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Real options on consumption

in a small open monetary economy:

a stochastic optimal control approach

Francisco Venegas-Mart́ınez

Abstract
This paper is aimed to develop a stochastic model of a small

open monetary economy where risk-averse agents have expecta-
tions of the exchange-rate dynamics driven by a mixed diffusion-
jump process. The size of a possible exchange-rate depreciation
is supposed to have an extreme value distribution of the Fréchet
type. Under this framework, an analytical solution of the price
of the real option of waiting when consumption can be delayed
(a claim that is not traded) is derived. Finally, a Monte Carlo
simulation experiment is carried out to obtain numerical approx-
imations of the real option price.
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1 Introduction

Real options have been attracting an increasing attention in economic
theory and mathematical economy; see, for instance: Beck and Stock-
man (2005) studying money as a real option, Strobel (2005) examin-
ing monetary integration and inflation preferences through real options,
Henderson and Hobson (2002) analyzing real options with constant rel-
ative risk aversion, and Foote and Folta (2002) dealing with temporary
labor as a real option, among others. The main issue associated with
real options is how to value a non-traded contingent claim1.

1We refer the reader to the two classical books in real options: Dixit and Pindyck
(1994), and Schwartz and Trigeorgis (2001).
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In this paper, the underlying asset of the option is the price of money
in terms of goods, that is, the consumer’s adquisitive power, which is
a non-traded asset (there is no markets for trading purchasing power)
and, therefore, the option becomes also a non-traded claim. The real
option we will be valuing is the option to set off consumption when the
adquisitive power reaches a certain threshold in a future given date;
otherwise the individual will have to wait. Even though there is no
market for this contingent claims, its value provides an idea of how much
the individual is willing to pay for activating consumption. It should be
clear, for the reader, that this approximation for valuing derivatives is
different from the complete market approach, developed in the Black-
Scholes-Merton theory, in which the contingent claim can be replicated
by a portfolio that combines stock (available in a stock market) and
bonds (available in a credit market).

In this research, by generalizing Henderson and Hobson’s (2002)
paper, we value the real option of waiting when consumption can be
delayed in a small open monetary economy with a representative, com-
petitive, and risk-averse consumer. To reach this goal, Merton’s model
(1976) is extended by including an extreme value distribution for the
jump size of the underlying; an analytical solution for the price of
the derivative is obtained. It should be also emphasized that the pro-
posed valuing procedure differs from that in Venegas-Mart́ınez (2005),
which is based on Bayesian inference, by now using the von Neumann-
Morgenstern expected utility framework, which, of course, provides fur-
ther economic and financial intuition.

This paper develops a stochastic economy that explicitly recognizes
the role of extreme or exceptional movements in the dynamics of the
nominal exchange rate. It is assumed that the exchange-rate dynam-
ics follows a mixed diffusion-jump process where the size of an upward
jump is supposed to have an extreme value distribution of the Fréchet
type. In this case, the underlying non-traded asset is the price of money
in terms of goods. Using this stochastic setting and assuming identical
rational consumers with logarithmic preferences (risk-averse individu-
als), the price of such a real option is characterized as the solution of
a (partial) differential-integral equation with boundary conditions. In
fact, we provide an analytical solution of the value of such a real option.
Finally, several Monte Carlo simulation experiments are carried out to
get numerical approximations of the real option price.

Even though this work was, mainly, intended for mathematicians
(dealing with mathematical finance) and economists (dealing with math-
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ematical economy), it was not written in terms of definitions, theorems,
propositions, and remarks. I should say that when I started writing this
paper I did it in a prose style (there was not a specific reason then), and
when I finished I realized that the result was a good story. I apologize
and hope my colleagues enjoy this story as much as I did.

The paper is organized as follows. In the next section, we work
out a one-good, cash-in-advance, stochastic economy where agents have
expectations of the exchange-rate dynamics driven by a mixed diffusion-
jump process and the size of a possible exchange-rate depreciation is
supposed to have an extreme value distribution. Through section 3,
we undertake the consumer’s decision problem. In section 4, we deal
with valuing the real option of delaying consumption. In section 5, we
provide numerical approximations of the real option price. Finally, in
section 6, we present conclusions, acknowledge limitations, and make
suggestions for further research.

