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XI Solomon Lefschetz Memorial Lecture Series:

Hodge structures in non-commutative geometry ∗

(Notes by Ernesto Lupercio)

Maxim Kontsevich 1

Abstract

Traditionally, Hodge structures are associated with complex pro-
jective varieties. In my expository lectures I discussed a non-
commutative generalization of Hodge structures in deformation
quantization and in derived algebraic geometry.
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1 Lecture 1. September 8th, 2005

1.1

This talk deals with some relations between algebraic geometry and
non-commutative geometry, in particular we explore the generalization
of Hodge structures to the non-commutative realm.

1.3 Hodge Structures.

Given a smooth projective variety X over C we have a naturally defined
pure Hodge structure (HS) on its cohomology, namely:
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• Hn(X,C) =
⊕

p+q=n, p,q≥0 Hp,q(X) by considering Hp,q to be the
cohomology represented by forms that locally can be written as

∑
ai1,...,ip;j1,...,jqdzi1 ∧ dzi2 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ dz̄j2 ∧ . . . ∧ dz̄jq

• Hn(X,C) is the complexification Hn(X,Z)⊗C of a lattice of finite
rank.

• Hp,q = Hq,p.

1.4

To have this Hodge structure (of weight n) is the same as having the
decreasing filtration

F pHn :=
⊕

p′≥p′, p′+q′=n

Hp′,q′

for we have Hp,q = F pHn ∩ F qHn.

1.5

What makes this Hodge structure nice is that whenever we have a family
Xt of varieties algebraically dependent on a parameter t we obtain a
bundle of cohomologies with a flat (Gauss-Manin) connection

Hn
t = Hn(Xt,C)

over the space of parameters, and F p
t is a holomorphic subbundle (even

though Hp,q
t is not). Deligne developed a great theory of mixed Hodge

structures that generalizes this for any variety perhaps singular or non-
compact.

1.6 Non-commutative geometry.

Non-commutative geometry (NCG) has been developed by Alain Connes
[3] with applications regarding foliations, fractals and quantum spaces
in mind, but not algebraic geometry. In fact it remains unknown what
a good notion of non-commutative complex manifold is.
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1.7

There is a calculus associated to NC spaces. Suppose k is a field and
for the first talk the field will always be C, only in the second talk finite
fields become relevant. Let A be a unital, associative algebra over k.
An idea of Connes is to mimic topology, namely differential forms, and
the de Rham differential in this framework. We define the Hochschild
complex C•(A,A) of A as a negatively graded complex (for we want to
have all differentials of degree +1),

∂−→ A⊗A⊗A⊗A
∂−→ A⊗A⊗A

∂−→ A⊗A
∂−→ A,

where A⊗k lives on degree −k + 1. The differential ∂ is given by

∂(a0 ⊗ · · · ⊗ an) = a0a1 ⊗ a2 ⊗ · · · ⊗ an − a0 ⊗ a1a2 ⊗ · · · ⊗ an

+ . . . + (−1)n−1a0 ⊗ a1 ⊗ · · · ⊗ an−1an + (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1.

This formula is more natural when we write the terms cyclically:

(1)

a0

⊗ ⊗
an a1

⊗ ⊗
...

...
⊗ ⊗

ai

for a0 ⊗ · · · ⊗ an. It is very easy to verify that ∂2 = 0.

1.8

The homology of the Hochschild complex has an abstract meaning

Ker ∂/Im ∂ = TorA⊗kAop−mod
• (A,A).

1.9

An idea in NC geometry is that as A replaces a commutative space the
Hochschild homology of A replaces in turn the complex of differential
forms.
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Theorem 1.9.1 (Hochschild-Konstant-Rosenberg, [6]). Let X be
a smooth affine algebraic variety, then if A = O(X) we have

HHi(X) := H−i(C•(A, A); ∂) ∼= Ωi(X)

where Ωi(X) is the space of i-forms on X.

Proof. The proof is very easy: consider the diagonal embedding X
∆−→

X×X and by remembering that the normal bundle of ∆ is the tangent
bundle of X we have

HH•(X) = TorQuasi−coherent(X×X)
• (O∆,O∆)

this together with a local calculation gives the result.¤

1.10

The Hochschild-Konstant-Rosenberg theorem motivates us to think of
HHi(A) as a space of differential forms of degree i on a non-commutative
space.

Note that if A is non-commutative we have

H0(C•(A,A); ∂) = A/[A,A].

Also, for commutative A = O(X), given an element a0 ⊗ · · · ⊗ an in
C•(A,A) the corresponding form is given by 1

n!a0da1 ∧ . . . ∧ dan.

1.11

There is a reduced version of the complex Cred
•(A,A) with the same coho-

mology obtained by reducing modulo constants all but the first factor

−→ A⊗A/(k · 1)⊗A/(k · 1) −→ A⊗A/(k · 1) −→ A.

1.12

Connes’ main observation is that we can write a formula for an addi-
tional differential B on C•(A,A) of degree −1, inducing a differential
on HH•(A) that generalizes the de Rham differential:

B(a0 ⊗ a1 ⊗ · · · ⊗ an) =
∑

σ

(−1)σ1⊗ aσ(0) ⊗ · · · ⊗ aσ(n)
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where σ ∈ Z/(n + 1)Z runs over all cyclic permutations. It is easy to
verify that

B2 = 0, B∂ + ∂B = 0, ∂2 = 0,

which we depict pictorially as

· · ·
∂

00 A⊗A/1⊗A/1
B

rr

∂

11 A⊗A/1
Bpp

∂

33 A
Bqq

and taking cohomology gives us a complex (Ker ∂/Im ∂; B). A naive
definition on the de Rham cohomology in this context is the homology
of this complex Ker B/Im B.

