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The vanishing discount approach to average

reward optimality: the strongly and the weakly

continuous cases ∗

Tomás Prieto-Rumeau Onésimo Hernández-Lerma

Abstract

We consider a discrete-time stochastic dynamic programming mo-
del and we propose conditions under which the limit of discount
optimal policies, as the discount factor converges to one, is average
optimal. We prove this result under strong and weak continuity
conditions and, moreover, we relax the usual value boundedness
condition on the relative values of the optimal discounted reward.
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1 Introduction

The basic problem dealt with in this paper is the existence of control
policies π that maximize the long-run expected average reward

(1) v(x, π) := lim inf
T→∞

Eπ
x

[
1
T

T−1∑

t=0

r(xt, π(xt))

]

for every initial state x0 = x. (The underlying controlled system is a
fairly general discrete-time stochastic control process described in Sec-
tion 2; see (6).) Among the several known techniques to analyze this
problem, the most common is the vanishing discount approach, which
can be traced back to Taylor [16]. It is so-named because it is based on
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the convergence as ρ ↑ 1 (0 < ρ < 1) of ρ-discounted optimal reward
policies. To state this more precisely, we need some notation.

For each discount factor ρ ∈ (0, 1), let

(2) vρ(x, π) := Eπ
x

[ ∞∑

t=0

ρtr(xt, π(xt))

]

be the expected discounted reward of the admissible control policy π ∈
Π (see Section 2) when the initial state is x0 = x. The optimal ρ-
discounted reward function is defined as

(3) vρ(x) := sup
π∈Π

vρ(x, π)

for every state x. For a given fixed state x′, consider the relative value
function

uρ(x) := vρ(x)− vρ(x′).

This function is one of the key tools in the vanishing discount approach.
To obtain the convergence of ρ-discount optimal policies to average op-
timal policies as ρ ↑ 1, it was assumed in [16] that uρ was uniformly
bounded, that is, there exists a constant L such that

|uρ(x)| ≤ L

for every state x and 0 < ρ < 1. This condition was later relaxed to the
following weaker value boundedness condition: there exists a constant
L and a function m such that

(4) −m(x) ≤ uρ(x) ≤ L

for every state x and 0 < ρ < 1; see, e.g., [2, Assumption A1], [5,
Assumption 4.1], [12, Definition 2.1] or [15].

In this paper, we further relax (4) and assume the existence of a
function m (satisfying appropriate hypotheses) such that

(5) −m(x) ≤ uρ(x) ≤ m(x)

for every x and 0 < ρ < 1. Such a condition can also be found in e.g. [3,
Lemma 4.5], [4, Assumption 3.3] or [7, Lemma 10.4.2]. Relaxing (4) to
(5) is indeed a relevant issue because (4) is, in fact, a fairly restrictive
condition. For instance, to obtain (4), it is assumed in [12] that the
reward function r is bounded. Moreover, condition (4) excludes the case
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of an unbounded utility function (see the comment after Assumption 5.3
in [12, p. 1423]). Also, in Section 4 of this paper, we describe a control
model for which (5) holds, whereas (4) does not.

Summarizing, the goal of this paper is to give conditions on the
controlled process that, together with the condition (5), ensure that the
limit of ρ-discount optimal policies, as ρ ↑ 1, is average optimal. The
basic control model is described in Section 2. In Section 3, we consider
two different sets of hypotheses, namely, strong and weak continuity
conditions, depending on the corresponding strong or weak continuity
of the control system’s transition function. Also in Section 3, we state
our main results: Theorem 3.10 and Corollary 3.12, in which we mention
several particular cases of interest. Finally, we present an example in
Section 4, and our conclusions are stated in Section 5.

2 The control model

The formulation of the controlled process and the notation is mainly
drawn from [12].

We assume that the state space S and the action set A are Borel
spaces (that is, measurable subsets of complete and separable metric
spaces). Let Γ be a nonempty set-valued function from S to A. For
each x ∈ S, the corresponding set of feasible control actions is Γ(x) ⊆ A.
The family of feasible state-action pairs is denoted by K, i.e.,

K := {(x, a) ∈ S ×A : a ∈ Γ(x)},

which is assumed to be a measurable subset of S × A. (In this paper,
measurability is always referred to the Borel σ-algebra.)

We consider a sequence {ξt}t≥0 of i.i.d. random variables from a
given probability space (Ω,F ,P) to (Z,Z) with common distribution ν.
Let h : K×Z → S be a measurable function. We assume that the state
of the system is updated according to the function h, meaning that if
the action a ∈ Γ(x) is chosen at x ∈ S and the value of the random
perturbation is ξ, then the next state of the system is h(x, a, ξ) ∈ S.

