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A proof of the multiplicative

property of the Berezinian ∗

Manuel Vladimir Vega Blanco

Abstract

The Berezinian is the analogue of the determinant in super-linear
algebra. In this paper we give an elementary and explicative proof
that the Berezinian is a multiplicative homomorphism. This paper
is self-conatined, so we begin with a short introduction to super-
algebra, where we study the category of supermodules. We write
the matrix representation of super-linear transformations. Then
we can define a concept analogous to the determinant, this is the
superdeterminant or Berezinian. We finish the paper proving the
multiplicative property.
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1 Introduction

Linear superalgebra arises in the study of elementary particles and its
fields, specially with the introduction of super-symmetry. In nature
we can find two classes of elementary particles, in accordance with the
statistics of Einstein-Bose and the statistics of Fermi, the bosons and
the fermions, respectively. The fields that represent it have a parity,
there are bosonic fields (even) and fermionic fields (odd): the former
commute with themselves and with the fermionic fields, while the latter
anti-commute with themselves. This fields form an algebra, and with
the above non-commutativity property they form an algebraic structure

∗Research supported by a CONACyT scholarship. This paper is part of the autor’s
M. Sc. thesis presented at the Department of Mathematics of CINVESTAV-IPN.
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called a which we call a superalgebra. Super-linear algebra is the first
stage in the development of super-geometry [1, 2, 3, 4].

The purpose of this paper is to develop super-linear algebra as
far as proving in an elementary fashion that the super-determinant or
Berezinian1 satisfies:

Ber(TR) = Ber(T )Ber(R).

In order to do this we follow an elegant idea sketched in a paragraph of
Manin’s book [2] filling up all the details. Let us start by introducing
some elementary definitions.

2 Rudiments of superlinear algebra

Definition 2.0.1. A supervector space is a Z2-graded vector space V
over a field K, this means that there are two subspaces V0 and V1 of V
such that V = V0⊕V1. The elements of V0∪V1 are called homogeneous.
In particular the elements of V0 (V1) are called even (odd). The parity
function p : V0 ∪ V1 \ {0} −→ Z2 over the homogeneous elements is
defined by the rule v 7→ α for each v ∈ Vα. There is a problem with
the parity of 0, our convention is that 0 is of any parity. Let V and
W be supervector spaces. A linear map f : V −→ W that is Z2-degree
preserving (namely p(f(v)) = p(v) for each v in V homogeneous) is
called a graded morphism or a superlinear morphism.

Thus supervector spaces and the graded morphisms between them
naturally form a category, denoted by SVect.

Example 2.0.2. Consider the vector space Rp+q. We have that Rp is
naturally embedded in Rp+q and with its orthogonal complement Rq in
Rp+q forms a supervector space R(p|q), naturally isomorphic to Rp+q,
where R(p|q)0 = Rp and Rp|q

1 = Rq.

Example 2.0.3. Let M(2n;R) the vector space of 2n × 2n matrices
with entries in R. Note that each matrix in M(2n;R) can be written as

(
X11 X12

X21 X22

)
,

1The Berezinian is named after the russian physicist Felix A. Berezin (1931-1980),
and it is fundamental in the theory of integration over super-manifolds also known
as Berezin integration.
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where each Xij is a n× n matrix for i = 1, 2.
Define M(2n;R)0 as the matrices of the form

(
X11 0
0 X22

)

and M(2n;R)1 as the matrices of the form
(

0 X12

X21 0

)
.

Given this structure M(2n;R) becomes a supervector space of even
(odd) dimension 2n2.

As in the case of usual vector spaces it is possible to define a tensor
product for supervector spaces. Making this category into a symmetric
monoidal category.

Definition 2.1.4. Let V and W supervector spaces, the tensor product
of V and W is a supervector space V ⊗W together with a bilinear map
u : V ×W −→ V ⊗W satisfying the following universal property: for
each supervector space U and for each bilinear map f : V ×W −→ U
there exists a unique graded morphism k : V ⊗ W −→ U such that
k ◦ u = f . The bilinear map u is called a universal bilinear map. This
is equivalent to the existence of a unique k filling up the following com-
mutative diagram:

(1) V ×W
f //

u
%%LLLLLLLLLL U

V ⊗W

k

OOÂ
Â
Â

Proposition 2.1.5. The tensor product is unique up to unique isomor-
phism. That is, if T is a supervector space and u′ : V ×W −→ T is a
graded morphism satisfying the universal property of the previous def-
inition, then T ∼= V ⊗W by an unique isomorphism. We say that the
unique isomorphism k is canonical or natural.