1.13

We can do better by defining the negative cyclic complex C−• (A), which
is formally a projective limit (here u is a formal variable, deg(u) = +2):

C−
• := (Cred

• (A,A)[[u]]; ∂ + uB) = lim
←−
N

(Cred
• (A,A)[u]/uN ; ∂ + uB).

1.14

We define the periodic complex as an inductive limit

Cper
• := (Cred

• (A,A)((u)); ∂ + uB) = lim
−→
i

(u−iCred
• (A,A)[[u]]; ∂ + uB).

This turns out to be a k((u))-module and this implies that the multipli-
cation by u induces a sort of Bott periodicity. The resulting cohomology
groups called (even, odd) periodic cyclic homology and are written (re-
spectively)

HPeven(A), HPodd(A).

This is the desired replacement for de Rham cohomology.

1.15

Let us consider some examples. When A = C∞(X) is considered as
a nuclear Fréchet algebra, and if we interpret the symbol ⊗ as the
topological tensor product then we have the canonical isomorphisms:

HPeven(A) ∼= H0(X,C)⊕H2(X,C)⊕ · · ·
HPodd(A) ∼= H1(X,C)⊕H3(X,C)⊕ · · ·
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Theorem 1.15.1 (Feigin-Tsygan, [4]). If X is a affine algebraic
variety (possibly singular) and Xtop its underlying topological space then

HPeven(A) ∼= Heven(Xtop,C)

and
HPodd(A) ∼= Hodd(Xtop,C)

(these spaces are finite-dimensional).

There is a natural lattice H•(X,Z) but we will see later that the
“correct” lattice should be slightly different.

1.16

Everything we said before can be defined for a differential graded algebra
(dga) rather than only for an algebra A. Recall that a dga (A, d) consists
of

• A =
⊕

n∈ZAn a graded algebra with a graded product

An1 ⊗An2 −→ An1+n2 .

• dA : An −→ An+1 a differential satisfying the graded Leibniz rule.

For example given a manifold X on has the de Rham dga (Ω•(X); d).

1.17

The definition of the degree for C•(A,A) is given by

deg(a1 ⊗ · · · ⊗ an) := 1− n +
∑

i

deg(ai).

It is not hard to see that

rank(HP•(A)) 6 rank(HH•(A)),

and therefore, if the rank of the Hochschild homology is finite so is the
rank of the periodic cyclic homology.

1.18 Hodge filtration on HP•(A).

We define FnHPeven(A) as the classes represented by sequences γi ∈
Ci(A,A), i ∈ 2Z (namely

∑
γiu

i/2) such that i ≥ 2n. Similarly we
define Fn+1/2HPodd(A).
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1.19

We have an interesting instance of this situation in ordinary topology
A = C∞(X). Here we have:

HPeven(A) = H0(X)⊕H2(X)⊕H4(X)⊕H6(X)⊕ · · ·

and F 0 = HPeven(A), F 1 = H2(X)⊕H4(X)⊕H6(X)⊕ · · · and so on.
In non-commutative geometry this filtration is the best you can do, for
there is no individual cohomologies.

1.20

Let X be an algebraic variety (not necessarily affine). Weibel [15] gave
a sheaf-theoretic definition of HH•(X) and HP•(X). Namely, if X is
covered by affine open charts

X =
⋃

16i6r

Ui,

we obtain not an algebra, but a cosimplicial algebra

Ak := ⊕(i0,...,ik)O(Ui0 ∩ . . . ∩ Uik),

whose total complex Tot(C•(A•)) = C•(X) still has two differentials B
and ∂ as before. In fact

H•(C•(X), ∂) = TorQuasi−coherent(X×X)
• (O∆,O∆)

is graded in both positive and negative degrees.
Weibel observed that one can recover a tilted version of the Hodge

diamond in this manner. For a smooth projective X one has

HP•(X) := HP•(A•) = H•(X)

and the filtration we defined becomes

F i(HP•) =
⊕

p=i+n/2

F pHn(X), i ∈ 1
2
Z,

reshuffling thus the usual Hodge filtration.
Observe that in this example we have:

Hp,q ⊂ F
p−q
2 .
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1.21

In general one can directly replace an algebraic variety by a dga using
a theorem by Bondal and Van den Bergh. For example, let E be a
sufficiently “large” bundle over a smooth projective variety X. You
may take for instance E = O(0) + O(1) + · · · + O(dimX). Take the
algebra A to be

A := (Γ(X, End(E)⊗ Ω0,1); ∂̄).

Then one can show that one can repeat the previous constructions ob-
taining the corresponding filtration. Namely, the periodic cyclic ho-
mology (and the Hodge filtration) of the dga A coincides with those of
X.

1.22

Take Xalg to be a smooth algebraic variety over C and let XC∞ be its
underlying smooth manifold. Consider the natural map

XC∞ −→ Xalg.

This map induces an isomorphism

HP•(XC∞)←− HP•(Xalg).

This isomorphism is compatible with the Hodge filtrations but the fil-
trations are different.

1.23

The next important ingredients are the integer lattices. Notice that
H•(X,C) has a natural integer lattice H•(X,Z), which allows us to
speak of periods, for example. There is also another lattice commen-
surable with H•(X,Z), namely, the topological K-theory K•

top(X) :=
Keven(XC∞)⊕Kodd(XC∞).

Let A be an algebra, then we get K0(A) by considering the projective
modules over A. There is a Chern character map

K0(A) ch //

%%KKKKKKKKKK
F 0(HPeven(A)) Â Ä // HPeven(A)

HC−
0 (A)

77nnnnnnnnnnn
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Here it may be appropriate to recall that HP•(A) is a Morita invariant
and therefore we can replace A by A ⊗ Matn×n for Matn×n a matrix
algebra.

If π ∈ A is a projector (namely π2 = π) we have explicitly

ch(π) = π− 2!
1!

(π−1/2)⊗π⊗π ·u+
4!
2!

(π−1/2)⊗π⊗π⊗π⊗π ·u2 + . . . .

