
Morfismos, Vol. 11, No. 1, 2007, pp. 15–36

Average optimality for semi-Markov

control processes ∗

Anna Jaśkiewicz Andrzej S. Nowak

Abstract

This paper is a survey of some recent results on the average cost
optimality equation for semi-Markov control processes. We as-
sume that the embedded Markov chain is V -geometric ergodic
and show that there exist a solution to the average cost optimal-
ity equation as well as an (ε-)optimal stationary policy. Moreover,
we also prove the equivalence of two optimality cost criteria: ratio-
average and time-average, in the sense that they lead to the same
optimal costs and (ε-)optimal stationary policies.
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1 Introduction

In this paper we deal with the ratio-average and time-average cost opti-
mality criteria for semi-Markov control processes on a Borel space. First,
we only assume that the one-step cost function is lower semianalytic,
and the transition probability function satisfies certain ergodicity condi-
tions. For such a model, a lower semianalytic solution to the optimality
equation and a universally measurable ε-optimal stationary policy are
shown to exist with respect to the ratio-average cost criterion. Next we
indicate that additional regularity assumptions (either (B1) or (B2))
allow us to obtain either a Borel measurable or continuous solution to
the optimality equation. Moreover, we show that in these cases there
exists a Borel measurable optimal stationary policy.
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In order to establish the optimality equation we apply a fixed point
theorem. The idea of using this method for semi-Markov control pro-
cesses satisfying general ergodicity assumptions belongs to Vega-Amaya
[26]. He solved the optimality equation in the case when regularity
assumptions (B1) are satisfied. Then, his concept was applied by
Jaśkiewicz [11] to semi-Markov models with lower semicontinuous cost
functions and weakly continuous transition laws (assumptions (B2)).
However, one can imagine examples of (semi-)Markov control processes
with weakly continuous transition probabilities and one-step payoff func-
tions, which are not neccessarily lower semicontinuous [12]. Moreover,
there are examples of such models that meet neither conditions (B1)
nor (B2). Nevertheless, the optimality equation can be still derived us-
ing a fixed point argument. This fact, in turn, allows us to consider the
time-average cost criterion within such a general framework. Starting
with the optimality equation we are able to obtain (ε-)optimal station-
ary policies and optimal costs with respect to the time-average cost
criterion.

The paper is organized as follows. First we recall certain terminology
and facts concerning lower semianalytic functions and Borel as well
as universally measurable selectors. Then we present the model and
introduce our assumptions. In Section 4 we discuss a solution to the
average cost optimality equation, whilst Section 5 is devoted to a study
of the time-average cost criterion. We end this section with an example
illustrating that the average cost optimality criteria may lead to different
optimal policies and optimal costs.

2 Preliminaries

At the beginning we give the definitions of Borel, analytic and univer-
sally measurable sets and functions. For further and more complete
terminology the reader is referred to [1].

Definition 1. We call X a Borel space, if X is a non-empty Borel
subset of some Polish space, i.e., complete separable metric space, and
it is endowed with σ-algebra B(X) of all its Borel subsets.

Let NN be the set of sequences of positive integers, equipped with
the product topology. So NN is a Polish space. Let A be a separable
metric space.

Definition 2. A is called an analytic set or analytic space provided
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there is a continuous function g on NN whose range g(NN ) is A.

There are other equivalent definitions of analytic sets in a Borel
space X. One posiibility is to define them as the projection on X of the
Borel subsets of X × Y, where Y is some uncountable Borel space.

Now let E be an analytic subset of an analytic space X and let p be
any probability measure on the Borel subsets of X.

Definition 3. E is universally measurable, if E is in the completion of
the Borel σ-algebra with respect to every probability measure p.

From now on let X and Y be Borel spaces. Let A(X) be the ana-
lytic σ-algebra and U(X) be the σ-algebra of all universally measurable
subsets of X.

Definition 4. We say that a function f : X 7→ Y is analytically
measurable [universally measurable] if f−1(B) ∈ A(X) [f−1(B) ∈ U(X)]
for every B ∈ B(Y ).

We have B(X) ⊂ A(X) ⊂ U(X). Hence, every Borel measurable
function is analytically measurable, and every analytically measurable
function is universally measurable.

Definition 5. Let B ⊂ X and f : B 7→ R. If B is analytic and the set
{x ∈ B : f(x) < c} is analytic for each c ∈ R, then f is said to be lower
semianalytic (l.s.a.).