Proof. The hypothesis give unique graded morphisms k : V ⊗W −→ T
and k′ : T −→ V ⊗ W such that u′ = k ◦ u and u = k′ ◦ u′. Hence
k′ ◦k ◦u = u and k ◦k′ ◦u′ = u′. Since the identities idV⊗W and idT are
unique, then k′ ◦ k = idV⊗W and k ◦ k′ = idT . Whence T ∼= V ⊗W . ¤
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Proposition 2.1.6. Let V and W supervector spaces. The tensor prod-
uct V ⊗W satisfies

(V ⊗W )k =
⊕

i+j=k

Vi ⊗Wj

for each k in Z2, where Vi ⊗ Wj is the usual tensor product of vector
spaces.

Proof. Define the map

φ : V ×W −→ T :=
⊕

k∈Z2

⊕

i+j=k

Vi ⊗Wj

by (v, w) 7→ v ⊗ w on homogeneous elements, and extend it on all
V ×W by linearity. Whence φ is bilinear. Let U a supervector space
and let f : V × W −→ U a bilinear map. Define k : T −→ U by
k(v⊗w) = f(v, w) on homogeneous elements, extending by linearity is
clear that k is graded morphism and f = k ◦ φ, moreover is unique: if
k′ : V ⊗W −→ U is other graded morphism such that f = k′ ◦ φ, must
be happen that k = k′ on homogeneous elements. Therefore k = k′ on
T . As a consequence, by the uniqueness up to unique isomorphism of
the tensor product we have T ∼= V ⊗W .¤

Proposition 2.1.7. Let V and W supervector spaces, then V ⊗W exists

Proof. Consider the set G = (V0 ∪ V1) \ {0} × (W0 ∪W1) \ {0}. Let S
a supervector space. Define a parity map p : G −→ Z2 by p(v, w) =
p(v) + p(w). Now consider the set F (G,S, p) of functions from G to
S that vanishes at each g in G except at finitely many elements. We
show that this is a supervector space. In fact, we define the sum by
(f + f ′)(g) = f(g) + f ′(g) and the left product by elements in K as
(af)(g) = af(g). Thus F (G,S, p) is a vector space. Now for each i in
Z2 set F (G,S, p)i as the elements in F (G, p) with image into Si−p(g).
It is easy to verify that F (G,S, p) satisfies the definition of supervector
space.

Define the following sets: Hsum as the set that contains the elements
of the form f(v + v′, w)− f(v + w)− f(v′, w) and Hprod as the set that
contains the elements f(av,w)−af(v, w), f(v, aw)−f(va, w) for all v, v′

in Vi, w in W1−i and a in K for each i in Z2. Let I the space generated
by Hsum∪Hprod, write V ⊗W := F (G,S, p)/I. The canonical projection
is the map π : F (G,S, p) −→ V ⊗ W defined by f(v, w) 7→ [f(v, w)].
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Where [f(v, w)] is the equivalence class with representant f(v, w). Set
u : F (G,S, p) −→ V ⊗W as

f(v, w) −→
∑

i,j∈Z2

π(f(vi, wj)).

We have that u is a bilinear map satisfying the universal property of
the tensor product. ¤

The tensor product of supervector spaces satisfies the following prop-
erties whose proofs can be found in [4].

Proposition 2.1.8. Let U , V and W supervector spaces. Then

U ⊗ (V ⊗W ) ∼= (U ⊗ V )⊗W

canonically.

Definition 2.1.9. Let V and W supervector spaces. The commuta-
tivity isomorphism cV, W : V ⊗ W −→ W ⊗ V is defined by v ⊗ w 7→
(−1)p(v)p(w)w ⊗ v on homogeneous elements, hence by linear extension
can be defined over all V ⊗W .