2 Structure of the model

Let us consider a small open monetary economy populated by infinitely
lived identical households in a world with a single consumption good
internationally tradable. The main assumptions on the economy resem-
ble those from Venegas-Mart́ınez (2001), (2006a) and (2006b), and they
will be described in what follows.

2.1 Purchasing power parity and exchange rate dynamics

We assume that the consumption good is freely traded, and its domestic
price level, Pt, is determined by the purchasing power parity condition,
namely, we assume that the good in the economy is freely traded and its
domestic price level, Pt, is determined by the purchasing power parity
condition, namely,

Pt = P ∗
t et, (1)

where P ∗
t is the foreign-currency price of the good in the rest of world,

and et is the nominal exchange rate. Throughout the paper, we will
assume, for convenience, that P ∗

t is equal to 1. We also suppose that
the initial value of the exchange-rate, e0, is known and equal to 1.

In what follows, we will suppose that the ongoing uncertainty in the
dynamics of the expected exchange rate, and therefore in the inflation
rate, is generated by a geometric Brownian motion combined with a
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Poisson process where the size of a forward jump is driven by extreme
value distributions of the Fréchet type, that is,

det

et
=

dPt

Pt
= µdt + σdWt + ZdNt (2)

where µ ∈ R, σ > 0, (Wt)t≥0 is a Brownian motion defined on a fixed
probability space (Ω,F , PW ), and dNt is a Poisson process with intensity
parameter λ. From now on, it will be supposed that Cov(dWt, dNt) =
0. Even though it is easy to incorporate downward jumps by adding
a second Poisson process in (2) multiplied by a Weibull distribution,
for the sake of simplicity we will keep the analysis only for upward
jumps (cf. Venegas-Mart́ınez (2006c)). Moreover, extreme downward
movements in the exchange rate or in inflation have never been observed,
this situation would be quite atypical. The size of an upward jumps is
defined by

Z =
1

1−X−α
− 1, X > 0, α > 0,

X =
Y − ν

κ
, κ, ν > 0,

where Y is a Fréchet random variable with parameters α, ν and κ > 0.
Clearly, the quantity Z remains positive. The cumulative distribution
function of Y is given by:

FY (y) =





0, y < ν,

exp

{
−

(
y − ν

κ

)−α
}

, y ≥ ν.
(3)

The corresponding density of Y satisfies:

fY (y) =
α

κ
FY (y) exp

(
y − ν

κ

)−α

(4)

On the other hand, since the number of expected upward jumps in the
exchange rate, per unit of time, follows a Poisson process dNt with
intensity λ, we have that

PN {one unit jump during dt} = PN {dNt = 1} = λdt

and

PN {more than one unit jump during dt} = PN {dNt > 1} = o(dt),

so that
PN {no jump during dt} = 1− λdt + o(dt),

where o(dt)/dt → 0 as dt → 0.
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2.2 A cash-in-advance constraint

Consider a cash-in-advance constraint of the Clower type:

ψmt = ct, (5)

where mt is the demand for real cash balances, ct is the demand for
consumption, and ψ−1 > 0 is the time that money must be held to in
order to finance consumption. The constant ψ applies uniformly at all
time t. Condition (5) is critical in linking the exchange-rate dynamics
with consumption. An economic interpretation of a cash-in-advance
constraint is that money is needed to buy consumption goods. Notice
that when ψ = 1 the agent is forced to maintain his demand for money
balances in the same proportion of demanded goods. Moreover, if we
state the following link between mt and cs:

mt =
∫ t+ψ−1

t
csds,

where ψ−1 > 0 is the time that money must be held to buy consumption
goods, then

mt =
∫ t+ψ−1

t
csds =

ct

ψ
+ o

(
1
ψ

)
.

If the error term o(1/ψ) is neglected, it follows that mtψ = ct, as in (5).