There is a similar story for K1(A) −→ HPodd(A), and also for higher
K-theory.

1.24

If A = C∞(X) then the image of K0(A) = K0
top(X) is up to torsion

H0(X,Z)⊕H2(X,Z) · 2πi⊕H4(X,Z) · (2πi)2 ⊕ · · · .

We have of course K0
top(X)⊗Q = Heven(X,Q) but the lattice is different

and so Bott periodicity is broken. In order to restore it we must rescale
the odd degree part of the lattice by the factor

√
2πi, and then we obtain

H1(X,Z) ·
√

2πi⊕H3(X,Z) · (
√

2πi)3 ⊕ · · ·

We call this new lattice the non-commutative integral cohomology

H•
NC(X,Z) ⊂ HP•(C∞(X)).

Proposition 1.24.1. For A = C∞(X) the image up to torsion of

ch : Kn(A) −→ HP(n mod 2)(A)

is
(2πi)n/2H

(n mod 2)
NC (X,Z).

1.25

We are ready to formulate one of the main problems in non-commutative
geometry. Let A be a dga over C. The problem is to define a nuclear
Fréchet algebra AC∞ satisfying Bott periodicity

Ki(AC∞) ∼= Ki+2(AC∞), i ≥ 0

together with an algebra homomorphism A→ AC∞ satisfying:
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• The homomorphism A→ AC∞ induces an isomorphism

HP•(A) ∼= HP•(AC∞),

• ch : Kn(AC∞) −→ HP•(AC∞) is a lattice, i.e. when we tensor
with C we obtain an isomorphism

Kn(AC∞)⊗Q C
∼=−→ HP(n mod 2)(AC∞).

1.26

Consider for example the case of a commutative algebra A. Every such
algebra is an inductive limit of finitely generated algebras

A = lim→ An

where each An can be thought of as a singular affine variety. In general
HP•(A) 6= lim→HP•(An), but the right-hand side is a better definition
for HP•(A). In this case we find that the lattice we are looking for is
simply

lim→ K•
top(Spec An(C)).

1.27

We will attempt now to explain some non-commutative examples that
are close to the commutative realm, and are obtained by a proce-
dure called deformation quantization. Let us consider first a C∞ non-
commutative space.

Let T 2
θ be the non-commutative torus (for θ ∈ R) so that C∞(T 2

θ )
is precisely all the expressions of the form

∑

n,m∈Z
an,mẑn

1 ẑm
2 , an,m ∈ C,

such that for all k we have

am,n = O((1 + |n|+ |m|)−k),

and
ẑ1ẑ2 = eiθẑ2ẑ1.

For θ ∈ 2πZ we get the usual commutative torus.
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1.28

We will also consider some non-commutative algebraic spaces obtained
by deformation quantization. Start by taking a smooth affine algebraic
variety X and a bi-vector field α ∈ Γ(X,

∧2 TX). Define, as is usual,
the bracket by

{f, g} := 〈α, df ∧ dg〉.
The field α defines a Poisson structure iff the bracket satisfies the Jacobi
identity. We will call α admissible at infinity if there exists a smooth
projective variety X̄ ⊃ X and a divisor X̄∞ = X̄−X so that α extends
to X̄ and the ideal sheaf IX̄∞ is a Poisson ideal (closed under brackets).

1.29

The simplest instance of this is when X = Cn, X̄ = CPn and the
admissibility condition for α =

∑
i,j αi,j∂i ∧ ∂j reads deg(αij) 6 2.

1.30

We have the following [10]:

Theorem 1.30.1. If X satisfies

H1(X̄,O) = H2(X̄,O) = 0,

(e.g. X is a rational variety) then there exists a canonical filtered al-
gebra A~ over C[[~]] (actually a free module over C[[~]]) that gives a
∗-deformation quantization, and when we equal the deformation param-
eter to 0 we get back O(X).

While the explicit formulas are very complicated the algebra A~ is
completely canonical.

1.31

This theorem raises the interesting issue of comparison of parameters.
Take for example the case X = C2 and α = xy ∂

∂x ∧ ∂
∂y . Here we can

guess that
A~ ∼= C[[~]]〈X̂, Ŷ 〉/

(
X̂Ŷ = e~Ŷ X̂

)
.

On the other hand the explicit formula for A~ involves infinitely many
graphs and even for this simple example it is impossible to get the ex-
plicit parameter e~. A priori one only knows that just certain universal
series q(~) = 1 + . . . should appear with X̂Ŷ = q(~)Ŷ X̂.
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1.32

A slightly more elaborate example is furnished by considering (Sklyanin)
elliptic algebras. Here we take X̄ = CP 2 and α = p(x, y) ∂

∂x ∧ ∂
∂y with

deg(p) = 3. The divisor X̄∞ ⊂ CP 2 in this case is a cubic curve. We
take X = X̄ − X̄∞, which is an affine algebraic surface and since it has
a symplectic structure it also has a Poisson structure α.

Its quantum algebra A~ depends on an elliptic curve E and a shift
x 7→ x + x0 on E. The question is then: How to relate E and x0 to the
bi-vector field α and the parameter ~?

Again there is only one reasonable guess. Start with the bi-vector
field α and obtain a 2-form α−1 on CP 2 with a first order pole at X̄∞.
Our guess is that E = X̄∞. Taking residues we obtain a holomorphic
1-form Res(α−1) ∈ Ω1(E). The inverse of this 1-form is a vector field
(Res(α−1))−1 on E. Finally:

x0 = exp
(

~
Res(α−1)

)
,

but to prove this directly seems to be quite challenging.

1.33

It is a remarkable fact that this comparison of parameters problem can
be solved by considering the Hodge structures.