Now we are in a position to recall some basic results on l.s.a. func-
tions and universally measurable selectors.

Lemma A. (Proposition 7.48 in [1]) Let f : X × Y 7→ R be l.s.a., and
q(dy|x) a Borel measurable stochastic kernel on Y given X. Then, the
function f̄ : X 7→ R defined by

f̄(x) =
∫

Y
f(x, y)q(dy|x)

is l.s.a.

Lemma B. (Jankov-von Neumann theorem) If K ⊂ X ×Y is analytic,
then there exists an analytically measurable function φ : projX(K) 7→ Y
such that

Gr(φ) := {(x, y) : y = φ(x), x ∈ projX(K)} ⊂ K.

For the proof the reader is referred to [1], p. 182. This lemma brings
us to the following selection theorem for l.s.a. functions.
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Lemma C. Let K ⊂ X×Y be analytic and f : K 7→ R be l.s.a. Define
f∗ : projX(K) 7→ R by

f∗(x) = inf
y∈Y (x)

f(x, y),

with Y (x) := {y ∈ Y : (x, y) ∈ K}. Then, the following holds
(a)f∗ is l.s.a. function,
(b) the set

I = {x ∈ projX(K)|for some yx ∈ Y (x), f(x, yx) = f∗(x)}

is universally measurable, and for every ε > 0 there exists a universally
measurable function φ : projX(K) 7→ Y such that Gr(φ) ⊂ K and for
all x ∈ projX(K)

f(x, φ(x)) = f∗(x), if x ∈ I, and f(x, φ(x)) ≤ f∗(x) + ε, if x 6∈ I.

Part (a) follows from the proof of Proposition 7.47 in [1], whilst part
(b) is a consequence of Proposition 7.50 in [1].

Definition 6. Let K be a Borel set and projX(K) = X. It is said
that K admits a graph (Borel measurable selection or uniformization),
if there exists a Borel measurable function φ : X 7→ Y such that

φ(x) ∈ Y (x).

It is worth mentioning that a Borel set K need not have a graph
[2]. However, it is well-known that if Y (x) is σ-compact for each x ∈ X,
then K contains a graph [3].

3 The model

A semi-Markov control process is described by the following objects:
(i) The state space X is a standard Borel space.
(ii) A is a Borel action space.
(iii) K is a non-empty analytic subset of X × A. We assume that

for each x ∈ X, the non-empty x-section

A(x) = {a ∈ A : (x, a) ∈ K}

of K represents the set of actions available in state x.
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(iv) Q(·|x, a) is a regular transition measure from X×A into R+×X,
where R+ = [0,∞). It is assumed that Q(D|x, a) is a Borel function on
X ×A for any Borel subset D ⊂ R+ ×X and Q(·|x, a) is a probability
measure on R+ ×X for any x ∈ X, a ∈ A(x). Denote

Q(t, X̂|x, a) := Q([0, t]× X̂|x, a)

for any Borel set X̂ ⊂ X. If a ∈ A(x) is selected in state x, then
Q(t, X̂|x, a) is the joint probability that the sojourn time is not greater
than t ∈ R+ and the next state y ∈ X̂. By H(·|x, a) denote a distribution
of the sojourn time when the process is in state x and action a ∈ A(x)
is selected, that is, H(t|x, a) = Q(t,X|x, a). Let τ(x, a) be the mean
holding time, i.e.,

τ(x, a) =
∫ ∞

0
tH(dt|x, a).

Put q(·|x, a) := Q(R+, ·|x, a). Then, q is called the transition law of the
embedded Markov process. Moreover, the distribution of the sojourn
time and the next state are independent conditional on (x, a), i.e.,

Q(t, X̂|x, a) = q(X̂|x, a)H(t|x, a).

(v) Let ci : K 7→ R, i = 1, 2. Then, the expected one-step cost
function c : K 7→ R equals

c(x, a) = c1(x, a) + τ(x, a)c2(x, a).

Here c1 is an immediate cost paid by the decision maker at the transition
time and the cost c2 is incurred until the next transition occurs.