2.3 The return rates of non-traded and traded assets

Let St = 1/Pt the price of money in terms of goods, a non-traded asset,
and V = V (St, t) the price of a European call option on St; a non-
traded contingent claim. Suppose also that there is a real bond of price
bt that pays a constant real interest rate r (i.e., it pays r units of the
consumption good per unit of time). Thus, the consumer’s real wealth,
xt, is given by

xt = St + V (St, t) + bt, (6)

where x0 is exogenously determined. The stochastic rate of return of
St, dRS , is obtained by applying Itô’s lemma to the inverse of the price
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level, with (2) as the underlying process, that is,

d
(

1
Pt

)
=

[
−

(
1

P 2
t

)
µPt + 1

2

(
2

P 3
t

)
σ2P 2

t

]
dt−

(
1

P 2
t

)
σPtdWt

+
(−X−α + 1

Pt
− 1

Pt

)
dNt (7)

=
1
Pt

[(−µ + σ2
)
dt− σdWt −X−αdNt

]
.

Hence, the stochastic rate of return of St is given by

dRS =
(
σ2 − µ

)
dt− σdWt −X−αdNt. (8)

Observe now that the stochastic rate of return of St, dRS = dSt/St, can
be rewritten as2

dRS = φdt + σdWt + ξdNt, (9)

where φ = σ2 − µ and ξ = −X−α. If V = V (St, t) denotes the value of
the option, then Itô’s lemma leads to

dV =
(

∂V

∂t
+

∂V

∂St
φSt + 1

2

∂2V

∂S2
t

σ2S2
t

)
dt

+
∂V

∂St
σStdWt + [V (St(ξ + 1), t)− V (St, t)] dNt

or,
dV = φV V dt + σV V dWt + ξV V dNt, (10)

where

φV =
1
V

(
∂V

∂t
+

∂V

∂St
φSt + 1

2

∂2V

∂S2
t

σ2S2
t

)
,

σV =
1
V

∂V

∂St
σSt

and

ξV =
1
V

[V (St(ξ + 1), t)− V (St, t)] .

2Another approach for the dynamics of the underlying asset can be found in
Venegas-Mart́ınez (2005).
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3 The household’s decision problem

The consumer’s real wealth stochastic accumulation in terms of the
portfolio shares, w1t = St/xt, w2t = V/xt, 1 − w1t − w2t = bt/xt, and
consumption, ct, is given by

dxt = xtw1tdRS + xtw2tdRV + xt(1− w1t − w2t)rdt− ctdt,

with x0 exogenously determined. In this equation, dRV ≡ dV/V . Thus,
by substituting (9) and (10) in the above expression, the budget con-
straint can be rewritten as

dxt = xt

[
(r + (γ − r)w1t + (φV − r)w2t)dt + (w1tσ + w2tσV )dWt

+ (w1tξ + w2tξV )dNt

]
, (11)

where γ = σ2 − µ− ψ = φ− ψ.

3.1 The utility index

The von Neumann-Morgenstern utility at time t = 0, v0, of the compet-
itive risk-averse consumer is assumed to have the time-separable form:

v0 = E0

[∫ ∞

0
log(ct) e−rtdt

]
, (12)

where E0 is the conditional expectation on all available information at
t = 0. To avoid unnecessary complex dynamics in consumption, we
assume that the agent’s subjective discount rate is consistent with the
constant real international rate of interest, r. We consider the logarith-
mic utility function in order to derive closed-form solutions and make
the subsequent analysis more tractable.

3.2 The first order conditions

The Hamilton-Jacobi-Bellman equation for the stochastic optimal con-
trol problem of maximizing utility, with log(ct) = log(ψxtw1t) and sub-
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ject to (11), is given by

max
w1t,w2t

H(wt; xt, t) ≡ max
w1t,w2t

{
log(ψxtw1t)e−rt

+ Ix(xt, t)xt[r + (γ − r)w1t + (φV − r)w2t]

+ It(xt, t) + 1
2Ixx(xt, t)x2

t (w1tσ + w2tσV )2

+ λEξ

[
I
(
xt(w1tξ + w2tξV + 1), t

)
− I(xt, t)

]}
= 0.

(13)

The first-order conditions for w1t and w2t are, respectively,

Hw1t = 0 and Hw2t = 0.