Proposition 2.1.10. Let V1, . . . , Vn a finite collection of supervector
spaces, let k and l two integers such that 1 ≤ k < l ≤ n and let τ the
transposition with τ(k) = l,τ(l) = k, τ(j) = j if j 6= k and j 6= l. Then,
there exists a canonical isomorphism

η :
⊗

1≤i≤n

Vi −→
⊗

1≤i≤n

Vσ(i)

such that, on homogeneous elements, η is given by
⊗

1≤i≤n

vi 7−→ (−1)N
⊗

1≤i≤n

vτ(i)

where N is the number of pairs of odd elements such that i < j and
τ(i) > τ(j).

3 Superalgebras

Definition 3.0.11. Let A a supervector space and K an algebraically
closed field (v.g R or C). A graded bilinear morphism A ⊗ A −→ A;
a⊗ b 7→ ab, is called product and A with this graded morphism is called
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a superalgebra over the field K. The superalgebra A is associative if
x(yz) = (xy)z for all x,y and z in A. A unit is an even element 1 in
A such that 1x = x1 = x for each x in A. It is common to reserve the
name superalgebra only for an associative superalgebra A with unity.

Remark 3.0.12. Note that a superalgebra A is not necessary commu-
tative as an usual algebra. Also it is not difficult to show that if the unit
exists, then it is unique.

Definition 3.0.13. Let A a superalgebra we say that a supervector space
M is called a left (resp. right) A-module if there exist a graded mor-
phism that is bilinear and posses a unity element 1 6= 0, also called
product, A ⊗M −→ M (resp. M ⊗ A −→ M). The superalgebra A is
called supercommutative if xy = (−1)p(x)p(y)yx.

Remark 3.0.14. If A is supercommutative, clearly a left A-module M
is also a right A-module. This can be done writing

m · a := (−1)p(m)p(a)a ·m

for each a in A and m in M .

Example 3.0.15. (The exterior algebra of a real vector space with the
wedge product). Let V a real n-dimensional vector space. Define the
exterior algebra Λ∗(V ) of V as the direct sum of the exterior powers
Λ1(V ), . . ., Λn(V ). Remember that the k-th exterior power ΛkV is
defined as the quotient of the k-fold tensor product V ⊗k modulo the
ideal I generated by the elements of the form v ⊗ v with v in V . The
wedge product

∧ : Λn(V )× Λm(V ) −→ Λn+m(V )

induces in a natural way a product

∧ : Λ∗(V )⊗ Λ∗(V ) −→ Λ∗(V ).

A well-know fact is that Λ∗(V ) ∼= R[θ1, . . . , θn] where R[θ1, . . . , θn] is
the ring of polynomials in n variables with coefficients in R and the
variables θj satisfies θiθj = −θjθi for each i, j = 1, . . . , n. Thus a typical
element can be written as

∑
J aJθi1 · . . . · θik where J is the ordered set

{1 ≤ i1 < . . . < ik ≤ n} and k varying between 1 up to n. Such element
will be even (odd) iff k is even (odd).
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Definition 3.0.16. Let M and N A-modules. The tensor product of
M and N respect to A is defined by M ⊗AN := (M as right module)⊗
(N as left module). With this definition we get a new A-module. Also
we have the commutativity isomorphism and its definition is analogous
to the tensor product of supervector spaces. Namely we can write:

(M ⊗A N)γ =
⊗

γ=α+β

Mα ⊗A Nβ

Definition 3.0.17. On SVect we define the parity reversing functor
∏

by

(
∏

V )0 := V1, (
∏

V )1 := V0.

4 Supermodules and linear transformations

In this section we study the linear maps between supervector spaces.
These can be represented by a matrix with entries in a superalgebra.
We shall define the analogous concepts of trace, transpose and bases.
In what follows A denotes a superalgebra over R.

Definition 4.0.18. Let A be a superalgebra and let {e1, . . . , ep} and
{o1, . . . , oq} be finite sets. Define

Ap|q :=





p∑

i=1

aiei +
q∑

j=1

bjoj |∀i, j ai, bj ∈ A


 ,

we call to Ap|q the standard free supermodule of rank p|q.