Put T0 := 0. Let {Tn} denote a sequence of random decision (jump)
epochs. If the initial state is x = x0 and the action a0 ∈ A(x) is selected,
then the immediate cost c1(x, a0) is incurred for the decision maker and
the process remains in state x up to the time T = T1 − T0 = T1. The
cost c2(x, a0) per unit time is incurred until the next transition occurs.
Afterwards the system jumps to the state x1 according to the proba-
bility measure q(·|x, a0). The decision maker chooses again an action
a1 ∈ A(x1) and the process remains in state x1 for a random time
T2 − T1. The cost c1(x1, a1) + (T2 − T1)c2(x1, a1) is incurred and a new
state x2 is generated according to the distribution q(·|x1, a1). This situ-
ation repeats itself yielding a trajectory (x0, a0, t1, x1, a1, t2, . . .) of some
stochastic process, where xn and an describe the state and the chosen
action, respectively, on the nth stage of the process. Obviously, tn is a
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realization of the random variable Tn, and a distribution function of the
random holding time Tn+1 − Tn is H(·|xn, an).

A policy is a sequence π = {πn} where πn (n ≥ 0) is a universally
measurable stochastic kernel on A given (X ×A×R+)n ×X satisfying
πn(A(xn)|hn) = 1 for any history hn = (x0, a0, t1, . . . , xn) of the process
(Clearly, h0 = x0.) By Π0 we denote the class of all policies. Let F 0

be the set of all universally measurable transition probabilities f from
X to A such that f(x) ∈ A(x) for each x ∈ X. A stationary policy π
is of the form π = {f, f, . . .}, where f ∈ F 0. Thus, every stationary
policy π = {f, f, . . .} can be identified with the mapping f ∈ F 0. Since
K is analytic, the Jankov-von Neumann theorem guarantees that there
exists at least one f ∈ F 0. Therefore, F 0 and Π0 are non-empty.

Let Ω = (K × R+)∞ be the space of all infinite histories of the
process endowed with U (σ-algebra of universally measurable sets in
Ω). According to Proposition 7.45 in [1], for any π ∈ Π and an initial
state x0 = x ∈ X there exists a unique probability measure P π

x defined
on Ω. By Eπ

x we denote the expectation operator with respect to P π
x .

Let π ∈ Π0, x ∈ X and t ≥ 0 be fixed. Put

N(t) := max{n ≥ 0 : Tn ≤ t}

as the counting process. By our assumptions, which are presented below,
P π

x (N(t) < ∞) = 1 (see Remark 2 in [10]).
We shall consider the two average expected costs: - the ratio-average

cost

J(x, π) := lim sup
n→∞

Eπ
x

(∑n−1
k=0 c(xk, ak)

)

Eπ
x

∑n−1
k=0 (τ(xk, ak))

,

- the time-average cost

j(x, π) := lim sup
t→∞

Eπ
x

(∑N(t)
k=0 c(xk, ak)

)

t
.

For functions J(x, π) and j(x, π) we define the optimal costs as

J(x) := inf
π∈Π0

J(x, π), j(x) := inf
π∈Π0

j(x, π).

A policy πε is called ε-optimal with respect to the ratio-average cost
criterion if

J(x, πε)− ε ≤ J(x)
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for all x ∈ X. In a similar way we define the ε-optimality with respect to
the time-average cost criterion. Now we are in a position to introduce
our assumptions.

(B0) Basic assumptions: (i) the set K is analytic;

(ii) there exist a constant B > 0 and a Borel measurable function V :
X 7→ [1, +∞) such that

|c(x, a)| ≤ BV (x) and |τ(x, a)| ≤ BV (x)

for every (x, a) ∈ K;
(iii) the function τ is Borel measurable, whilst c is l.s.a on K.

(GE) V -geometric ergodicity assumptions: (i) there exists a Borel set

C ⊂ X such that for some λ ∈ (0, 1) and η > 0, we have
∫

X
V (y)q(dy|x, a) ≤ λV (x) + η1C(x)

for each (x, a) ∈ K; V is the function introduced in (B0);
(ii) the function V is bounded on C, i.e.,

vC := sup
x∈C

V (x) < ∞;

(iii) there exist some δ ∈ (0, 1) and a probability measure µ concentrated

on the Borel set C with the property that

q(D|x, a) ≥ δµ(D)

for each Borel set D ⊂ C, x ∈ C and a ∈ A(x).

For any function u : X 7→ R define the V-norm

‖u‖V := sup
x∈X

|u(x)|
V (x)

.