1.34

Let us consider X to be either a C∞ or an affine algebraic variety and
A to be C∞(X) (respectively O(X)). The theory of deformation quan-
tization implies that all nearby non-commutative algebras and related
objects (such as HP•, HH•, etc.) can be computed semi-classically.
In particular nearby algebras are given by Poisson bi-vector fields α.
Also C•(A~, A~) is quasi-isomorphic to the negatively graded complex
(Ω−i(X),Lα) where the differential is Lα = [ια, d]. If you want to see
this over C[[~]] simply consider the differential L~α. We just described
what Brylinski calls Poisson homology. The differential B in this case is
simply the usual de Rham differential B = d. We would like to consider
now HP•(A~). This is computed by the complex

(
⊕

Ωi(X)[i][[~]]((u)), ud + ~Lα) ,
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which is the sum of infinitely many copies of some finite-dimensional
complex. Namely HP•(A~)⊗̂C[[~]]C((~)) is C((~)) tensored with the
finite-dimensional cohomology of the Z/2-graded complex:

ΩN

Lα

22 ΩN−1
d

rr

Lα

33 · · ·
drr

Lα

33 Ω1
d

ss

Lα

33 Ω0
d

ss

1.35

We claim that the cohomology of this complex is H•(X). The reason
for this is really simple, for we have that

exp(ια)d exp(−ια) = d + [ια, d] +
1
2!

[ια, [ια, d]] + . . . = d + Lα.

Here we used the fact that [α, α] = 0 to conclude that only the first two
terms survive.

1.36

Let us turn our attention to the lattice. Our definition uses Kn(A) but
we may get this lattice by using the Gauss-Manin connection. If we have
a family of algebras At depending on some parameter t, Ezra Getzler [5]
defined a flat connection on the bundle HPt over the parameter space.
This allows us to start with the lattice ⊕kH

k(X, (2πi)k/2 · Z) (up to
torsion) at t := ~ = 0 in our situation. The parallel transport for the
Gauss-Manin connection comes from the above identification of periodic
complexes given by the conjugation by exp(~ια).

1.37

To compute the filtration we will assume that X is symplectic, and
therefore α is non-degenerate. Again we set dim(X) = N = 2n, and
ω = α−1 is a closed 2-form. We also set ~ := 1. The following theorem
is perhaps well known but in any case is very simple:

Theorem 1.37.1. For (X, ω) a symplectic manifold the Hodge filtration
is given by

• HP even:
Fn−k/2 = eω(H0 ⊕ · · · ⊕Hk), k ∈ 2Z

eωH0 ⊂ eω(H0 ⊕H2) ⊂ · · ·
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• HP odd:

Fn−k/2 = eω(H1 ⊕ · · · ⊕Hk), k ∈ 2Z+ 1

eωH1 ⊂ eω(H1 ⊕H3) ⊂ · · ·

Notice that this is not the usual Hodge filtration coming from topol-
ogy: H2n ⊂ H2n ⊕H2n−2 ⊂ · · ·

Proof. Consider the Z/2-graded complex

Ω2n

Lα

22 Ω2n−1
d

rr

Lα

33 · · ·
drr

Lα

33 Ω1
d

ss

Lα

33 Ω0
d

ss

where Ωk lives in F k/2.
The differential is not compatible with the filtration, nevertheless

after the conjugation by exp(ια) we can use instead the complex

Ω2n d←− Ω2n−1 d←− · · · d←− Ω0

and we would like to understand what happens to the filtration.
Let ∗ be the Hodge operator with respect to ω (the Fourier transform

in odd variables). Under this map the original Z/2-graded complex
becomes

Ω0

d

33 Ω1

Lα
ss

d

33 · · ·
Lα

ss

d

22 Ω2n−1

Lα
ss

d

22 Ω2n

Lαrr

where the filtration has been reversed.
The important remark here is that now eια does preserve this filtra-

tion, transforming the last complex into the complex

Ω0 d // Ω1 d // · · · d // Ω2n

deg n n− 1/2 · · · 0

Finally, all that remains to be seen is that eω∧· = eια ∗ e−ια .
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1.38

This theorem is related to the Lefschetz decomposition formula2 for
Kähler manifolds. In fact we have obtained

HP•(X~α) = H•(X),

furthermore we have

lim
~→0

F iHP•(X~α) = F iHP•(X)

if and only if we have a Lefschetz decomposition for the symplectic
manifold.

If (X, ω) is Kähler compact we define the multiplication operator

ω∧ : H•(X) −→ H•+2(X),

which is clearly nilpotent. The Lefschetz decomposition corresponds to
the decomposition into Jordan blocks for this operator. In the case at
hand the Lefschetz decomposition becomes the Hodge decomposition of
a non-commutative space.

1.39

Consider T 2
θ the non-commutative torus. A result of Marc Rieffel [12]

states that T 2
θ is Morita equivalent to T 2

θ′ if and only if

θ′ =
aθ + b

cθ + d
,

(
a b
c d

)
∈ SL2(Z).

If you consider in this case

HPeven(T 2
θ ) = H0 ⊕H2 ←− K0(T 2

θ )

you can see that K0(T 2
θ ) contains the semigroup of bona fide projective

modules, producing a half-plane in the lattice bounded by a line of slope
θ/(2π), which from our point of view can be identified with the Hodge
filtration F 1. This helps to clarify the meaning of Rieffel’s theorem.
In this example we get an interesting filtration only for HP even, and
nothing for HP odd.

2Lefschetz influence in mathematics is clearly so large that is would be hard to
give a talk in his honor without having the opportunity to mention his name at many
points.
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1.40

Consider an elliptic curve:

E = C/ (Z+ τZ) , =(τ) > 0.

Here
HPeven(E) = H0(T 2)⊕H2(T 2),

HPodd(E) = H1(T 2,C) ⊃ H1,0(E) {terms in the Hodge filtration}.
This becomes in terms of generators

C⊗ (Ze0 ⊕ Ze1) ⊃ C · (e0 + τe1).

