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K-theory of S7/Q8 and a counterexample to a

result of P.M. Akhmet’ev ∗

Peter S. Landweber

Abstract

A simple counterexample is presented to a proposition which is
used in the arguments given by P. M. Akhmet’ev in his work on
the Hopf invariant and Kervaire invariant. The counterexample
makes use of the K-theory of the quotient of the 7-sphere by the
quaternion group of order 8.
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1 The counterexample

In Petr Akhmet’ev’s paper [1] on the Hopf invariant, Proposition 41
(Proposition 37 in the English translation) in §4 is a key step in the
proof of the Main Theorem, which is given at the end of §2. The same
Proposition is essential to the success of the proof of the Main Theo-
rem in Akhmet’ev’s paper [2] on the Kervaire invariant, which is given
in §5 of that paper; more precisely, Lemma 22 in §5 (in the English
translation) is used in the proof of the Main Theorem, and this lemma
depends on the Proposition in the paper [1]. In both papers, the use of
this Proposition enters toward the end of the proofs of the Main The-
orems, and does not concern the parts of the arguments viewed as the
main steps by Akhmet’ev.

We shall give the statement of Proposition 41 of [1] and then pro-
duce a simple counterexample, which makes use of the K-theory of the
quotient space S7/Q8.
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In order to state Proposition 41 of [1], we begin by recalling the
character table for the quaternion group Q8 of order 8 from [3, §13],
where xi, xj , and xk are 1-dimensional complex representations and y
is a 2-dimensional complex representation arising from the inclusion

Q8 ⊂ S3 = SU(2).

Here, Q8 = {±1,±i,±j,±k} ⊂ H. We view Q8 as acting on the unit
sphere in H ⊕ H (which we identify with C2 ⊕ C2) by left quaternion
multiplication. To each complex representation V of Q8 we associate
a complex vector bundle on S7/Q8 with total space the orbit space
(S7 × V )/Q8. Let ξi, ξj , ξk, and η denote the complex vector bundles
on S7/Q8 obtained from xi, xj , xk, and y, respectively. For a complex
vector bundle ζ, we denote its underlying oriented real vector bundle by
ζR. For example, ηR is an oriented real 4-plane bundle on S7/Q8. Notice
that S7/Q8 is orientable, since Q8 is contained in the connected group
SU(2).

(Conjugacy classes)

(Irreducible
representations)

1 −1 ±i ±j ±k

1 1 1 1 1 1

xi 1 1 1 −1 −1

xj 1 1 −1 1 −1

xk 1 1 −1 −1 1

y 2 −2 0 0 0

Proposition 41 in [1, §4] is the following assertion: Let f : K7 →
S7/Q8 be a continuous map of a smooth closed oriented 7-manifold to
S7/Q8, and assume that the stable normal bundle to K7 has the form
f∗(2k ηR) with k odd. Then the degree of f is even.

We shall show that this is not true, as a consequence of the following
two results.

Theorem 1.1 The tangent bundle τ to S7/Q8 satisfies

τ ⊕ ε1
R ∼= ηR ⊕ ηR = 2 ηR.

Here we denote by εk
R the trivial real k-plane bundle, with similar

notation for trivial complex bundles.
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Theorem 1.2 In K(S7/Q8), 2− η has order 8.

Hence 8η = ε16
C in complex K-theory, so 8 ηR = ε32

R in real K-theory.
It follows that the stable normal bundle to S7/Q8 is 6 ηR, and so has the
form 2k ηR with k = 3. So the identity map of S7/Q8 is a counterexample
to Proposition 41 in [1].

Theorem 1.1 is an instance of Theorem 3.1 in Szczarba’s paper [9],
which concerns the tangent bundle of a quotient Sn/G of a sphere for
the case in which a finite group G acts freely on the sphere; in turn,
this result is an instance of [9, Theorem 1.1]. In the next section, we
give a direct proof of Theorem 1.1, and also present several proofs of
Theorem 1.2.

I am indebted to Petr Akhmet’ev for discussions over the last two
months leading to this understanding of §4 of his paper [1], and to Jesús
González for help with the character tables.

2 The K-theory of S7/Q8

Proof of Theorem 1.1. Let W be a real representation of a finite group
G such that G acts freely on the unit sphere S(W ). Note first that, as
G-vector bundles on S(W ) we have for the total space T (S(W )) of the
tangent bundle to S(W )

T
(
S(W )

)⊕N
(
S(W )

) ∼= S(W )×W,

where N(S(W )) is the total space of the normal bundle to S(W ) in W.
Using outward unit normals to produce an equivariant and nonvanishing
section of the normal bundle, we see that N(S(W )) ∼= S(W )×R as G-
vector bundles, where G acts trivially on the factor R. Passing to vector
bundles on S(W )/G (with no G-action), we obtain Szczarba’s result [9,
Theorem 3.1]:

T
(
S(W )/G

) ⊕ S(W )/G× R ∼=
(
S(W )×W

)
/G.

