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Base points in homotopy theory and the

Fundamental Theorem of Algebra ∗

Kristine Bauer Florian Deloup Peter Zvengrowski

Abstract

The importance of the base point in homotopy theory is em-
phasized, and illustrated with several examples. In particular,
one common application of elementary homotopy theory is to
prove the Fundamental Theorem of Algebra using the fundamen-
tal group, and the rôle of the base point in this proof is analyzed.
Other topological methods for proving this theorem are discussed,
as well as its analogue for quaternions and octonions. A brief sur-
vey of some proofs that are primarily non-topological in nature is
also made.
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1 Introduction

There are many topology texbooks, including a fair number of recent
ones, that introduce basic homotopy theory and the fundamental group.
Almost all of these texts emphasize the importance of the base point in
the definitions. This was not always the case. Indeed the classic 1934
text [22] (§42) of Seifert and Threlfall warns the reader that given a
continuous map f : X → Y of path-connected spaces, the induced map
f∗ of the fundamental groups is not well defined, it is only determined up
to an inner automorphism of the fundamental group of Y . This difficulty
is overcome by assigning each topological space a distinguished point,
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i.e. the aforementioned base point. One then considers the fundamental
group (as well as the higher homotopy groups) as defined on the category
of pointed spaces and pointed maps. In this case f∗ is well defined and
the homotopy groups become functors.

In this note we explore the importance of the base point in homotopy
theory by means of several illustrative examples, showing that neglect
of the base point can in fact lead to absurd results and incomplete
proofs. As a final example we consider the Fundamental Theorem of
Algebra (henceforth FTA, see §3 for statement). Of course, the FTA
has been proved by many authors using diverse techniques, indeed an
entire book [9] and an entire chapter of [7] are devoted to this subject.
Perhaps the first to offer a proof was d’Alembert [4]. The first rigorous
proof was arguably Lagrange’s (cf.[25], and also [7], Ch. 4, for the early
history of the theorem). Gauss proved it in his doctoral dissertation and
eventually gave three other proofs during the course of his life, partly
because he was not completely satisfied with the rigour of his first proof.

There seem to be two main reasons for the difficulties in establishing
a rigorous proof in the early period. The first was logical, in that some
of the early proofs started by assuming that a root existed “somewhere
or other” ([7], p.109), and then tried to demonstrate that this root was
actually a complex number. The algebraic concept of a splitting field
makes sense of this idea, but this concept was only formulated in the
latter part of the nineteenth century. The second reason was topolog-
ical, since ideas such as a continuous function necessarily assuming its
maximum and minimum values on a closed bounded set were again not
properly formulated and understood until the latter part of the nine-
teenth century.

Good summaries of the history and of the numerous proofs found
today can also be found at the websites [10], [11], or in [9]. The meth-
ods of proof include complex analysis, real analysis with some complex
geometry, topology, Galois theory, linear algebra, etc. Even within the
discipline of topology there are various methods of proof. We shall
mainly consider the rôle of the base point in versions using the funda-
mental group.

The remainder of this Introduction will establish some basic defini-
tions, terminology, and state some basic facts of homotopy theory as
well as introduce a couple of lemmas that will be quite useful in the se-
quel. All of this material (except possibly the two lemmas) is standard
in any topology text that introduces homotopy theory. The lemmas are
given as exercises in e.g. [14], p.38 and [17], p.235. In Section 2, using
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a few examples, we illustrate the importance of the base point in the
definition of homotopy groups, and examine the relation between free
and based homotopy. This is continued in Section 3, where we give a
topological proof of FTA using the fundamental group, and point out
(in the light of Section 2) where a gap in this proof can occur if the base
points are forgotten. We also show that it is easily repaired, and give
a couple of methods to do this. In Section 4 other topological proofs
are mentioned, including the homology proof of [8] that has some major
advantages, e.g. it can be readily generalized to a higher dimensional
version of FTA for quaternions and octonions. Other methods of proof
for FTA are also discussed and compared in Section 4.