Remark 4.0.19. The ranks of the free supermodules are pairs of inte-
gers rather that just integers

Naturally in the case A = R we have a real supervector space of
finite dimension p + q, with even dimension p and odd dimension q.
We write Rp|q for the free supermodule of rank p|q on R. A standard
free supermodule is Z2-graded: let x =

∑p
i=1 aiei +

∑q
j=1 bjoj where

the ai, bj are in A, we say that the element x is even (odd) when
p(ai) = 0(p(ai) = 1) and p(bj) = 1 (p(bj) = 0) for each i and j. The
standard free supermodules over the super algebra A form a category.
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Definition 4.0.20. Let Ap|q and Ar|s A-free supermodules. A mor-
phism of supermodules T : Ap|q −→ Ar|s is a usual linear transforma-
tion such that exclusively preserve (or exclusively anti-preserve) the par-
ity of the homogeneous elements, that is p(T (v)) = p(v) (or p(T (v)) =
−p(v)), for all v in Ap|q. We denote the morphisms from Ap|q to Ar|s as
HomA(Ap|q,Ar|s), if p = s and q = s we write End(Ap|q) for that mor-
phisms and we use the suggestive notation GL(Ap|q) for the invertible
morphisms in End(Ap|q). If T is in HomA(Ap|q,Ar|s) and preserves
(anti-preserves) the parity of the homogeneous elements, then we say
that T is an even morphism ( odd morphism). Clearly the even mor-
phisms form a real vector space (similarly the odd), we denote the even
morphisms by HomA(Ap|q,Ar|s)0 and HomA(Ap|q,Ar|s)1 for the odd. It
is also clear that

HomA(Ap|q,Ar|s)0 ∩HomA(Ap|q,Ar|s)1 = {0}

Proposition 4.0.21. HomA(Ap|q,Ar|s) is a graded vector space.

Proof Let T in HomA(Ap|q,Ar|s) and choose ordered basis for Ap|q

and Ar|s B = {e1, . . . , ep, o1, . . . , oq} and B′ = {e′1, . . . , e′r, o′1, . . . , o′s}
respectively. For each element X in B we have that

T (x) =
r∑

k=1

ake
′
k +

s∑

l=1

bko
′
k.

Since al = al,0 + al,1 and bl = bl,0 + bl,1, where ak,0, bl,0 are in Ar|s
0 and

ak,1, bk,1 are in Ar|s
1 for each 1 ≤ k ≤ r and for each 1 ≤ l ≤ s, we can

define T0 and T1 on each element in B by

T0(x) :=
r∑

k=1

ak,0e
′
k +

s∑

l=1

bl,0o
′
l

and

T1(x) :=
r∑

k=1

ak,1e
′
l +

s∑

l=1

bl,1o
′
l.

It is clear that for each x in B, T (x) = T0(x) + T1(x), p(T0(x)) = p(x)
and p(T1(x)) = p(x) + 1, hence T0 is even and T1 is odd, and extending
by linearity we have that T (v) = T0(v) + T1(v), then

HomA(Ap|q,Ar|s) = HomA(Ap|q,Ar|s)0 ⊕HomA(Ap|q,Ar|s)1.¤
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Let A a superalgebra, Ap|q and Ar|s standard free supermodules an
even morphism T : Ap|q −→ Ar|s have a matrix representation

(2) XT =




X11 X12

X21 X22




where the sizes of X, X11, X12, X21 and X22 are (p+ q)× (r + s), r× p,
r × q, s × p and s × q respectively. The matrices Xii are composed by
even elements and the other two by odd elements. When the morphism
is odd, the matrices in the diagonal Xii are composed by odd elements
and the off-diagonal matrices by even elements. An element x in Ap|q

can be represented by a column vector

ux =




a1
...

ap

b1
...
bq




then T (x) is represented by the matrix product XT ux. And by abuse of
notation we simply write T for XT , and x for ux, hence Tx represents
to XT ux.