Under (GE) the embedded state process {xn} governed by a sta-
tionary policy f ∈ F 0 is a positive recurrent aperiodic Markov chain and
there exists a unique invariant probability measure πf (consult Theorem
11.3.4 and page 116 in [16]). Moreover, by Theorem 2.3 in [17], {xn} is
V -ergodic, that is, there exist θ > 0 and α ∈ (0, 1) such that

∣∣∣
∫

X
u(y)qn(dy|x, f(x))−

∫

X
u(y)πf (dy)

∣∣∣ ≤ V (x)‖u‖V θαn(1)
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for every u with ‖u‖V < ∞, and x ∈ X, n ≥ 1. Here qn(·|x, f(x))
denotes the n-stage transition probability induced by q and a stationary
policy f. As an immediate consequence of (1), one can easily get

J(f) := J(x, f) =
∫
X c(x, f(x))πf (dx)∫
X τ(x, f(x))πf (dx)

,(2)

for every f ∈ F 0.

Lemma 1. Let (GE) hold. Then

(a) inff∈F 0 πf (C) ≥ 1−λ
η ;

(b) supf∈F 0

∫
X V (y)πf (dy) ≤ η

1−λ ;

Proof. Let the process be governed by a stationary policy f ∈ F 0.
Integrating both sides of (GE, i) with respect to the invariant proba-
bility measure πf we get

∫

X
V (y)πf (dy) ≤ λ

∫

X
V (y)πf (dy) + ηπf (C).

Now part (a) easily follows from the fact that V ≥ 1, whilst part (b) is
a consequence of πf (C) ≤ 1. 2

We also make two additional assumptions on the sojourn time T.

(R) Regularity condition: there exist κ > 0 and β < 1 such that

H(κ|x, a) ≤ β

for all x ∈ C and a ∈ A(x).

(I) Uniform integrability condition:

lim
t→∞ sup

x∈C
sup

a∈A(x)
[1−H(t|x, a)] = 0.

Assumption (R) ensures that an infinite number of transitions does
not occur in a finite time interval. Ross [20], Sennott [21] and Yushke-
vich [25] assume that assumption (R) holds for the whole state space.
However, we require (R) to hold only for the states x ∈ C. This is be-
cause condition (GE) implies that the embedded Markov process gov-
erned by any policy returns to the set C within the finite number of
transitions with probability 1. Therefore, we have to control its be-
haviour only on the set C. From (R) one can easily deduce that

τ(x, a) ≥ κ(1− β) for x ∈ C and a ∈ A(x).(3)

For broader discussion of the assumptions the reader is referred to [7,
9, 13, 16, 17, 22].
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4 The average cost optimality equation

We begin with an auxiliary result that enables us to replace the function
V used in (GE) by a new function W. The W -norm defined below will
play an essential role in the proofs of our main results.

Lemma 2. Let assumption (GE) hold. Then, there exist a measurable
function W > V and a constant λ′ ∈ (0, 1) such that

∫

X
W (y)q(dy|x, a) ≤ λ′W (x) + δ1C(x)

∫

C
W (y)µ(dy).

Proof. Define W (x) := V (x) + η
δ . Then, simple calculations give

∫

X
W (y)q(dy|x, a) =

∫

X
V (y)q(dy|x, a) +

η

δ
≤

[
λV (x) +

η

δ

]
+ η1C(x)

≤ λ + η
δ

1 + η
δ

W (x) + 1C(x)δ
[
η

δ
+

∫

C
V (y)µ(dy)

]
.

Hence, the result holds with λ′ = λ+ η
δ

1+ η
δ
. 2

For any function u : X 7→ R we define the W -norm as

‖u‖W := sup
x∈X

|u(x)|
W (x)

.

From now on, we shall take into consideration the functions, which have
finite W -norm. Moreover, note that

‖u‖V < ∞ iff ‖u‖W < ∞.

Let L0
W denote the set of all l.s.a. functions whose W -norm is finite.

Note that L0
W is a Banach space.

For any (x, a) ∈ K set

p(·|x, a) := q(·|x, a)− 1C(x)δµ(·).
Observe that from Lemma 1 we have

∫

X
W (y)p(dy|k) =

∫

X
W (y)p(dy|x, a) ≤ λ′W (x).(4)

Put
g := inf

f∈F 0
J(f).
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From (B0), (GE, i) and (R) we conclude that g < ∞. Indeed, by (2)
and (3)

|J(f)| ≤
∫
X |c(x, f(x))|πf (dx)∫
X τ(x, f(x))πf (dx)

≤ B
∫
X V (x)πf (dx)

κ(1− β)πf (C)
.