1.1 Basic definitions

By a map we shall always mean a continuous function from one topo-
logical space X to another, Y . In case X = I, the closed unit interval
[0, 1] ⊂ R, a map f : I → Y is called a path in Y with initial point f(0)
and terminal point f(1). If also f(0) = f(1), then the path f is called
a loop based at f(0). All our spaces will be based, i.e. each space X
has a base point which we write x0 (in particular X is non-empty). A
map f : X → Y is called based if f(x0) = y0. For two paths f, g in X
satisfying f(1) = g(0), their product path f · g : I → X is defined in
the usual way (f followed by g), also simply written fg, and the reverse
path to a path f is denoted f . Strictly speaking the product of paths
is non-associative, however it is associative up to homotopy (defined in
the following paragraph) and it is customary to make a small abuse of
notation and write f · g · h, or simply fgh, when this product of paths
is being considered only up to homotopy.

A free homotopy between maps f, g : X → Y is a map F : I ×X →
Y such that F (0, x) = f(x) and F (1, x) = g(x) for any x ∈ X. A
based homotopy between based maps f, g : (X,x0) → (Y, y0) is a free
homotopy F : I×X → Y such that F (I×{x0}) = {y0}. The homotopy
class [f ]∗ (resp. [f ]) of a map f : X → Y is defined as the set of all maps
g : X → Y that are based (resp. free) homotopic to f . The set of based
(resp. free) homotopy classes of based maps from X to Y is denoted
[X, Y ]∗ (resp. [X,Y ]). Since based homotopic maps are trivially free
homotopic there is a canonical map

φ : [X, Y ]∗ → [X,Y ] where φ[f ]∗ = [f ].

In general φ is neither injective nor surjective, and this will be a key
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point in the discussion to follow.
If need arises, we shall be more specific about our choices of base

points. For X = Sn, the unit sphere in Rn+1, the base point is taken
to be s0 = (1, 0, ..., 0). For any (as always pointed) space Y , the set
[Sn, Y ]∗ has a natural group structure for n ≥ 1 which is abelian for
n ≥ 2, and is denoted πn(Y, y0). The fundamental group of Y based at
y0 is π1(Y, y0), and in general is not abelian.

We close this Introduction with the two aforementioned lemmas.

Lemma 1.1.1 In a path-connected space X, let w be any path from a
point x0 to a point x1. Then a loop γ, based at x0, is freely homotopic
to the loop δ = w · γ · w, based at x1.

Lemma 1.1.2 Two loops γ, δ with base point x0 are freely homotopic
in a path-connected space X (i.e. φ[γ]∗ = φ[δ]∗) if and only if [γ]∗, [δ]∗
are conjugate in π1(X, x0).

Other terms and results from basic algebraic topology that are fairly
standard and found in all texts on the subject will be used in the sequel,
without comment or definition.

2 The importance of the base point in homo-
topy theory

Example 2.1.3 The Antipodal Map.

Our first example, due to D. Handel, involves the higher homotopy
groups. It shows how neglect of the base point can quickly lead to a
“paradox.” Let a : Sn → Sn denote the antipodal map a(x) = −x for all
x ∈ Sn, and real projective space RPn be the usual identification space
of Sn obtained by identifying each x with a(x). Let κ : Sn ³ RPn

denote the canonical projection map: κ(x) = [x] = {x,−x}. Since
κ(ax) = κ(x), one has a commutative diagram

Sn a //

κ

""FFFFFFFF Sn

κ

||xxxxxxxx

RPn

.
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It is well known that deg(a) = (−1)n+1. Assume now that n ≥ 2 is
even, so deg(a) = −1. Applying the functor πn yields the diagram

Z ≈ πn(Sn)
a∗=−1 //

κ∗
≈ ((PPPPPPPPPPPP

πn(Sn) ≈ Z
κ∗
≈vvnnnnnnnnnnnn

πn(RPn) ≈ Z

which, since −1 6= 1 ∈ Z, is non-commutative, apparently a blatant con-
tradiction. The explanation is that πn is not a functor on the category
Top, rather it is a functor on the category Top∗ of pointed spaces, maps,
and homotopies, and the antipodal map a is not a based map.