The appropriate generalization for the concept of trace of a square
matrix in the case when T is in End(Ap|q) is as follows:

Definition 4.0.22. Let T in End(Ap|q) with matrix representation as
in (2), the supertrace of T , denoted by Str(T ) is defined by

Str(T ) := tr(X11)− (−1)p(T )tr(X22)

for each homogeneous morphism T in End(Ap|q)

In the case q = 0, we have Str(T ) = tr(T ), the usual trace. It is
straightforward that Str(T + T ′) = Str(T ) + Str(T ′) for each T and T ′

in End(Ap|q).
In ordinary linear algebra when we have a matrix X we can construct

its transpose denoted by Xt defining Xt
ij := Xji. In the super case we

need to consider whether the matrix is even or odd. The following
definition is useful
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Definition 4.0.23. Let X in HomA(Ap|q,Ar|s) with matrix represen-
tation, again, as in 2. Then the graded transpose o supertranspose of
X, denoted by Xt is defined by

T t =





(
Xt

11 Xt
21

−Xt
12 Xt

21

)
, T even;

(
Xt

11 −Xt
12

Xt
12 Xt

22

)
, T odd.

An immediate consequence of this definition is that for each X
and Y matrices of appropriated dimensions we have that (XY )t =
(−1)p(X)p(Y )Y tXt. Also if X is in End(Ap|q) we have that Str(X) =
Str(Xt).

Now we motivate the concept of superdeterminant. As the superde-
terminant will be a generalization of the usual determinant it must be
satisfies, at least, the following requisites:

1. For each X and Y matrices, Ber(XY ) = Ber(X)Ber(Y ) that is:
the Berezinian is multiplicative.

2. If X is an endomorphism of Rp|0, then Ber(X) = det(X).

An important difference between the classical determinant and the
Berezinian is that while the determinant is defined on any endomor-
phism, the Berezinian is defined only on invertible endomorphisms. As
a first step, to understand the concept, we can define the Berezinian in
the simplest case A = R, each T in End(Rp|q) has a matrix representa-
tion (

X11 0
0 X22

)
.

We provide a provisional definition of Ber as

Ber(T ) := det(X11)/det(X22).

In this case if

X =
(

X11 0
0 X22

)
and Y =

(
Y11 0
0 Y22

)
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Ber(XY ) = Ber(
(

X11X
′
11 0

0 X22X
′
22

)
)

= det(X11X
′
11) det(X22X

′
22)

−1

=
det(X11)
det(X22)

· det(X ′
11)

det(X ′
22)

= Ber(X)Ber(Y ).

The invertible matrices can be nicely characterized as the following
result shows:

Lemma 4.0.24. If T is in End(Ap|q) and has a matrix representation
as in (2) then X is invertible if and only if X11 and X22 are invert-
ible matrices over the commutative ring A0, equivalently, det(X11) and
det(X22) are units of A0.

Proof. First we need proof the case when all the odd variables are zero.
For this define the ideal J of A as J = A1 + A2

1, this is the ideal
generated by A1. Then consider the quotient [A] = A/J . We have a
natural quotient map q : A −→ [A] defined by a 7→ a + I, so to each
matrix X with entries in A correspond a matrix [X] with entries the
images of entries by q of the entries of X, that is [Xij ] = q(Xij), then q
can be extended to End(Ap|q).

The first step is to prove that X is invertible if and only if [X] is
invertible. Is clear that if X is invertible, then [X] is invertible, for
XX−1 = I implies [X][X−1] = [I]. Reciprocally suppose that [X] is
invertible, then we can find a matrix Z such that XZ = I + Y where Y
is a matrix with Yij is in J for all i, j. To see that I + Y is invertible
note that Y r = 0 for some r integer, that is Y is nilpotent. For, if Y is
nilpotent

(I + Y )
r−1∑

i=0

(−1)iY i = I − Y r = I,

where r = min{k ∈ N|Y k = 0}, hence

X−1 = Z
r−1∑

i=0

(−1)iY i.