Theorem 1.1 follows by taking G to be Q8 and V to be H⊕H = C2⊕C2

with the action being given by left quaternion multiplication. ¤

First proof of Theorem 1.2 (in a weaker form). In positive even dimen-
sions the integral cohomology of S7/Q8 consists of 2-torsion, since S7/Q8

and the classifying space BQ8 have the same cohomology through di-
mension 6. Therefore the Atiyah-Hirzebruch spectral sequence implies
that K̃(S7/Q8) is a finite 2-group, so that 2 − η has order 2i for some
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integer i ≥ 0. The possibility that i ≤ 2 is ruled out by characteristic
class considerations (see the following lemma), so i ≥ 3. (By Theorem
1.1 the stable normal bundle to S7/Q8 is (2i − 2) ηR = 2(2i−1 − 1) ηR
with i ≥ 3, which has the form 2k ηR with k odd, and so suffices to
establish the counterexample.) ¤

Lemma 2.1 A generator of H4(S7/Q8;Z) ∼= Z/8 can be chosen to be
the second Chern class c2(η). Hence, c2(2kη) = 0 if and only if k ≡ 0
(mod 4).

Proof. By tom Dieck [5, pp. 188–189], this group is cyclic of order 8
and a generator can be taken to be the Euler class of the SO(4)-bundle
ηR. Since this Euler class is equal to c2(η) and c1(η) = 0 because η is
an SU(2)-bundle, c2(2kη) = 2kc2(η) and the result follows. ¤
Second proof of Theorem 1.2. The paper [6] of Kensô Fujii contains (in
Theorem 1.2) a computation of K̃(S4n+3/Q8) as an abelian group for
all n ≥ 0, including the result that in K̃(S7/Q8) the element 2 − η
generates a cyclic summand of order 8. (The multiplicative structure is
also determined.) ¤
Third proof of Theorem 1.2. As indicated by Atiyah [4] in his review of
[7], which is available on MathSciNet, if V is a complex representation
of a finite group G such that G acts freely on the unit sphere S(V ),
then the complex K-theory of the quotient manifold S(V )/G can be
computed by the formula

K
(
S(V )/G

) ∼= R(G)/
(
λ−1(V )

)
,

where R(G) is the representation ring of G and λ−1(V ) =
∑

(−1)qλq(V )
with λq the qth exterior power. (This is immediate from the Gysin
sequence for V → pt in equivariant K-theory.)

In the case of interest here, we have V = C2 ⊕ C2 corresponding to
the representation 2y = y ⊕ y of Q8. Since y arises from the inclusion
of Q8 into SU(2), λ2(y) = 1 and so λ−1(2y) = 2− y. Following [3, §13],
we introduce the notation

α = 1− xi, β = 1− xj , γ = 3− xi − xj − xk, δ = 2− y,

a basis over Z for the augmentation ideal I(Q8). Hence, λ−1(y) = δ
and λ−1(2y) = δ2. Note that 2− η corresponds to 2− y = δ under the
isomorphism K(S7/Q8) ∼= R(Q8)/(δ2).

Our task is to determine R(Q8)/(δ2); for practice we shall also de-
termine R(Q8)/(δ). It is convenient to extend the character table for Q8
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to include the four virtual representations just introduced and to note
the effect of multiplication by δ on them:

αδ = 2α, βδ = 2β, γδ = 2γ, δ2 = 4δ − γ

(the last of these involves a slight correction to [3, §13]).

(Conjugacy classes)

(Virtual
representations)

1 −1 ±i ±j ±k

α 0 0 0 2 2

β 0 0 2 0 2

γ 0 0 4 4 4

δ 0 4 2 2 2

The image of δ acting by multiplication on R(Q8) is easily seen to
be generated by 2α, 2β, γ, and δ. Hence K̃(S3/Q8) is isomorphic to
Z/2⊕ Z/2 with generators given by α and β.

Finally, the image of δ2 acting by multiplication on R(Q8) is gener-
ated by the virtual representations 4α, 4β, 2γ, 4δ − γ, so also contains
8δ. It is more convenient to take as generators for (δ2) the virtual rep-
resentations

4α, 4β, 8δ, γ − 4δ,

from which it follows easily that

K̃(S7/Q8) ∼= Z/4⊕ Z/4⊕ Z/8

with generators represented by α, β, and δ, respectively. (Note that
γ ≡ 4δ in this quotient.) ¤
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