We remark that, as with many “paradoxes,” this example can also
be put to constructive use. Indeed, any great semi-circle in Sn from s0

to −s0 induces a loop λ when projected into RPn. We take p0 = κ(s0)
to be the basepoint of RPn. What the above shows, with suitable
interpretation, is that for n ≥ 2 even, [λ]∗ ∈ π1(RPn, p0) ≈ Z2 acts on
πn(RPn, p0) ≈ Z by the non-trivial automorphism m 7→ −m, m ∈ Z. In
other words, the fundamental group π1(RPn, p0) acts non-trivially on
πn(RPn, p0) for n ≥ 2 even. This also gives a nice example of a space
RPn with nilpotent fundamental group Z2, n ≥ 2, but nilpotent as a
space if and only if n is odd (cf. [26] p.46).

Example 2.1.4 The Harmonic Comb.

p��������

q
��
��
��
��

Figure 1: The Harmonic Comb

In this example we shall see that φ : [X, Y ]∗ → [X,Y ] need not be
injective. The harmonic comb, a space studied in many topology texts,
is defined as the set

H =
({

0,
1
n

∣∣∣ n ∈ N
}
× I

)
∪ (I × {0}) ⊂ R2,
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endowed with the topology inherited from that of the Euclidean plane.
Consider the two points p = (0, 1), q = (0, 0) as possible base points
of H. It is easy to see that H with base point q is contractible (with q
remaining fixed), in which case the free homotopy classes [H, H] must be
a singleton. However, a slightly more delicate argument (cf. [5], p.48 for
an elegant version) shows that with p as base point H is not contractible
(again with p fixed during the homotopy). It follows that with p as base
point [1H ]∗ 6= [p]∗, i.e. the identity map of H is not based homotopic to
the constant map p. Thus [H,H]∗ contains at least two elements, and
φ cannot be injective.

This example also illustrates that “not all base points are created
equal.” More precisely, one should restrict attention to nondegenerate
base points, a property that q has but p fails to have. Spanier [23]
defines a base point x0 to be nondegenerate if the inclusion map {x0} ↪→
X is a cofibration. For compactly generated spaces this is equivalent
to Whitehead’s condition [27] that (X, x0) be an NDR-pair of spaces.
Furthermore, following [27], p.98, the fundamental group π1(X, x0) is
defined only when x0 is a nondegenerate base point. Fortunately, the
topological spaces most frequently used in algebraic topology, e.g. CW-
complexes or simplicial complexes, have the property that every choice
of base point is nondegenerate, and these spaces are also compactly
generated.

Example 2.1.5 The Figure Eight

��

��

x0

x1

FIGURE 2. The Figure Eight

In this example we shall see that φ : [W,X]∗ → [W,X] need not
be injective when W = S1. Let X be the figure eight, a wedge of two
circles. For convenience, we take this to be the union of two circles
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of radius one centred at (0, 1) and (0,−1), respectively, meeting at the
origin x1 := (0, 0). Suppose that x0 := (0, 2) is the basepoint. Let γl

be the path which traverses the left hand portion of the upper circle
from x0 to x1 once, and let γr be the path traversing the right hand
semicircle between x0 and x1 once. Also, let τ be the loop based at x1

which traverses the bottom circle once counterclockwise. Then γl · τ · γl

and γr · τ · γr are loops based at x0. We now show that these two loops
can not be based homotopic. The fundamental group π1(X, x0) is the
free (non-abelian) group on two generators. It is not difficult to see that
these two generators can be chosen to be a := [γlτγl]∗ and b := [γlγr]∗;
this is accomplished by using the usual generators of π1(X, x1) and the
isomorphism which moves the basepoint of X from x1 to x0 via the path
γl. Also define c := [γrτγr]∗.

If loops γlτγl and γrτγr are based homotopic, then

a−1ba = [γlτγlγlγrγlτγl]∗ = [γlτγrγlτγl]∗
= [γlτγrγrτγr]∗ = [γlγr]∗ = b.