To see that Y is nilpotent note that there are odd elements o1, . . . , ok

in A such that any entry of Y take the form
∑

i aioi for some suitable
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elements ai in A, thus when we calculate Xr, we have that each entry
of Y r have the form ∑

i1...ir

a′i1...iroi1 · · · oir

then choose r such that the product oi1 · · · oir has at least two equal
factors, so it vanishes. As consequence [X] invertible if and only if X is
invertible. Observe that if X is an even matrix we have that

[X] =
(

[X11] 0
0 [X22]

)
,

thus X is invertible if and only if [X11] and [X22] are invertible, and this
will be true if and only if X11 and X22 are invertible. This proves the
lemma. ¤

We are in position to define the Berezinian in the general case, that
is when A1 6= 0.

Definition 4.0.25. Let T even in GL(Ap|q) that have the matrix rep-
resentation as in 2. The Berezinian of T ,denoted by Ber(T ) is defined
by

Ber(X) := det(X11 −X12X
−1
22 X21) det(X22)−1.

Remark 4.0.26. Note that Ber(X) = 1 for the identity matrix X11 =
Ip, X22 = Iq, X12 = 0 and X21 = 0, the two latter matrices has odd
entries.

In the way to prove the multiplicative property of the Berezinian we
require the following lemma, whose easy proof we leave to the reader as
an exercise.

Lemma 4.0.27. For each matrix

X =
(

X11 X12

X21 X22

)
,

we have

X =
(

1 X12X
−1
22

0 1

) (
X11 −X12X

−1
22 X21 0

0 X22

)(
1 0

X−1
22 X21 1

)
,

when X22 is invertible, and

X =
(

1 0
X21X

−1
11 1

) (
X11 0
0 X22 −X21X

−1
11 X12

)(
1 X−1

11 X21

0 1

)
,

when X11 is invertible.
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The proof of the multiplicative property of the Berezinian can be
divided into two steps. The first one is to prove the property for certain
families of matrices, this is the content of lemmas 1 y 2 and, then,
show that any matrix can be decomposed in terms of matrices of those
families. Let us to begin defining the following subsets of GL(Ap|q):

∆1 = {X ∈ GL(Ap|q)|X =
(

I 0
X21 I

)
}

∆−1 = {X ∈ GL(Ap|q)|X =
(

I X12

0 I

)
}

∆0 = {X ∈ GL(Ap|q)|X =
(

X11 0
0 X22

)
},

each one of this is closed by the usual multiplication of matrices, as
easily one can prove. Then we have:

Lemma 4.0.28. For each X in ∆k and Y in ∆l, where k, l ∈ {−1, 0, 1},
we have

(3) Ber(XY ) = Ber(X)Ber(Y ).

Proof. The statement is clear for X and Y in ∆k with k ∈ {−1, 0, 1}
since in the case k = −1 if we let

X =
(

I 0
X21 I

)
and Y =

(
I 0

X ′
21 I

)

we have that
(

I 0
X21 I

)(
I 0

X ′
21 I ′

)
=

(
I 0

X21 + X ′
21 I

)
,

and

Ber(
(

I 0
X21 + X ′

21 I

)
) = det(I) det(I)−1

= det(I) det(I) det(I)−1 det(I)−1

= [det(I) det(I)−1][det(I) det(I)−1]
= Ber(X)Ber(Y ),

the other cases are similar since for each X in ∆0 X∆k ⊂ ∆k. The
important case is X in ∆−1 ∪∆1, then we have that
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X =
(

I 0
X21 I

)
and Y =

(
I X ′

12

0 I

)
,

and

XY =
(

I X ′
12

X21 X21X
′
12 + I

)

hence

Ber(XY ) = Ber
((

I X ′
12

X21 X21X
′
12 + I

))

= det(I −X ′
12(X21X

′
12 + I)−1X21) det((X21X

′
12 + I))−1,

then we need to prove that

det(I −X ′
12(X21X

′
12 + I)−1X21) = det((X21X

′
12 + I)).

For this suppose that X ′
12 is elementary, this means that there exists a

single nonzero entry, namely b, and the others are zero. This b is odd,
hence b2 = 0. Therefore (X21X

′
12)

2 = 0 and (X ′
12X21) = 0 since each

entry is multiple of b. So is clear that (I +X21X
′
12)

−1 = I −X21X
′
12, as

consequence

I −X ′
12(I + X21X

′
12)

−1X21 = I −X ′
12(I −X21X

′
12)X21

= I −X ′
12X21 − (X ′

12X21)2

= I −X ′
12X21.