We postulate I(xt, t) in a time-separable form as

I(xt, t) = e−rt[β1 log(xt) + β0],

where β0 and β1 are to be determined from (13). By substituting the
above candidate in (13), we obtain

max
w1t,w2t

H(w1t, w2t;xt, t) ≡ max
w1t,w2t

{
log(ψxtw1t)

+ β1[r + (γ − r)w1t + (φV − r)w2t]
− r[β1 log(xt) + β0]

− 1
2β1(w1tσ + w2tσV )2

+ λβ1Eξ [log(w1tξ + w2tξV + 1)]

}
= 0.

If we now compute the first-order conditions, we find that the optimal
values of w1t and w2t satisfy:

1
β1w1t

+ Eξ

[
λξ

w1tξ + w2tξV + 1

]
+ γ − r = (w1tσ + w2tσV )σ

and

Eξ

[
λξV

w1tξ + w2tξV + 1

]
+ φV − r = (w1tσ + w2tσV )σV .

So far we have not made any assumption on the parameter values. From
now on, without loss of generality, we assume that γ = φ − r, that is,
r = ψ.
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4 Pricing the real option of waiting when con-
sumption can be delayed

If we suppose a corner solution, w1t = 1 and w2t = 0, then

1
β1

+ λEξ

[
ξ

ξ + 1

]
+ γ − r = σ2 (14)

and

λEξ

[
ξV

ξ + 1

]
+ φV − r = σσV . (15)

In this case, it can be shown that β1 = r−1. After some simple compu-
tations, we have that equations (14) and (15) collapse in

φ = r + σ2 − λEξ

[
ξ

ξ + 1

]
, (16)

and

λEξ

[
ξV

ξ + 1

]
+ φV − r = σσV . (17)

From (17), it follows

λEξ

[
V (St(ξ + 1), t)− V (St, t)

ξ + 1

]

+
(

∂V

∂t
+

∂V

∂St
φSt + 1

2

∂2V

∂S2
t

σ2S2
t

)
− rV =

∂V

∂St
σ2St.

If we now substitute (16) in the above equation, we get

λEξ


V (St(ξ + 1), t)− V (St, t)− ξSt

∂V
∂St

ξ + 1




+
∂V

∂t
+

∂V

∂St
rSt + 1

2

∂2V

∂S2
t

σ2S2
t − rV = 0. (18)

We impose the boundary conditions V (0, t) = 0 and V (St, T ) = max(St−
K, 0) where K is the exercise price of the real option (the cost, in terms
of goods, of delaying consumption until the “last minute” = T ). In such
a case, without loss of generality, we may consider a finite planning hori-
zon [0, T ] in the expected utility expressed in (12). Notice that if fξ(·)
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is the density function of ξ, then the presence of the expected value in
the above equation given by

Eξ

[
V (St(1 + ξ), t)− λV (St, t)

ξ + 1

]

=
∫ ∞

−∞

V (St(1 + ξ), t)− λV (St, t)
ξ + 1

fξ(ξ)dξ

produces in (18) a (partial) differential-integral equation. Notice that if
ξ is constant in (18), by redefining λ as λ/(ξ + 1), we obtain Merton’s
(1976) formula. Finally, observe that when ξ = 0 or λ = 0, equation
(18) reduces to the Black-Scholes’ (1973) second order parabolic partial
differential equation. Observe now that if we introduce the following
change of variable:

ζ =
(

y − ν

κ

)−α

,

then one of the expectations terms in (18) satisfies

E
[

ξ

ξ + 1

]
= E

[
X−α

X−α − 1

]

=
∫ ∞

0

[(y − ν)/κ]−α

[(y − ν)/κ]−α − 1
fY (y)dy

=
∫ ∞

0

ζ

ζ − 1
e−ζdζ

= −eΓ(−1, 1),

where Γ(−1, 1) = −Γ(0, 1) + e−1, Γ(0, 0) = ∞, Γ(0,∞) = 0, and
Γ(0, 1) ≈ 2/9 (in fact, Γ(0, 1) = 0.219383934...). Here, Γ(a, b) denotes
the incomplete Gamma function. In such a case, equation (18) can be
transformed into

λEξ

[
V (St(1 + ξ), t)− V (St, t)

ξ + 1

]
+

∂V

∂t

+ 1
2σ2S2

t

∂2V

∂S2
t

+
[
r + λ(2

9e− 1)
]
St

∂V

∂St
− rV = 0.