We thus conclude that a−1ba = b, which implies that π1(X,x0) is an
abelian group, a glaring contradiction. However, by Lemma 1.1.2, the
two loops are freely homotopic since their based homotopy classes a, c
are conjugate in π1(X, x0), as shown by the calculation

a = [γlτγl]∗ = [γlγrγrτγrγrγl]∗ = [γlγr]∗[γrτγr]∗[γrγl]∗ = bcb−1.

This example can easily be extended to other popular topological
spaces, such as the countable wedge of circles or the Hawaiian earring
(see, e.g., [2] for examples and references).

Our last example, illustrating non-surjectivity of φ, is rather trivial.

Example 2.1.6 Target Space not Path Connected

Let Y = {a, b} be the space with two points and the discrete topol-
ogy, with base point y0 = a. Then for any path connected space X,
[X, Y ]∗ has just a single element (the constant map taking X to {a})
whereas [X,Y ] has two elements, so φ is not surjective.

These examples demonstrate the importance of the base point in
homotopy theory, in particular, knowing whether or not φ : π1(X, x0) =
[S1, X]∗ → [S1, X] is a bijection. This is easily answered, using the two
lemmas in Section 1. Indeed Lemma 1.1.1 shows that φ is surjective
whenever X is path connected (the converse is also obviously true).
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And Lemma 1.1.2 shows that φ is injective if and only if π1(X, x0) is
abelian. We formulate this as follows.

Proposition 2.1.7 Let X be path connected. Then φ : π1(X, x0) =
[S1, X]∗ → [S1, X] is bijective if and only if π1(X, x0) is abelian.

This proposition is covered in the exercises of the two books [14],
[17], as already mentioned, and also fully covered in Stöcker-Zieschang
[24].

3 Usual topological proof of FTA

The FTA states that every polynomial p(z) of degree n ≥ 1, with real
or complex coefficients, has exactly n zeros (roots), when the zeros are
counted with multiplicities, in the complex numbers C. The proof of the
general statement follows, by an obvious induction and the remainder
theorem, from the statement that every polynomial of degree n ≥ 1 has
at least one zero in C. This latter statement is also called the FTA, and
it is the proof of this with which we are concerned. Since we are using
the complex numbers, it will be convenient to write C∗ = C \ {0}, and
also to take S1 ⊂ C∗ as the unit complex numbers, with basepoint
s0 = 1. Of course S1 sits in C∗ as a strong deformation retract, the map
z 7→ z/|z| providing the retraction of C∗ onto S1. As usual, we write
S1 = {e2πis | 0 ≤ s ≤ 1}.

Let us now outline a common topological proof. We shall use the
fundamental group π1(S1, s0) ≈ Z of the circle, an infinite cyclic group
with generator given by the homotopy class of the identity map, i.e.
the loop which goes once around the circle counterclockwise. We shall
also be “careless” and not worry, at least for the time being, about base
points. The proof proceeds by supposing that the polynomial p(z) has
no zeros in C, then by using p(z) to produce two elements of π1(S1, s0),
which should be equal but are not, thus giving a contradiction.

Indeed, suppose without loss of generality that p(z) is monic, so

p(z) = zn + a1z
n−1 + · · ·+ an−1z + an , ai ∈ C.

Choose any R > 0, and fix any r with 0 ≤ r ≤ R . Note that restricting p
to the circle |z| = r produces a loop λr, where λr(s) := p(re2πis), 0 ≤ s ≤
1, in C. Furthermore, the assumption that p has no zeros implies that
this loop λr lies in C∗. Letting r vary from 0 to R produces a homotopy
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in C∗ which shows λR is contractible in C∗ to the constant loop λ0.
Since p has no zeros we are free to define gr(s) := p(re2πis)/|p(re2πis)|,
0 ≤ r ≤ R. This is now a loop in S1, so its homotopy class represents
an element of π1(S1). The new loop gR is again contractible; just as for
λR one produces a homotopy to the constant map g0 by letting r vary
from 0 to R. Thus [gR] = 0 ∈ π1(S1).