We suppose that the reward function is the measurable real-valued
mapping r : K → R.

Let Π be the family of measurable functions π : S → A such that
π(x) ∈ Γ(x) for every x ∈ S. (We suppose that Π is nonempty.) We
call π ∈ Π a deterministic stationary policy. For each π ∈ Π and every
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initial state x0 ∈ S independent of {ξt}t≥0,

(6) xt+1 = h(xt, π(xt), ξt) for t = 0, 1, . . .

is a Markov process and it stands for the state of the system under the
policy π. The corresponding expectation operator is denoted by Eπ

x0
.

Although larger classes of policies may be considered, it is well known
that for the control problem we are dealing with Π is a “sufficient” class
of policies — see [6, Chapter 4] or [7, Chapter 8], for instance.

Given an admissible policy π ∈ Π and an initial state x ∈ S, the
corresponding long-run average reward and expected discounted reward
are defined as in (1) and (2), respectively. Given a discount factor
0 < ρ < 1, we say that π ∈ Π is ρ-discount optimal if vρ(x, π) = vρ(x)
for every x ∈ S (recall (3)). Similarly, π ∈ Π is average reward optimal
if

v(x, π∗) = sup
π∈Π

v(x, π) ∀ x ∈ S.

3 Main results

As already mentioned, we will consider two different sets of hypotheses,
which we label as strong and weak continuity assumptions.

The strongly continuous case

We state the assumptions we make on our control model. First, we have
the following Lyapunov-like condition.

Assumption 3.1 There exists a measurable function w : S → [1,∞),
and constants 0 < β < 1 and b > 0 such that

∫

Z
w(h(x, a, ξ))ν(dξ) ≤ βw(x) + b ∀ (x, a) ∈ K.

The next assumption introduces some usual continuity and compact-
ness requirements. We note that the function w in Assumptions 3.2 and
3.4 is taken from Assumption 3.1.

Assumption 3.2 (i) For every x ∈ S, the set Γ(x) is compact.

(ii) The reward function r(x, a) is upper semicontinuous on A(x) for
every x ∈ S. In addition, there exists a constant M such that

|r(x, a)| ≤ Mw(x) ∀ (x, a) ∈ K.
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(iii) The function

(x, a) 7→
∫

Z
w(h(x, a, ξ))ν(dξ)

is continuous on A(x) for every x ∈ S.

(iv) Strong continuity. For every bounded and measurable ζ : S →
R, the function

(x, a) 7→
∫

Z
ζ(h(x, a, ξ))ν(dξ)

is continuous on A(x) for every x ∈ S.

Remark 3.3 (The additive-noise case) The strong continuity con-
dition is satisfied, for instance, when S = Z = R,

h(x, a, ξ) = g(x, a) + ξ,

where g is continuous on A(x) for each fixed x ∈ S, and, in addition,
ν has an almost everywhere continuous bounded density with respect to
the Lebesgue measure. This includes, of course, the linear case in which
g(x, a) = k1x + k2a for some constants k1, k2.

Finally, we state the value boundedness condition.

Assumption 3.4 There exists a state x′ ∈ S and a constant M ′ > 0
such that

sup
0<ρ<1

|vρ(x)− vρ(x′)| ≤ M ′w(x) ∀ x ∈ S.

The weakly continuous case

Among the hypotheses made so far on the control model, the most re-
strictive one is the strong continuity condition in Assumption 3.2(iv).
Under additional appropriate conditions, strong continuity can be re-
laxed to weak continuity. To this end, first, the “measurability” of w in
Assumption 3.1 is replaced with “continuity”.

Assumption 3.5 There exists a continuous function w : S → [1,∞),
and constants 0 < β < 1 and b > 0 such that

∫

Z
w(h(x, a, ξ))ν(dξ) ≤ βw(x) + b ∀ (x, a) ∈ K.
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In Assumptions 3.6 and 3.8 below, the function w is taken from
Assumption 3.5.

Assumption 3.6 (i) The function Γ : S → 2A is upper semicontinu-
ous and compact-valued.

(ii) The reward function r is upper semicontinuous on K and, more-
over, there exists a constant M > 0 such that

|r(x, a)| ≤ Mw(x) ∀ (x, a) ∈ K.

(iii) The function

(x, a) 7→
∫

Z
w(h(x, a, ξ))ν(dξ)

is continuous on K.

(iv) Weak continuity. The function

(x, a) 7→
∫

Z
ζ(h(x, a, ξ))ν(dξ)

is continuous on K for every bounded and continuous ζ : S → R.