A possibility to determine V (St, t) consists in defining a sequence of
random variables Yn, each defined as the product of n independent
and identically distributed random variables ξ + 1, with Y0 = 1. In
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other words, if {ξn}n∈N is a sequence of independent and identically
distributed random variables. We define

Y0 = 1
Y1 = ξ1 + 1
Y2 = (ξ1 + 1)(ξ2 + 1)

...

Yn =
n∏

k=1

(ξk + 1)

...

In this case, the solution of equation (18) with the boundary conditions

V (0, t) = 0, and V (St, T ) = max(St −K, 0),

is given by

V (St, t) =
∞∑

n=0

EξEYn

[
e−λ(T−t)/(ξ+1)[λ(T − t)/(ξ + 1)]n

n!

× VBS(StYne−λEξ[ξ/(ξ+1)](T−t), t)

]
, (19)

where ξ is independent of {ξn}n∈N and V BS(·, ·) is the basic Black-
Scholes solution. Indeed, consider

V (St, t) =
∞∑

n=0

EξEYn
[Pn,t V (n)

BS
], (20)

where

Pn,t =
e−λ(T−t)/(ξ+1)[λ(T − t)/(ξ + 1)]n

n!
,

Un,t = Yne−λEξ[ξ/(ξ+1)](T−t)

and
V (n)

BS
= V BS(StUn,t, t).

In what follows, it will convenient to introduce the notation

Qn,t = StUn,t.
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In such a case,

∂V

∂St
=

∞∑

n=0

EξEYn

[
Pn,t Un,t

∂V (n)
BS

∂Qn,t

]
, (21)

∂2V

∂S2
t

=
∞∑

n=0

EξEYn

[
Pn,t U2

n,t

∂2V (n)
BS

∂Q2
n,t

]
(22)

and

∂V

∂t
=λEξ[ξ/(ξ + 1)]

∞∑

n=0

EξEYn

[
Pn,t Qn,t

∂V (n)
BS

∂Qn,t

]

+
∞∑

n=0

EξEYn

[
Pn,t

∂V (n)
BS

∂t

]

+ λ
∞∑

n=0

EξEYn

[
Pn,t V (n)

BS

ξ + 1

]

− λ
∞∑

n=1

EξEYn




e
−λ(T−t)

ξ+1

[
λ(T − t)

ξ + 1

]n−1

(n− 1)!

(
V (n)

BS

ξ + 1

)

 . (23)

Hence, by virtue of (22) and (23), we get

∂V

∂t
=λEξ[ξ/(ξ + 1)]St

∂V

∂St

+
∞∑

n=0

EξEYn

[
Pn,t

∂V (n)
BS

∂t

]
+ λEξ

[
V (St, t)
ξ + 1

]

− λ
∞∑

m=0

EξEYm+1




e
−λ(T−t)

ξ+1

[
λ(T − t)

ξ + 1

]m

m!

(
V (m+1)

BS

ξ + 1

)

 . (24)

Observe that the last term in the above equation can be written as

Eξ

[
V ((ξ + 1)St, t)

ξ + 1

]
=

∞∑

n=0

EξEYn

[
Pn,t

V (n)
BS

(Qn,t(1 + ξ), t)
ξ + 1

]

=
∞∑

n=0

EξEYn+1

[
Pn,t

V (n+1)
BS

(Qn+1,t, t)
ξ + 1

]
(25)
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since Qn+1,t y Qn,t(ξ + 1) are independent and identically distributed
random variables. Therefore, equation (24) is transformed into

∂V

∂t
=

∞∑

n=0

EξEYn

[
Pn,t

∂V (n)
BS

∂t

]

− λEξ


V (St(ξ + 1), t)− V (St, t)− ξSt

∂V
∂St

ξ + 1


 . (26)