If we now choose R sufficiently large, so that R > max{|a1|+ · · ·+
|an|, 1}, then the polynomials

pt(z) = zn + t(a1z
n−1 + · · ·+ an), 0 ≤ t ≤ 1,

are guaranteed not to have any zeros on the circle |z| = R, by elementary
estimations of |pt(z)/zn| (which clearly approaches 1 as |z| → ∞). As
t varies from 0 to 1, the polynomials pt thus provide a homotopy ft in
C∗ between gR(s) and the well known n’th power function wn(z) = zn.
When n > 0, the latter is known to represent the non-trivial element
n ∈ π1(C∗) ≈ π1(S1) ≈ Z, contradicting the final assertion of the
previous paragraph.

The problem is that the above “argument” uses the fundamental
group but takes place in the free homotopy classes [S1, S1] (or its equiv-
alent [S1,C∗]), and as we have seen in Section 2, these are not in general
the same. Indeed, while wn(1) = 1n = 1 implies wn is a loop based at
s0 = 1, the loop gr is based at

gr(1) =
1 + a1 + ... + an

|1 + a1 + ... + an| ,

which in general is not equal to 1. A similar objection applies to the
homotopy ft. Thus the proof as presented above has a gap in it, and
this does occur in a few texts on the subject.

However, the gap is easily fixed. We present three distinct methods
to do so. The first “repair method” is to simply redefine all the above
maps so as to be based. Indeed, given any map whatsoever α : X → C∗,
for any space X with base point x0, changing α to the new map α̃ given
by α̃(x) = α(x)/α(x0) does the trick. For example, in the above proof,
we use

g̃r(s) =
p(re2πis)/p(r)
|p(re2πis)/p(r)| ,

and similarly for f̃t.
The second “repair method” is equally simple, just apply Proposi-

tion 2.1.7 to either of the spaces S1 or C∗. Since the fundamental group
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of either space, Z, is abelian, the proposition will apply. One then sees
that φ is a bijection in this case. Thus, the proof can legitimately be
carried out using free homotopies, as long as the bijectivity of φ in this
situation is first established.

The third “repair method” is to use the idea of a nullhomotopic
map (which does not involve any base points), first proving a lemma that
asserts that for any map f : S1 → X, where the base point of X is taken
to be x0 = f(1), the induced homomorphism f∗ : π1(S1, 1) → π1(X, x0)
is trivial if and only if f is nullhomotopic. The remainder of the proof
proceeds along lines similar to those outlined above.

Without making any attempt to list all the texts giving topological
proofs of FTA similar to this one, we mention McCarty [18] as an early
text and Deo [5], Hatcher [14] as recent texts giving a complete proof,
using the first repair method (see also [9], Proof 11). The second repair
method is implicit in the exercises given in [14], [17], and is given a full,
careful treatment in Stöcker-Zieschang [24]. The third repair method is
found in the popular text of Munkres [20], among others.

4 Other topological proofs of FTA and its ex-
tension to quaternions and octonions

Variations of the topological proofs of FTA given in Section 3 can be
found in various texts. Without attempting to list all of them, we
mention Bredon [1], where the homotopies are treated in an elegant
way, and Lawson [17] where the idea of the degree of an arbitrary map
S1 → S1 is defined (independent of any choice of base point) and used
to complete the proof. Similarly, the notion of winding number is used
in the elementary text of Chinn-Steenrod [3].

These methods are actually very close to the proof using homology,
as given by Eilenberg-Steenrod [8], which will be discussed in the next
paragraph. It is also possible to give proofs of FTA using differential
topology (usually involving the notion of degree), again with no attempt
at completeness we mention three essentially different proofs to be found
in Guillemin-Pollack [13], Hirsch [15], and Milnor [19].