Remark 3.7 The weak continuity assumption is satisfied, for instance,
if the function h(x, a, ξ) is continuous on K for each ξ ∈ Z.

We introduce some notation. Let Bw(S) be the family of measurable
functions ζ : S → R with finite w-norm, that is,

||ζ||w := sup
x∈S

{|ζ(x)|/w(x)} < ∞.

Assumption 3.8 The controlled process is w-uniformly ergodic on Π;
that is, for each π ∈ Π, the Markov process (6) has a unique invariant
probability measure µπ on S and, in addition, there exist constants R >
0 and 0 < α < 1 such that for every x ∈ S, ζ ∈ Bw(S) and t ≥ 0

sup
π∈Π

∣∣∣∣Eπ
x [ζ(xt)]−

∫

S
ζ(y)µπ(dy)

∣∣∣∣ ≤ w(x)||ζ||wRαt.

In the weakly continuous case, we do not need to impose a value
boundedness condition because, in fact, Assumption 3.8 implies As-
sumption 3.4 (the proof is easy; see, e.g., Lemma 4.5 in [3] or Lemma
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10.4.2 in [7]). A sufficient condition for Assumption 3.8 is proposed in
[7, Proposition 10.2.5].

In what follows, we will suppose that either the Assumptions 3.1,
3.2 and 3.4 or the Assumptions 3.5, 3.6 and 3.8 hold. In either case, we
know from the results in [7, Chapter 8] that the optimal ρ-discounted re-
ward is the unique solution in Bw(S) of the discounted reward optimality
equation:

(7) vρ(x) = max
a∈Γ(x)

{
r(x, a) + ρ

∫

Z
vρ(h(x, a, ξ))ν(dξ)

}
∀ x ∈ S.

In addition, a policy π∗ ∈ Π is ρ-discount optimal if and only if π∗(x)
attains the maximum in (7) for every x ∈ S, i.e.,

(8) vρ(x) = r(x, π∗(x)) + ρ

∫

Z
vρ(h(x, π∗(x), ξ))ν(dξ) ∀ x ∈ S.

The vanishing discount approach to average reward optimality is
related to the following definition of limit and accumulation policies.

Definition 3.9 Given a policy π∗ ∈ Π and a sequence {πk}k∈N in Π,
we say that

(i) {πk}k∈N converges to π if limk πk(x) = π(x) for every x ∈ S;

(ii) π∗ is an accumulation policy of {πk}k∈N if, for every x ∈ S, there
exists a subsequence {kx} such that πkx(x) → π(x);

(iii) {πk}k∈N converges continuously to π if limk πk(xk) = π(x) for
every x ∈ S and every sequence xk → x.

The concept of accumulation policy in Definition 3.9(ii) comes from
[13]. Continuous convergence and its applications to stochastic dynamic
programming are analyzed in [10].

Next, we prove our main result, which states the relation between
average reward optimal policies and the limit of discount optimal poli-
cies. The proof of this result, Theorem 3.10, follows the same arguments
needed to obtain the so-called average reward optimality inequality [7,
Theorem 10.3.1], although the proof is focused on the analysis of the
limit of discount optimal policies.

Theorem 3.10 Let {ρk}k∈N, with ρk ↑ 1, be a sequence of discount
factors, and let πk ∈ Π, for every k ∈ N, be a ρk-discount optimal
policy. Then the following holds:
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(i) If Assumptions 3.1, 3.2 and 3.4 are satisfied and {πk} converges to
π∗ ∈ Π, then π∗ is an average reward optimal policy;

(ii) If Assumptions 3.5, 3.6 and 3.8 are satisfied and {πk} converges
continuously to π∗ ∈ Π, then π∗ is an average reward optimal
policy.

Proof. From Assumption 3.1 or 3.5, an induction argument (see, e.g.,
[7, Lemma 10.4.1]) gives

(9) Eπ
x[w(xt)] ≤ βtw(x) +

(1− βt)
(1− β)b

∀ π ∈ Π, x ∈ S, t ≥ 0.

Therefore, by Assumption 3.2(ii) or 3.6(ii), we have

Eπ
x|r(xt, π(xt))| ≤ Mβtw(x) +

M(1− βt)
(1− β)b

,

so that supρ∈(0,1) |(1 − ρ)vρ(x′)| is finite, with x′ ∈ S as in Assump-
tion 3.4. Thus

g := lim inf
k→∞

(1− ρk)vρk
(x′)

is well defined.
Our proof now proceeds in two steps. In step one, we prove that

g ≥ sup
π∈Π

v(x, π) ∀ x ∈ S.

In step two, we show that π∗ satisfies

g ≤ v(x, π∗) ∀ x ∈ S.