From (21), (22) and (26), it follows that

∂V

∂t
+ 1

2σ2S2
t

∂2V

∂S2
t

+ rSt
∂V

∂St
− rV

=
∞∑

n=0

Pn,tEξEYn

[
∂V (n)

BS

∂t
+ 1

2σ2Q2
n,t

∂2V (n)
BS

∂Q2
n,t

+ rQn,t
∂V (n)

BS

∂Qn,t
− rV (n)

BS

]

− λEξ


V (St(ξ + 1), t)− V (St, t)− ξSt

∂V
∂St

ξ + 1


 . (27)

Since
∂V (n)

BS

∂t
+ 1

2σ2Q2
n,t

∂2V (n)
BS

∂Q2
n,t

+ rQn,t
∂V (n)

BS

∂Qn,t
− rV (n)

BS
= 0

holds for all n ∈ N ∪ {0}, we deduce, immediately, that (19) is solution
of (18).

5 Numerical approximations

In order to obtain numerical approximations of (19), the quantity inside
the mathematical expectations in (19)

M
ξ,Yn

=
1000∑

n=0

e−λ(T−t)/(ξ+1)[λ(T − t)/(ξ + 1)]n

n!
V (n)

BS
(28)

is simulated by using the statistical software “Xtremes” (Reiss and
Thomas, 2001) and Ripley’s methodology (1987) for Monte Carlo sim-
ulations. Subsequently, we compute the average of 10,000 simulated
values of M

ξ,Yn
to obtain, for different values of λ, approximate solu-

tions of the real option of waiting when consumption can be delayed. To
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do this, let us first consider the following parameter values, in Table 1,
for computing the basic Black-Scholes price V (0)

BS
. In Table 1, St stands

for the price of money in terms of goods, K is the cost (in terms of
goods) of delaying consumption until the last minute, r is the nominal
interest rate, and T − t is the term. Units of St and K are given in
money in terms of consumption goods.

Parameters for Black-Scholes price of the real option
St K r σ T − t V (0)

BS

42.00 41.00 0.11 0.13 0.25 2.436

Table 1: Parameter values of the benchmark Black-Scholes price.

Table 2 shows numerical approximation of the price of the real option
by using Monte Carlo simulation for different values of λ with Eξ[ξ/(ξ+
1)] = −eΓ(−1, 1). It is assumed, for simulation purposes, that ξ follows
a Fréchet distribution with mean 0.01 and variance 0.001.

Real option price
Eξ[ξ/(ξ + 1)] = −eΓ(−1, 1)

λ 0.1 0.2 0.3 0.4 0.5
V (St, t) 2.646 2.673 2.698 2.726 2.742

(Cont.)
λ 0.6 0.7 0.8 0.9 1.0

V (St, t) 2.845 2.865 2.898 3.012 3.081

Table 2: Simulated prices of the real option.

It is important to point out that option prices in Table 2 depend of
the choices of the mean and variance of the random variable ξ. We may
conclude, from Table 2 and the chosen mean and variance, that the
price of the real option of waiting when consumption can be delayed
increases when the average number of jumps per unit of time increases
since a growing λ rises the future opportunity cost of purchasing goods.

6 Conclusions

We have developed a stochastic model of a small open monetary econ-
omy in which agents have expectations of the exchange-rate dynam-
ics guided by a mixed diffusion-jump process. The size of a possible
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exchange-rate depreciation is supposed to have an extreme value dis-
tribution of the Fréchet type. By using a logarithmic utility, we have
derived an analytical solution for valuing the real option of waiting when
consumption can be delayed; a claim that is not traded. The provided
explicit solutions have made much easier the understanding of the key is-
sues of extreme jumps in valuing contingent claims in a cash-in-advance
economy. Finally, a Monte Carlo simulation was carried out to obtain
approximate solutions of the real option price.

It is worthwhile mentioning that the derived results do not depend
on the assumption of logarithmic utility, which is a limit case of the
family of constant relative risk aversion utility functions. Needles to
say, both nontradable and durable goods will provide more realistic
assumptions and should be considered in extending, in further research,
the real option of waiting when consumption can be delayed.
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