While in the corresponding situation for T 2
θ the filtration can be written

as

C⊗ (Zẽ0 + Zẽ1) ⊃ C · (ẽ0 +
θ

2π
ẽ1).

All this confirms a general belief that non-commutative tori are limits
of elliptic curves as τ → R. Also E can be seen as a quotient of a
1-dimensional complex torus C×, while T 2

θ plays the role of a real circle
modulo a θ-rotation.

1.41

I shall finish this lecture with one final puzzle. Namely, in the previous
example the Hodge filtrations do not fit. In the elliptic curve the inter-
esting Hodge structure detects parameters in odd cohomology while in
the non-commutative torus the Hodge filtration detects parameters in
even cohomology.

A reasonable guess for the solution of this puzzle is that one should
tensor by a simple super-algebra (discovered by Kapustin in the Landau-
Ginzburg model) given by

A = C[ξ]/(ξ2 = 1)

with ξ odd. Here
HP•(A) = C0|1.

The question is: How does this super-algebra naturally arise from the
limiting process τ → R sending an elliptic curve to a foliation?
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2 Lecture 2. September 9th, 2005.

2.1 Basic Derived Algebraic Geometry.

This field started by A. Bondal and M. Kapranov in Moscow around
1990. Derived algebraic geometry is much simpler than algebraic ge-
ometry. While algebraic geometry starts with commutative rings and
builds up spectra via the Zariski topology and the theory of sheaves, in
derived algebraic geometry there is no room for many of these concepts
and the whole theory becomes simpler.

2.2

Let us start by commenting on the algebraization of the notion of space.
If we begin with a (topological) space X, first one can produce an algebra
A = O(X), its algebra of functions. Next we assign an abelian category
to this algebra, the abelian category A−mod of A-modules.

At every stage we insist in thinking of the space as the remain-
ing object: The category A−mod is the space. The abelian category
A−mod has a nice subfamily, that of vector bundles, namely finitely
generated projective modules. Recall that projective modules are im-
ages of (n× n)-matrices π : An → An satisfying π2 = π.

The final step consists in producing from the category A−mod a
triangulated category D(A−mod) that goes by the name of the derived
category.

X 7→ O(X) = A 7→ A−mod 7→ D(A−mod).

2.3

While the abelian category A−mod is nice we are still forced to keep
track of whether a functor is left-exact or right-exact, etc. This is greatly
simplified in the derived category D(A−mod).

The derived category D(A−mod) is built upon infinite Z-graded
complexes of free A-modules and considering homotopies.

2.4

We take one step further and consider the subcategory

CX ⊂ D(A−mod)
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of perfect complexes. A perfect complex is a finite length complex of
finitely generated projective A-modules (vector bundles). All of the
above can be generalized to dg algebras.

2.5

We are ready to make important definitions:

Definition 2.5.1. Let k be a field. A k-linear space X is a small
triangulated category CX that is Karoubi closed (namely all projectors
split), enriched by complexes of k-vector spaces. In particular for any
two objects E and F we are given a complex Hom•

CX
(E ,F) such that

HomCX
(E ,F) = H0(Hom•

CX
(E ,F)).

Definition 2.5.2. A k-linear space X is algebraic if CX has a generator
(with respect to taking cones and direct summands).

2.6

The following holds:

Proposition 2.6.1. The category CX has a generator if and only if
there exists a dga A over k such that

CX ∼= Perfect(A−mod).

This proposition allows us to forget about categories and consider
simply dga-s (modulo a reasonable definition of derived Morita equiva-
lence).

2.7

There is a nice relation with the notion of scheme:

Theorem 2.7.1 (Bondal, Van den Bergh [2]). Let X be a scheme
of finite type over k, then CX has a generator.

The moral of the story in derived algebraic geometry is that all
spaces are affine.
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2.8

The following example is due to Beilinson [1]. Consider X = CPn.
Then

Db(Coherent(X)) = Perfect(X) = Perfect(A−mod),

where A = End(O(0)⊕· · ·⊕O(n)). A finite complex of finite-dimensional
representations of A is the same as a finite complex of vector bundles
over X = CPn.

2.9

We make a few more definitions.

Definition 2.9.1. An algebraic k-linear space X is compact if for every
pair of objects E and F in CX we have that

∑

i∈Z
rank Hom(E ,F [i]) <∞.

In the language of the dga (A, dA) this is equivalent to:
∑

i∈Z
rank H i(A, dA) <∞.

Definition 2.9.2. We say that an algebraic k-linear space X is smooth
if

A ∈ Perfect(A⊗Aop −mod).

Definition 2.9.3. (a version of Bondal-Kapranov’s) X is saturated if
it is smooth and compact.

This is a good replacement for the notion of smooth projective va-
riety.

2.10

The following concerns the moduli of saturated spaces:

Proposition 2.10.1 (Finiteness Property). The moduli space of all
saturated k-linear spaces X modulo isomorphisms can be written as a
countable disjoint union of schemes of finite type:

∐

i∈I

Si/ ∼

modulo an algebraic equivalence relation.
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2.11 Operations with saturated spaces.

We have several basic operations inherited from the operations on alge-
bras:

(i) Given a space X we can produce its opposite space Xop by sending
the algebra A to its opposite Aop.

(ii) Given two spaces X and Y we can define their tensor product
X ⊗ Y by multiplication of their corresponding dga’s AX ⊗AY .

(iii) Given X, Y we define the category Map(X, Y ) := Aop
X ⊗AY−mod.

(iv) There is a nice notion of gluing which is absent in algebraic ge-
ometry. Given f : X → Y (namely a AY − AX -bimodule Mf )
construct a new algebra AX∪f Y by considering upper triangular
matrices of the form (

ax mf

0 ay

)
,

with ax ∈ AX , ay ∈ AY and mf ∈Mf .

Beilinson’s theorem can be interpreted as stating that CPn is ob-
tained by gluing n + 1 points. This does not sound very geometric at
first. An interesting outcome is that we get an unexpected action of the
braid group in such decompositions of CPn.