We have that X ′
12X21 is a square matrix, then

det(I −X ′
12X21) = 1 + det(−X ′

12X21) + tr(−X ′
12X21)

but det(X ′
12X21) = 0 for b2 = 0, hence

det(I −X ′
12X21) = 1 + tr(−X ′

12X21).

In the other hand det(I +X21X
′
12) = 1+tr(X21X

′
12), and tr(X21X

′
12) =

−tr(X ′
12X21) = tr(−X ′

12X21) for X ′
12 and X21 are odd. Thus det(I −

X ′
12X21) = det(I + X21X

′
12), hence

det(I −X ′
12(X21X

′
12 + I)−1X21) det((X21X

′
12 + I))−1 = 1

as we want, and this proves the lemma.¤
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Theorem 4.0.29. Let T and R in GL(Ap|q) even morphisms such that
its matrix representations are X and Y respectively, then

Ber(TR) = Ber(T )Ber(R).

Equivalently we can say that the Berezinian is an homomorphism.

Proof. Let

X =
(

X11 X12

X21 X22

)
and Y =

(
Y11 Y12

Y21 Y22

)
,

that represents to T and R in GL(Ap|q) respectively. Now, by the
lemma we have that X = UxVxWx and Y = UyVyWy, where Ux, Uy

is in ∆−1,Vx, Vy is in ∆0 and Wx,Wy is in ∆1. Precisely we have

Ux =
(

I X12X22

0 I

)
Uy =

(
I 0

Y21Y
−1
11 I

)

Vx =
(

X11 −X12X
−1
22 X21 0

0 X22

)
Vy =

(
Y11 0
0 Y22 − Y21Y

−1
11 Y12

)

Wx =
(

I 0
X−1

22 X21 I

)
Wy =

(
I Y −1

11 Y12

0 I

)
.

By direct calculation we have that

Ber(Ux) = Ber(Wx) = Ber(Uy) = Ber(Wy) = 1,

and Ber(Vx) = Ber(T ), Ber(Vy) = Ber(R), hence by the lemma 4.0.28
is clear that

Ber(TR) = Ber(Ux)Ber(Vx)Ber(Wx)Ber(Uy)Ber(Vy)Ber(Wy)
= Ber(UxVxWx)Ber(UyVyWy)
= Ber(T )Ber(R).¤

Corollary 4.0.30. Let Rp|q, Ber ∈ HomA(GL(Ap|q)0,A0) is well de-
fined, that is let

B = {e1, . . . , eq, o1, . . . , oq} and B′ = {e′1, . . . , e′p, o′1, . . . , o′q}

be two ordered basis of Rp|q, T in GL(Ap|q); X the matrix representation
of T for B and X ′ the matrix representation of T for B′, we have that

Ber(X) = Ber(X ′).
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Proof. Each element in B′ can be expressed in terms of the elements
of B as a linear combination in such way that for each 1 ≤ i ≤ p and
1 ≤ j ≤ q we have that

e′i =
∑p

k=1 ai,kek +
∑q

l=1 ci,lol and o′j =
∑p

k=1 bj,kek +
∑q

l=1 dj,lol.

Define the matrices A,B, C and D by Aki := ai,k, Bkj := bj,k,
Cli := ci,l and Dlj := dj,l respectively, now define the matrix Y as

(
A B
C D

)

The matrix Y is even and invertible for B is linearly independent. Hence
X ′ = PXP−1, then by theorem 4.0.29

Ber(X ′) = Ber(PXP−1)
= Ber(P )Ber(X)Ber(P−1)
= Ber(PP−1)Ber(X)
= Ber(I)Ber(X)
= Ber(X).¤

When X is an odd matrix its Berezinian can be defined as follows.
First suppose that p = q, and consider the following matrix

Υ =
(

0 Ip

−Ip 0

)

where Ip denote the identity of size p × p. Then ΥX is an invertible
matrix. Define

Ber(X) := Ber(ΥX).

It is immediate that again Ber(X) satisfies the multiplicative property.
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