Now Lemma 1 yields

g ≤ B η
1−λ

1−λ
η κ(1− β)

.

For any function u ∈ L0
W define the operator T in the following way

(Tu)(x) := inf
a∈A(x)

(
c(x, a)− gτ(x, a) +

∫

X
u(y)p(dy|x, a)

)
(5)

for all x ∈ X.

Theorem 1. Assume (B0, GE, R). (a) There exist a constant g∗ and

a function h ∈ L0
W such that

h(x) = inf
a∈A(x)

(
c(x, a)− g∗τ(x, a) +

∫

X
h(y)q(dy|x, a)

)
(6)

for all x ∈ X.(b) For any ε > 0 there exists a universally measurable

function fε ∈ F such that

h(x) ≥ c(x, fε(x))− g∗τ(x, fε(x)) +
∫

X
h(y)q(dy|x, fε(x))− ε(7)

for all x ∈ X.(c) Moreover, g∗ = g = infπ∈Π0 J(x, π) and g∗ ≥ J(fε)−ε.

The proof of Theorem 1 is similar to that of Theorem 1 in [12] and
makes use of an idea presented by Vega-Amaya [26]. We first notice
that by (4) the operator T is contractive and maps the Banach space
L0

W into itself. This follows from our assumption (B0) and (4). Hence,
from the Banach fixed point theorem there exists h ∈ L0

W such that

h(x) = inf
a∈A(x)

(
c(x, a)− gτ(x, a) +

∫

X
h(y)q(dy|x, a)(8)

−1C(x)δ
∫

X
h(y)µ(dy)

)
.

Clearly, if x 6∈ C then (8) becomes (6). If, on the other hand, x ∈ C we
define

d := −δ

∫

C
h(x)µ(dx)
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and are going to show that d = 0. On the contrary, we assume that
d 6= 0 and proceed along the same lines as in [12]. Therefore, optimality
equation (6) is satisfied with g∗ := g and the function h. Then, part
(b) follows directly from Lemma C(b), whilst part (c) is an immediate
consequence of a standard dynamic programming argument (see [7, 9]).

Now we shall describe more specific results, when certain assump-
tions of regularity are imposed. Assumptions (B1) correspond to the
model with a strongly continuous transition probability function, whilst
conditions (B2) are in agreement with a semi-Markov control process,
whose transition law is weakly continuous.

(B1) Basic assumptions:

(i) the set K is Borel and A(x) is compact for any x ∈ X;

(ii) for each x ∈ X, c(x, ·) is lower semicontinuous and τ(x, ·) is
continuous on A(x);

(iii) for each x ∈ X and Borel set D ⊂ X, the function q(D|x, ·) is
continuous on A(x);

(iv) there exists a constant B > 0 and a Borel measurable function
V : X 7→ [1, +∞) such that

|c(x, a)| ≤ BV (x) and |τ(x, a)| ≤ BV (x)

for every (x, a) ∈ K;

(v) for each x ∈ X, the function
∫

X
V (y)q(dy|x, ·)

is continuous on A(x).

(B2) Basic assumptions: (i) the set K is Borel, A(x) is compact for

any x ∈ X, and moreover, the set-valued mapping x 7→ A(x) is upper
semicontinuous, that is, {x ∈ X : A(x) ∩ D 6= ∅} is closed for every
closed set D in A;

(ii) c is lower semicontinuous and τ is continuous on K;

(iii) the transition law q is weakly continuous on K, that is,
∫

X
u(y)q(dy|x, a)
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is a continuous function of (x, a) ∈ K for each bounded and continuous
function u;

(iv) there exists a constant B > 0 and a continuous function V :
X 7→ [1, +∞) such that

|c(x, a)| ≤ BV (x) and |τ(x, a)| ≤ BV (x)

for every (x, a) ∈ K;

(v) the function ∫

X
V (y)q(dy|·, ·)

is continuous in (x, a) ∈ K;

(vi) there exists an open set C̃ ⊂ C such that µ(C̃) > 0 (recall that
µ is a probability measure on the set C).