Average reward optimality of π∗ will then follow.

Step one. By definition of uρ (in Section 1), a simple calculation shows
that the discounted reward optimality equation (7) can be written in
the equivalent form:

(10) (1−ρ)vρ(x′)+uρ(x) = max
a∈Γ(x)

{
r(x, a) + ρ

∫

Z
uρ(h(x, a, ξ))ν(dξ)

}

for every x ∈ S. Consider now a subsequence {k′} of {k} such that

lim
k′→∞

(1− ρk′)vρk′ (x
′) = g.
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Let u := lim infk′ uρk′ and note that u is in Bw(S). Now, by (10), for
the sequence {ρk′} and every (x, a) ∈ K we have

(1− ρk′)vρk′ (x
′) + uρk′ (x) ≥ r(x, a) + ρk′

∫

Z
uρk′ (h(x, a, ξ))ν(dξ).

Taking the lim infk′→∞ in this inequality and using Fatou’s lemma
(which indeed applies as a consequence of our assumptions), we obtain

(11) g + u(x) ≥ r(x, a) +
∫

Z
u(h(x, a, ξ))ν(dξ) ∀ (x, a) ∈ K.

Iteration of (11) yields that, for every initial state x ∈ S, any policy
π ∈ Π and t ≥ 0,

g ≥ Eπ
x[r(xt, π(xt))] + Eπ

x[u(xt+1)− u(xt)].

Summing up these inequalities for t = 0, . . . , T −1 and then dividing by
T yields

g ≥ Eπ
x

[
1
T

T−1∑

t=0

r(xt, π(xt))

]
+
Eπ

x[u(xT )]− u(x)
T

.

Letting T → ∞, recalling that u ∈ Bw(S) and using (9), we obtain
g ≥ v(x, π) and, therefore,

(12) g ≥ sup
π∈Π

v(x, π) ∀ x ∈ S.

This completes step one.

Step two. Since πk is a ρk-discount optimal policy, from (8) and (10)
we have

(1− ρ)vρk
(x′) + uρk

(x) = r(x, πk(x)) + ρk

∫

Z
uρk

(h(x, πk(x), ξ))ν(dξ)

for every k ∈ N and x ∈ S. Consequently, for every ε > 0 and large
enough k, we have

(13) g − ε + uρk
(x) ≤ r(x, πk(x)) + ρk

∫

Z
uρk

(h(x, πk(x), ξ))ν(dξ)

for every x ∈ S.
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Suppose now that the Assumptions 3.1, 3.2 and 3.4 are satisfied.
Then, taking the lim sup in (13), recalling that r(x, ·) is upper semicon-
tinuous and by the extension of Fatou’s lemma [7, Lemma 8.3.7], we
obtain

g − ε + u(x) ≤ r(x, π∗(x)) +
∫

Z
u(h(x, π∗(x), ξ))ν(dξ),

where u := lim supk uρk
∈ Bw(S). But ε > 0 being arbitrary, the same

arguments as in the proof of step one yield that

g ≤ v(x, π∗) ∀ x ∈ S,

which combined with (12) shows that π∗ is an average reward optimal
policy and, besides, that g is the (constant) optimal average reward.
This completes the proof of statement (i), that is, under the hypotheses
in the strongly continuous case.

We now consider the weakly continuous case, which consists of As-
sumptions 3.5, 3.6 and 3.8. Following [8], we define the generalized
lim sup of the sequence uρk

as

u∗(x) := sup{lim sup
k→∞

uρk
(xk)},

where the supremum is taken over the family of sequences {xk} ⊆ S
such that xk → x. Let us now go back to (13) and take the lim sup
through a sequence xk → x such that lim supk uρk

(xk) ≥ u∗(x) − ε, so
that

g − 2ε + u∗(x) ≤ lim sup
k→∞

r(xk, πk(xk))

+ lim sup
k→∞

∫

Z
uρk

(h(xk, πk(xk), ξ))ν(dξ).

Then we proceed as in the proof for the strongly continuous case, but
this time we take into account that both r and the multifunction Γ
are upper semicontinuous. Finally, we apply the Fatou lemma for a
generalized lim sup (see [8, Lemma 5] and also [14, Lemma 2.3]) to
obtain

(14) g−2ε+u∗(x) ≤ r(x, π∗(x))+
∫

Z
u∗(h(x, π∗(x), ξ))ν(dξ) ∀ x ∈ S.