Notice that the cohomology of the gluing is the direct sum of the
cohomologies of the building blocks.

2.12 Duality theory

The story is again exceedingly simple for saturated spaces. There is a
canonical Serre functor

SX ∈ Map(X, X)

satisfying
Hom(E ,F)∗ = Hom(F , SX(E))∗

In terms of the dga AX we have that

S−1
X = RHomA⊗Aop(A,A⊗Aop).

In the commutative case this reads

SX = KX [dimX]⊗ · ,
where KX = Ωdim X .
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2.13

It seems to be the case that there is a basic family of objects from which
(almost) everything can be glued up: Calabi-Yau spaces.

Definition 2.13.1. A Calabi-Yau saturated space of dimension N is a
saturated space X where the Serre functor SX is the shifting functor
[N ].

There are reflections of various concepts in commutative algebraic
geometry such as positivity and negativity of curvature in the context of
separated spaces. Here we should warn the reader that sometimes it is
impossible to reconstruct the commutative manifold from its saturated
space: several manifolds produce the same saturated space. Think for
example about the Fourier-Mukai transform.

2.14

We also have a Z/2-graded version of this theory. We require all com-
plexes and shift functors to be 2-periodic.

2.15 Examples of saturated spaces.

• Smooth proper schemes. They form a natural family of saturated
spaces.

• Deligne-Mumford stacks that look locally like a scheme X with
a finite group Γ acting X. By considering (locally) the algebra
A = O(X) o k[Γ] we can see immediately that they also furnish
examples of saturated spaces.

• Quantum projective varieties. Suppose we start by considering an
ample line bundle L over a smooth projective variety X. Say we
have αX a bi-vector field defined over L−0 the complement of the
zero section. We assume that αX is invariant under Gm = GL1.
Deformation quantization implies that we obtain a saturated non-
commutative space over k((~)).

• Landau-Ginzburg models. This is a Z/2-graded example. Here
we are given a map

f : X −→ A1, f ∈ O(X), f 6≡ 0,
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where X is a smooth non-compact variety and A1 is the affine
line. The idea comes from the B-model in string theory. The
category C(X,f) consists of matrix factorizations. In the affine case
the objects are super-vector bundles E = Eeven ⊕ Eodd over X,
together with a differential dE such that

d2
E = f · Id.

In local coordinates we are looking for a pair of matrices (Aij) and
(Bij) so that

A ·B = f · Id.

We define Hom((E , dE), (Ẽ , dẼ)) to be the complex of Z/2-graded
spaces HomO(X)(E , Ẽ) with differential

d(φ) = φ · dE − dẼ · φ.

It is very easy to verify that d2 = 0.

The generalization of the definition of C(X,f) to the global case is
due to Orlov [11]. Consider Z = f−1(0) as a (possibly nilpotent)
subscheme of X. Then

C(X,f) := Db(Coherent(Z))/Perfect(Z).

We expect C(X,f) to be saturated if and only if X0 = Critical(f)∩
f−1(0) is compact. This is undoubtedly an important new class
of triangulated categories.

• A beautiful final example is obtained by starting with a C∞ com-
pact symplectic manifold (X, ω), with very large symplectic form
[ω]À 0 (This can be arranged by replacing ω by λω with λ big.)
The Fukaya category F(X, ω) is defined by taking as its objects
Lagrangian submanifolds and as its arrows holomorphic disks with
Lagrangian boundary conditions (but the precise definition is not
so simple.)

Paul Seidel [13] has proposed an argument showing that in many
circumstances F(X, ω) is saturated. This is a manifestation of
Mirror Symmetry that says that F(X, ω) is equivalent to C(X,ω)∨ ,
where (X, ω)∨ is the mirror dual to (X, ω). While originally mirror
symmetry was defined only in the Calabi-Yau case, now we expect
that the mirror dual to a general symplectic manifold will be dual
to a category of Landau-Ginzburg type. In any case in many
known examples the category is glued out of Calabi-Yau pieces.
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2.16

In derived algebraic geometry there are a bit more spaces but much more
identifications and symmetries than in ordinary algebraic geometry. For
instance, when X is Calabi-Yau then Aut(CX) is huge and certainly
much bigger than Aut(X). Another example: there are two different
K3 surfaces X, X ′ that have the same CX = CX′ , but in fact X and X ′

need not be diffeomorphic. Again think of the symmetries furnished by
the Fourier-Mukai transform.

2.17 Cohomology

Let us return to the subject of cohomology. First, let us make an im-
portant remark. If A is a saturated dga then its Hochschild homology
H•(A,A) := H•(C•(A,A)) is of finite rank, and the rank of the periodic
cyclic homology is bounded by

rankHP•(A) 6 rankH•(A,A).

In the case in which A is a commutative space we have HP•(A) ∼=
H•

deRham(X) and H•(A,A) ∼= H•
Hodge(X).

2.18

This motivates the following definition:

Definition 2.18.1. For a saturated space X over k the Hodge to de
Rham spectral sequence is said to collapse if

rank H•(A,A) = rank HP•(A).

This happens if and only if for all N > 1 we have that

H•(Cred
• (A,A)[u]/uN , ∂ + uB)

is a free flat k[u]/uN -module.

2.19 The Degeneration Conjecture:

For any saturated X the Hodge to de Rham spectral sequence collapses.3

This conjecture is true for commutative spaces, for quantum projec-
tive schemes and for Landau-Ginzburg models (X, f).

3See the very promising work of Kaledin that has appeared since, [7, 8].
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There are two types of proofs in the commutative case. The first uses
Kähler geometry and resolution of singularities. This method seems very
hard to generalize. The second method of proof uses finite characteris-
tic and Frobenius homomorphisms, this is known as the Deligne-Illusie
method and we expect it (after D. Kaledin) to work in general.

