinary limits
and colimits are obvious if one defines such notions in terms of universal
properties. The following is a useful result we used in the proof of
Theorem 3.2.1, and is also central to the proof of Theorem 4.2.1. It
describes a close relationship between homotopy limits and homotopy
colimits when the functor F is especially well-behaved. It has a similar
flavor to Quillen’s Theorems A and B.
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Theorem 7.1.6 ([10]) If F : C → Top takes all morphisms to homo-
topy equivalences, then hocolimC F quasifibers over |C|, and the space of
sections of the associated fibration is equivalent to holimC F .

The quasifibration statement is at least relatively easy to believe. If
we let ∗ : C → Top denote the functor which takes all objects to the
one-point space, then hocolimC ∗ ' |C|, and the natural transformation
F → ∗ induces the map hocolimC F → |C|. Since F takes all morphisms
to homotopy equivalences, the fibers F (c) all have the same homotopy
type.

7.2 The functor Map(−,−)

We can regard Map(−,−) : Top×Top → Top as a bifunctor which is
contravariant in the first variable and covariant in the second variable.
We are mostly interested in Map(−, Z) and its variants for a fixed Z,
but it is also useful to consider Map(X,−) for a fixed X.

Proposition 7.2.1 For a finite complex X of dimension k, the func-
tor Map(X,−) takes j-connected maps to (j − k)-connected maps. In
particular, if Z is j-connected, then Map(X, Z) is (j − k)-connected.

This can be proved by standard obstruction theory arguments. It is
true of more general mapping spaces too, such as the space of sections
of a fibration p : E → B, which we loosely think about as the space of
maps from B into the fiber of p.

Proposition 7.2.2 ([4, XII.4.1]) The functor Map(−, Z) : Top→ Top
takes (homotopy) colimits to (homotopy) limits. That is, if C is a small
category and X : C → Top a functor, then Map(hocolimc∈C X (c), Z) '
holimc∈C Map(X (c), Z). In particular, it takes coproducts to products,
and turns homotopy cofiber sequences into homotopy fiber sequences.

Proof. We will indicate some of the ideas that go into showing a special
case of this: if

X∅ //

²²

X1

²²
X2

// X12
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is a homotopy pushout square, then for any space Z,

Map(X12, Z) //

²²

Map(X1, Z)

²²
Map(X2, Z) // Map(X∅, Z)

is a homotopy pullback square. First, every homotopy pushout square
admits an equivalence from a pushout square; that is, a square of the
form

X∅ //

²²

X1

²²
X2

// X1 ∪X∅ X2

where X∅ → Xi is a cofibration for each i = 1, 2. If we apply Map(−, Z)
to this square, one checks by inspection that the resulting square is a
pullback; that is, that Map(X1 ∪X∅ X2, Z) = Map(X1, Z) ×Map(X∅,Z)

Map(X2, Z). Hence the square

Map(X12, Z) //

²²

Map(X1, Z)

²²
Map(X2, Z) // Map(X∅, Z)

is a pullback. The functor Map(−, Z) takes a cofibration A → X to
a fibration Map(X, Z) → Map(A,Z), and so the pullback square is in
fact a homotopy pullback. ¤

The proof of the general statement is in fact easier given an explicit
description of the homotopy colimit of a functor X : C → Top in terms
of under categories. See [4].

7.3 The Blakers-Massey Theorem

We will only make statements for square diagrams, as those are the only
types of cubical diagrams we have seriously studied in this work. All of
what we say here has generalizations to higher dimensional cubes, and
we refer the reader to [12] for details. We have already made use of the
notion of a k-cartesian cube. Its dual notion, namely what it means
for a cube to be k-cocartesian, is useful because the Blakers-Massey
Theorem tells us how cartesian a k-cocartesian cube is.
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Definition 7.3.1 For a |T |-cube X , the total homotopy cofiber is the
homotopy cofiber of the canonical map

b(X ) : hocolimS(T X (S) −→ X (T ).

If b(X ) is k-connected, we say the cube is k-cocartesian, and if k =∞,
we say the cube is homotopy cocartesian.

Thus a square
X∅ //

²²

X1

²²
X2

// X12

is homotopy cocartesian if the map hocolim(X1 ← X∅ → X2) → X12

is an equivalence. The homotopy colimit appearing here is the double
mapping cylinder.

Theorem 7.3.2 Suppose the square

X∅ //

²²

X1

²²
X2

// X12

is homotopy cocartesian, and that the maps X∅ → Xi are ki-connected.
Then the square is (k1 + k2 − 1)-cartesian.

Here is a useful generalization, whose proof we omit.

Theorem 7.3.3 Suppose the square

X∅ //

²²

X1

²²
X2

// X12

is k-cocartesian, and that the maps X∅ → Xi are ki-connected. Then
the square is min{k − 1, k1 + k2 − 1}-cartesian.

We will provide only a very bare sketch of Theorem 7.3.2, if only
to point out that one way of proving this uses disjunction techniques
reminiscent of our arguments in Section 6.3.
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Proof. One can reduce to the case where Xi is the union of X∅ with a
(ki + 1)-cell eki+1, and X12 is the union of X∅ with both cells. We are
therefore interested in the square

X∅ //

²²

X∅ ∪ ek1+1

²²
X∅ ∪ ek2+1 // X∅ ∪ ek1+1 ∪ ek2+1.

For i = 1, 2, let ai be points in the interior of the two cells, and rewrite
this square as

Y − {a1, a2} //

²²

Y − {a2}

²²
Y − {a1} // Y.

The claim is that the map

(6) Y − {a1, a2} → holim(Y − {a2} → Y ← Y − {a1})

is (k1 + k2 − 1)-connected. Recall the description of the codomain we
gave just after Definition 7.1.1. A map

γ : Sk → holim(Y − {a2} → Y ← Y − {a1})

corresponds by adjointness to a map γ̃ : Sk× I → Y such that γ̃(s, 0) 6=
a2 and γ̃(s, 1) 6= a1 for all s ∈ Sk. Extend γ̃ to (−ε, 1+ε) to avoid talking
about manifolds with corners. By a small homotopy, make γ̃ smooth
near the ai and transverse to them (we may speak of smoothness because
the interior of a cell has a smooth structure; transversality here means
the ai are regular values of γ̃). Now consider the map

Γ : Sk × {(t1, t2)|ti 6= t2} → Y × Y

given by (s, t1, t2) 7→ (γ̃(t1), γ̃(t2)). Again a small homotopy will make
a1 × a2 a regular value of Γ. Note that Γ−1(a1 × a2) has dimension
k− k1− k2 and hence will be empty if k < k1 + k2. This means that for
such k, γ̃ is homotopic to a map γ′(s, t) which misses the ai for all t, and
so γ′ lifts to a map Sk → Y −{a1, a2}. Hence the map in equation (6) is
surjective on homotopy groups for k ≤ k1 + k2 − 1. A similar argument
establishes injectivity when k < k1 + k2 − 1. ¤
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