This implies, by standard arguments, that v(x, π∗) ≥ g for every x ∈ S.
The proof of Theorem 3.10 is complete. ¤
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Remark 3.11 The second step in the proof of Theorem 3.10 relies on
the application of a Fatou-like lemma. For instance, when the usual
value boundedness condition holds, then we use the standard Fatou lem-
ma because the relative value function uρ is bounded above; see (4). Un-
der the strong continuity assumptions, we use the Fatou lemma in [7,
Lemma 8.3.7], while if the weak continuity conditions hold, then we use
the Fatou lemma for a generalized lim sup in [14, Lemma 2.3]. There-
fore, the assumptions we make on the control model heavily depend on
the hypotheses needed for the corresponding Fatou lemma and, similarly,
the kind of results we reach (statements (i) and (ii) in Theorem 3.10)
also depend on the kind of Fatou lemma that is applied.

We specialize Theorem 3.10 to the following important particular
cases.

Corollary 3.12 Suppose that {ρk}k∈N is a sequence of discount factors
such that ρk ↑ 1 and let πk ∈ Π, for every k ∈ N, be a ρk-discount
optimal policy.

(i) Under the strong continuity conditions (Assumptions 3.1, 3.2 and
3.4), if for every x ∈ S the function ρ 7→ uρ(x) is monotone
(either increasing or decreasing), then any accumulation policy of
{πk}k∈N is average reward optimal.

(ii) If the state space S is denumerable, then under either the strong or
the weak continuity conditions, any accumulation policy of {πk}
is average reward optimal.

The condition in Corollary 3.12(i) can be interpreted as follows: the
expected discounted reward grows faster for any x ∈ S than for x′ ∈ S
as ρ ↑ 1, and it is satisfied, for instance, in the consumption-investment
model in [6, Section 3.6]; see also [1].

4 An example

In this section we give an example of a control model that satisfies (5)
but does not satisfy the value boundedness condition (4).

The following inventory system with permitted backlog is based on
the model analyzed in [17]. The state space and the action set are
S = A = R. The distribution ν is supported on [0,∞), it satisfies the
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conditions in Remark 3.3, and we assume that its expectation equals
one. Furthermore, we suppose that there exists some δ > 0 such that

∫ ∞

0
eδξν(dξ) < ∞.

(Note that, for instance, the mean one exponential distribution satisfies
these hypotheses.) Fix a constant K > 1/2 and let

0 < λ < −1
δ

log
∫ ∞

0
e−δξν(dξ).

The action sets Γ(x) are the intervals

[−x,max{−2x,−x + K}] for x ≤ 0

and
[−x,max{λ,−x + K}] for x > 0.

The system’s transition function h is given by h(x, a, ξ) = x+a−ξ. The
cost function is c(x, a) = (x+ a)2− a (cf. [17, Equation (3.1)]). Finally,
let w(x) = eδ|x| for x ∈ R. This control model satisfies the Assumptions
3.1 and 3.2.

Given a discount factor 0 < ρ < 1, a direct calculation shows that
the optimal ρ-discounted cost function (recall that we are minimizing a
cost) is

vρ(x) = x− (ρ + 1)2

4(1− ρ)
∀ x ∈ R,

and the optimal ρ-discount policy is

πρ(x) = −x +
1
2
(1− ρ) ∀ x ∈ R.

Hence, the value boundedness condition (4) does not hold, whereas (5)
(or Assumption 3.4) is satisfied.

Moreover, for every x ∈ R, πρ(x) converges to −x as ρ ↑ 1. There-
fore, by Theorem 3.10(i), the policy π(x) = −x, for x ∈ R, is average
cost optimal. Further, from the proof of Theorem 3.10 we also obtain
that the minimal average cost is

−1 = lim
ρ↑1

(1− ρ)vρ(x).



The vanishing discount approach to average reward optimality 13

5 Concluding remarks

In the previous sections, we have considered a fairly general discrete-
time stochastic control model and, under two different sets of hypothe-
ses (strong and weak continuity), we have proved that the limit of ρ-
discount optimal policies, as the discount factor ρ ↑ 1, is a long-run
average reward optimal policy. The main contribution of this paper is
to relax the usual value boundedness assumption on the relative value
funtion (4) and, instead, assume the weaker condition (5). We have
illustrated our results with the generalized inventory system in Section
4.

Some important issues, however, remain open. In Theorem 3.10(i)
it is assumed that the discount optimal policies {πk} converge to some
π∗, and then it is proved that π∗ is average reward optimal. It would be
interesting to know whether this convergence can be relaxed, and thus
obtain a result like that in Corollary 3.12(i) under general assumptions.
To this end, results on the existence of measurable selectors would be
involved. Also, it would be interesting to check whether the continuous
convergence in Theorem 3.10(ii) can be relaxed to (usual) convergence,
perhaps by strengthening the hypotheses on the control model.
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