The proof given in Section 3, using the fundamental group π1(X, x0),
can easily be mimicked using the first homology group H1(X). There is,
however, the advantage that homology does not depend on base points,
thereby removing any need to keep track of base points and simplifying
the proof. This is the approach taken in [8], Ch. 11, also see [9], Proof
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6, and has the further advantage that it easily generalizes to a version
of FTA for the quaternions and octonions which we shall explain below.
The only disadvantage of this approach may be pedagogical, since it
first requires the development of homology theory, which is substantially
more involved than elementary homotopy theory.

To state the Eilenberg-Steenrod generalization, one must first care-
fully define what a polynomial over the quaternions H or octonions O
is, since H is non-commutative and O is both non-commutative and
non-associative. This involves first defining a general monomial, then
a polynomial is simply a sum of monomials. Rather than giving the
precise inductive definition as in [8], we will simply illustrate this by
giving the example q1zq2zq3, qi ∈ H, as the most general quaternionic
monomial of degree 2 in the variable z. For octonions one also must
allow all possible insertions of parentheses that give a well formed prod-
uct, creating even more monomials. Clearly the degree of a monomial
is well defined, any polynomial is a sum of distinct monomials, and
the degree of a polynomial is then simply the maximum degree of any
of these monomials. We will call a polynomial having the usual form
p(z) = anzn + ... + a1z + a0 a standard polynomial (since any two-
dimensional subalgebra of O is associative, this is well defined even for
O).

Theorem 4.1.8 (Eilenberg-Steenrod). Let p(z) be any complex, quater-
nionic, or octonionic polynomial of degree n > 0 and assume further that
it has only a single monomial term of degree n. Then it has a zero in
respectively C, H, or O.

Corollary 4.1.9 Any standard polynomial p(z) over C,H, or O of de-
gree n > 0 has a zero in respectively C, H, or O.

We remark that Eilenberg and Steenrod actually state the theorem
in even greater generality, namely for normed division algebras over the
reals of dimension at least two. But at the time their book was written it
was not yet known that the only normed division algebras over the reals
are R,C,H and O. The necessity of the condition of just one monomial
term of highest degree is not addressed by them, however the degree 1
quaternionic polynomial p(z) = iz − zi + 1 can easily be seen to have
no zeros in H, thereby showing the necessity of this hypothesis. Thus
FTA, in its most general form, is false for H, O.

Returning to the usual FTA for C, note that all the topological
proofs thus far discussed use concepts from algebraic topology. The
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proof given in the following paragraph uses only a little general topology
and the basic fact from complex analysis that a non-constant holomor-
phic function is an open map, cf. [16], Chapter 2. This proof, which is
roughly outlined in Fulton’s text [12], p.49, will be given in full here,
due to its brevity and intrinsic interest.

Letting p(z) = zn+an−1z
n−1+ ...+a1z+a0, n > 0, we have already

noted in §3 that

lim
|z|→∞

p(z)
zn

= 1,

which implies in particular that p(z) 6= 0, |z| ≥ R, for some suitably
large R > 0. It follows that on the Riemann sphere S2 ∼= C t {∞},
the one-point compactification of C, p extends to a continuous function
that we shall call P , with P (∞) = ∞. Since S2 is compact, P (S2) is
closed in S2. We have already mentioned that P is an open mapping
on C. Assuming for the moment that it is also open at ∞, then its
image is a non-empty open and closed subset of S2, hence all of S2 by
connectedness. To see that P is also open at ∞, consider the involution
τ(z) = z−1 of the Riemann sphere. We shall use the obvious fact that
τ is a homeomorphism, in fact it is even a biholomorphic equivalence.
Since P (z) 6= 0 on some open neighbourhood |z| > R of ∞, it follows
that

τPτ(z) =
1

P (z−1)
=

zn

1 + an−1z + ... + a0zn

is a well defined non-constant holomorphic function on the disc |z| <
1/R with Pτ(0) = 0. Thus τPτ takes some open neighbourhood U
of 0 onto an open neighbourhood V of 0, whence P takes the open
neighbourhood τ(U) of ∞ onto the open neighbourhood τ(V ) of ∞,
concluding the proof that P is surjective. In particular, 0 ∈ Im(P ).