2.20

Let us assume this conjecture from now on. We have then a vector
bundle H over Spec k[[u]] and we will call Hu the fiber. The space
of sections of this bundle is HC−• (A). This bundle carries a canonical
connection ∇ with a first or second order pole at u = 0.

In the Z-graded case we have a Gm-action,

λ ∈ k×, u 7→ λ2u,

defining the connection. The monodromy of the connection is 1 on
HP even(A) and −1 on HP odd(A). In this case the connection has a first
order pole at u = 0 and the spectrum of the residue of the connection
is 1

2Z.
The Z/2-graded case is even nicer, for the connection can be written

in a universal way with an explicit but complicated formula containing
the sum of five terms (see [9]). There is a reason for this connection to
exist, and we explain it in two steps.

• Recall that if you have a family of algebras At over a parameter
space you get a flat connection on the bundle HP•(At) whose
formula tends to be very complicated.

• Consider the moduli stack of Z/2-graded spaces. We have an
action of Gm:

(A, dA) 7→ (A, λdA).

This corresponds in string theory to the renormalization group
flow. The fixed points of this action contain Z-graded spaces (but
there are also the elements of fractional charge, and the quasiho-
mogeneous singularities.) This corresponds to a scaling u 7→ λu
and therefore produces the desired connection. In this case we
have a second order pole at u = 0.
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2.21

The basic idea is that the connection ∇ replaces the Hodge filtration.
Notice that a vector space together with a Z-filtration is the same as

a vector bundle over k[[u]] together with a connection with first order
pole at u = 0 and with trivial monodromy. Of course, our connection is
more complicated but it is generalizing the notion of filtration.

2.22

We will use now the Chern character

ch : K0(X) −→ {covariantly constant sections of the bundle H}.

If in particular we consider the Chern class of idX ∈ CX×Xop we have
that ch(idX) is a covariantly constant pairing

Hu
∼=−→ H∗−u

that is non-degenerate at u = 0.

2.23

Let us now describe the construction of an algebraic model for a string
theory of type IIB.

Let X be a saturated algebraic space together with:

• A Calabi-Yau structure (this exists if the Serre functor is isomor-
phic to a shift functor)4 To be precise a Calabi-Yau structure is
a section Ωu ∈ HC−• (A) = Γ(H) such that as Ωu=0 is an element
in Hochschild homology of X, that in turn gives a functional on
H•(A, dA) making it into a Frobenius algebra, see [9].

• A trivialization of H compatible with the pairing

Hu ⊗H−u −→ k

and so the pairing becomes constant.

4In a sense a Calabi-Yau structure is more or less a choice of isomorphism between
Serre’s functor and a shift functor.
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If the main conjecture is true and the Hodge to de Rham degener-
ation holds then from such X we can construct a 2-dimensional coho-
mological quantum field theory. The state space of the theory will be
H0 = HH•(X). As a part of the structure one gets maps

H⊗n
0 −→ H•(Mg,n, k).

We will not describe the whole (purely algebraic) construction here,
but we shall just say that it provides solutions to holomorphic anomaly
equations.

It seems to be the case that when we apply this procedure to the
Fukaya category we recover the usual Gromov-Witten invariants for a
symplectic manifold. It is very interesting to point out that the passage
to stable curves is dictated by both, the degeneration of the spectral
sequence, and the trivialization of the bundle. This fact was my main
motivation for the Degeneration Conjecture.

In the Z-graded case a Calabi-Yau structure requires a volume ele-
ment Ω and a splitting of the non-commutative Hodge filtration com-
patible with the Poincaré pairing.

2.24

We can make an important definition.

Definition 2.24.1. A non-commutative Hodge Structure over C is a
holomorphic super vector bundle Han over D = {|u| 6 1, u ∈ C} with
connection ∇ outside of u = 0, with a second order pole and a regular
singularity5 together with a covariantly constant finitely generated Z/2-
graded abelian group Ktop

u for u 6= 0 such that Ktop
u ⊗ C = Han

u .

In the Z-graded case the pole has order one, and the lattice Ktop
u

comes from the topological K-theory.

2.25 The Non-commutative Hodge Conjecture.

Let X be a saturated space. Consider the map

Q⊗ Image(K0(CX) −→ Γ(Han(X)))

−→ Q⊗HomNC−Hodge−structures(1,Han(X)).
5By a regular singularity we mean that covariantly constant sections grow only

polynomially. Therefore under a meromorphic gauge transformation we end up with
a first order pole.
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The conjecture says that this map is an isomorphism.
One can introduce a notion of a polarized NC Hodge structure. The

existence of a polarization in addition to the Hodge conjecture imply
that the image of K0(CX) is

K0(CX)/numerical equivalence,

where numerical equivalence is the kernel of a pairing

〈, 〉 : K0 ⊗K0 −→ R,

given by
〈E ,F〉 = χ(RHom(E ,F)).

This pairing is neither symmetric nor anti-symmetric, so a priori it
could have left and right kernels, but the Serre functor ensures us that
they coincide.

2.26

We can now go on à la Grothendieck and define a category of non-
commutative pure motives. Consider X a saturated space over k. We
define now

Hom(X,Y ) = Q⊗K0(Map(X,Y ))/numerical equivalence.

Ordinarily one takes algebraic cycles of all possible dimensions on the
product of two varieties. In our situation we must be careful to add
direct summands. This should be equivalent to a category of represen-
tations of the projective limit of some reductive algebraic groups over
k. This non-commutative motivic Galois group responsible for such
representations is much larger than usual because of the Z/2-gradings.

2.27

We can also discuss mixed motives in this context. They are a replace-
ment of Voevodsky’s triangulated category of mixed motives. We start
again by considering saturated spaces X but now we want to define a
new Hom(X, Y ) space as the K-theory spectrum of Map(X, Y ) (an in-
finite loop space.) We can canonically form the triangulated envelope.
Notice that this construction contains ordinary mixed motives for usual
varieties modulo the tensoring by Z(1)[2].
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2.28 Crystalline cohomology and Euler functors.

Consider an algebra A flat over Zp (the p-adic integers) and saturated
over Zp. We expect a canonical Frobenius isomorphism

Frp : H•(Cred
• (A,A)((u)), ∂ + uB)

∼=−→ H•(Cred
• (A,A)((u)), ∂ + puB),

as Zp((u))-modules preserving connections. Such isomorphism does ex-
ist in the commutative case, given a smooth X over Zp we have

H•(X,ΩX ; d) ∼= H•(X, ΩX ; pd)

for p > dimX.
Using the holonomy of the connection ∇ ∂

∂u
we can go from u to pu

and get an operator Frp with coefficients in Qp.
We can state

2.29 The non-commutative Weil conjecture.

Let λα ∈ SpecFrp then

• λα ∈ Q ⊂ Qp.

• For all ` 6= p, then |λα|` = 1.

• |λα|C = 1.

2.30

For the Landau-Ginzburg model X = A1 and f = x2 we get that the
cohomology is 1-dimensional, λ ∈ Qp and

λ =
(

p− 1
2

)
! ( mod p),

λ4 = 1.

The period for the Hodge structure is
√

2π. There is a reasonable
hope for the existence of the Frobenius isomorphism (cf. the work of
D. Kaledin.)
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2.31

For every associative algebra A over Z/p there is a canonical linear map
H0(A,A) −→ H0(A,A) given by

a 7→ ap.

Recall that H0(A,A) = A/[A,A]. There are two things to verify, that
this map is well defined and that it is linear. (This is a very pleasant
exercise.) Moreover this map lifts to a map

H0(A,A) −→ HC−
0 (A).

There is an explicit formula for this lift. For p > 3 we have

a 7→ ap +
∑

n even, p−3>n>2P
iα=p

(coefficients)ai0 ⊗ · · · ⊗ ainu
n−1

2 +
(

p− 1
2

)
! a⊗pu

p−1
2 ,

where the last coefficient is non-zero.
The formula for p = 2 reads:

a 7→ a2 + 1⊗ a⊗ a · u.

2.32

One can calculate various simple examples and this seems to suggest
a potential mechanism for the degeneration of the Hodge-to-de Rham
spectral sequence in characteristic p > 0. The situation is radically
different for p = 0. This mechanism works as follows.

Let us consider polynomials in u:

H•(Cred
• (A,A)[u], ∂ + uB).

There is no obvious spectral sequence in this case. What we have is a
quasi-coherent sheaf over A1 with coordinate u.

In characteristic p = 0 we have that this sheaf vanishes when u 6= 0,
namely (Cred• (A,A)[u, u−1], ∂ + uB) is acyclic (this is an early obser-
vation by Connes). So we have everything concentrated in an infinite-
dimensional stalk at u = 0, in the form of an infinite Jordan block, plus
some finite Jordan blocks. It certainly looks like nothing resembling
a vector bundle, it is very singular. The degeneration we seek would
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mean that we have no finite Jordan blocks. The situation is unfortu-
nately quite involved.

In contrast, in finite characteristic p, it seems to be the case that the
cohomology of the complex (Cred• (A,A)[u], ∂+uB) is actually a coherent
sheaf, and it will look like a vector bundle if the desired spectral sequence
degeneration occurs. The following conjecture explains why we obtain
a vector bundle.

2.33 Conjecture.

Let A be a flat dga over Zp. Let A0 = A ⊗ Z/pZ over Z/pZ. Then
(Cred• (A0, A0)[u, u−1], ∂ + uB) is canonically quasi-isomorphic to

(Cred
• (A0, A0)[u, u−1], ∂)

as Z/p[u, u−1]-modules.
In this conjecture there is no finiteness condition at all.

2.34

The reason for this is as follows. The complex Cred• (A,A) admits an
obvious increasing filtration

Fil6n = A⊗ (A/1)⊗6n−1 + 1⊗ (A/1)⊗n.

Let V := A/1[1], on grn(Fil) we can write ∂ + B as:

V ⊗n

1−σ

22 V ⊗n

1+σ+···+σn−1

rr

where σ is the generator of Z/nZ (this would be acyclic in characteristic
0). On the other hand ∂ is simply:

V ⊗n 1−σ−→ V ⊗n.

For any free Z/pZ-module the above complex grn(Fil) with differential
∂ + B is acyclic if (n, p) = 1. At the same time if n = kp the complex
is canonically isomorphic to

V ⊗k 1−σ−→ V ⊗k.

The hope is that some finite calculation of this sort could allow us to
go deep into the spectral sequence and prove the desired degeneration.
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2.35

We finish by making some remarks regarding the Weil conjecture. Let
A be over Z. It would be reasonable to hope that we can define local
L-factors by

Lp(s) = det
(

1− Frp

ps

)−1

,

and we should get a sort of non-commutative L-function.
We define for a saturated space X an L-function:

L(X) =
∏

Lp(s).

This L(X) should satisfy

• The Riemann hypothesis. Namely its zeroes lie on <(s) = 1
2 .

• The Beilinson conjectures. They state that the vanishing order
and leading coefficients at s ∈ 1

2Z, s 6 1/2 are expressed via
K1−2s(X) that should in turn be finite dimensional.

2.36

This L-function differs from the traditional L-function defined as a prod-
uct over all points of a variety over finite fields Fq weighted by 1/qs. We
can imagine an L-function defined on a saturated space X as the sum
over objects of CX weighted in some way. We do not know the exact
form of these weights but we expect them to depend on certain stability
condition. Such sums appear in string theory as sums over D-branes
(for example in the calculation of the entropy of a black hole [14]). It is
reasonable to imagine that there is a big non-commutative L-function
one of whose limiting cases is arithmetic while the other is topological
string theory.
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