We finish with a brief discussion of the many “non-topological”
proofs of FTA, where by non-topological we mean proofs where the pri-
mary method used is outside topology, e.g. complex geometry, field the-
ory, linear algebra, or complex analysis. All proofs must use some topo-
logical ideas in one form or another. In particular the non-topological
proofs all use compactness (e.g. the max-min theorem for continuous
real valued functions on a compact domain), or the intermediate value
theorem (usually in the form that a real polynomial of odd degree must
have a real zero), at some stage. Of course many such proofs of FTA
have been given, indeed an article [21] reviewing nearly 100 proofs of
the theorem was written in 1907 by Netto and Le Vavasseur, when the
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concepts of algebraic and differential topology (which as we have seen
led to many more proofs) were still in their infancy. Finally, it is worth
mentioning that the proofs we have been talking about have all been
existential. In the light of modern day computer science, as well as
logic, it is important to note that constructive proofs of FTA have also
been given, starting with attempts by Weierstrass in 1859 and 1891, a
solution by H. Kneser in 1940, as well as Hirsch and Smale in 1979 and
M. Kneser in 1981. These proofs, of course, give some algorithm for
finding successive zn that converge to a zero. For further discussion of
this small but important class of proofs cf. [7], p. 114–115.
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l’Académie Royale des Sciences et Belles Lettres, Berlin (1748),
182–224.

[5] Deo S., Algebraic Topology – A Primer, Hindustan Book Agency,
New Delhi, 2nd printing 2006.



14 K. Bauer, F. Deloup, and P. Zvengrowski

[6] Derksen H., The Fundamental Theorem of Algebra and linear alge-
bra, Amer. Math. Monthly 110 (2003), 620–623.

[7] Ebbinghaus H. D.; Hermes H.; Hirzebruch F.; Koecher M.;
Mainzer K.; Neukirch J.; Prestel A.; Remmert R., Numbers (Grad.
Texts in Math. 123), Springer-Verlag, New York, 1991.

[8] Eilenberg S.; Steenrod N., Foundations of Algebraic Topology,
Princeton Univ. Press, Princeton, 1952.

[9] Fine B.; Rosenberger G., The Fundamental Theorem of Algebra,
Springer-Verlag, N.Y., Berlin, Heidelberg, 1997.

[10] http://www-groups.dcs.st-and.ac.uk/∼history/HistTopics/
Fund theorem of algebra.html

[11] http://math.fullerton.edu/mathews/c2003/FunTheoremAlgebraBib/
Links/FunTheoremAlgebraBib lnk 2.html

[12] Fulton W., Algebraic Topology, a First Course (Grad. Texts in
Math 153), Springer-Verlag, New York, 1991.

[13] Guillemin V.; Pollack A., Differential Topology, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1974.

[14] Hatcher A., Algebraic Topology, Cambridge University Press, Cam-
bridge, 2002.

[15] Hirsch M. W., Differential Topology, Springer-Verlag, New York,
1976.

[16] Lang S., Complex Analysis, Fourth Edition, Springer-Verlag, New
York, 2003.

[17] Lawson T., Topology : a Geometric Approach (Oxford Graduate
Texts in Mathematics 9), Oxford Science Publications, Oxford Uni-
versity Press, NYC, 2003.

[18] McCarty G., Topology, McGraw Hill, New York, 1967.

[19] Milnor J. W., Topology from the Differentiable Viewpoint, The
Univ. Press of Virginia, Charlottesville, 1965.

[20] Munkres J. R., Topology, 2nd Ed., Prentice Hall, New Jersey, 2000.



Base points in homotopy theory and the FTA 15

[21] Netto E.; Le Vavasseur R., Enc. Sciences Math. Pures et Appl. I.2
(1907), 189–205.

[22] Seifert H.; Threlfall W., Lehrbuch der Topologie, Chelsea Pub. Co.,
New York, 1934.

[23] Spanier E., Algebraic Topology, McGraw-Hill Inc., 1966.
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