Let Π [F ] be the set of all Borel measurable [stationary Borel mea-
surable] policies. Note that since either (B1, i) or (B2, i) hold, then
from Corollary 1 in [3] F is non-empty. Thus, let k ∈ F. Define

g = inf
f∈F

J(f).

Remark 1. It is worth pointing out that under (B1, i) or (B2, i) the
optimal costs within the classes F to F 0 are same, that is,

g = inf
f∈F

J(f) = inf
f∈F 0

J(f).(9)

Indeed, let f ∈ F 0 and D be any Borel subset of X. Then, by the
definition of πf we have

πf (D) =
∫

X
q(D|x, f(x))πf (dx) =

∫

X

∫

A
q(D|x, a)f(da|x)πf (dx).

From Lemma 7.28(c) in [1], there exist a Borel set X̂ ⊂ X and a Borel
measurable function f̂ : X̂ 7→ A such that πf (X̂) = 1 and f̂(x) = f(x)
for each x ∈ X̂. Now define

f∗(x) =

{
f̂(x), x ∈ X̂,
k(x), otherwise.

Hence, f∗ ∈ F. Further, we observe that

ν(D) =
∫

X
q(D|x, f∗(x))ν(dx), with πf = ν.
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Since our assumptions (GE) imply the uniqueness of an invariant prob-
ability measure, we conclude that ν = πf∗ . Therefore, (9) holds.

An analogous conclusion may be drawn in Lemma 1. It allows to
re-formulate the lemma with the set F instead of F 0.

Observe that from our discussion in Section 2 it follows that we
cannot only assume K is a Borel set. This is because it may occur
that F = ∅, and consequently inff∈F J(f) = ∞. Therefore, we add the
additional assumption: compactness of A(x), in order to apply Corollary
1 in [3].

By BW [LW ] we denote the space of all Borel measurable [lower
semicontinuous] functions that have finite W -norm.

Now we are ready to present our next results.

Theorem 2. Assume (B1) [(B2)] and (GE, R).
(a) There exist a constant g∗ and a function h ∈ BW [h ∈ LW ] such
that

h(x) = inf
a∈A(x)

(
c(x, a)− g∗τ(x, a) +

∫

X
h(y)q(dy|x, a)

)
(10)

for all x ∈ X.
(b) There exists a Borel measurable function f̃ ∈ F such that

h(x) = c(x, f̃(x))− g∗τ(x, f̃(x)) +
∫

X
h(y)q(dy|x, f̃(x))

for all x ∈ X.
(c) Moreover, g∗ = g = infπ∈Π J(x, π) and g∗ = J(f̃).

The average cost optimality equation for semi-Markov control pro-
cesses with strongly continuous transition probability functions satisfy-
ing quite general ergodicity assumptions has been established in a few
papers [8, 9, 26]. For instance, Hernández-Lerma and Luque-Vásquez
[8] apply the so-called Schweitzer’s data transformation, Jaśkiewicz [9]
examines auxiliary perturbed models, whilst Vega-Amaya [26] makes
use of a fixed point theorem, which directly leads to the solution of the
optimality equation. In particular, (under slightly different ergodicity
assumptions) he defines the operator T as in (5). Since c and τ are
Borel measurable functions, it is easy to observe that T maps the space
BW into itself and is a contractive operator. Therefore, by the Banach
fixed point theorem it follows that there exists a function h ∈ BW such
that

h(x)= inf
a∈A(x)

(
c(x, a)− gτ(x, a) +

∫

X
h(y)q(dy|x, a)− 1C(x)

∫

X
h(y)µ(dy)

)
.
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Now it suffices to prove that
∫
X h(y)µ(dy) = 0. But this fact can be

shown in much the same way as in the proofs of Theorems 3.5 and 3.6
in [26] and by applying Lemma 1. Hence, the optimality equation holds
with the function h and constant g∗ := g, and moreover, by our semi-
continuity/compactness assumptions (B1) we may replace inf in (10)
by min . The existence of a Borel measurable selector of the minima on
the right-hand side of (10) follows from a measurable selection theorem
[3]. The part (c) is a consequence of a dynamic programming argument.
Here, we would like to emphasise that the idea of making use of a fixed
point theorem to solve the optimality equation in this set-up belongs to
Vega-Amaya [26].

As far as semi-Markov control processes with weakly continuous and
V -geometric ergodic transition probabilities are concerned, they were
only examined in [11, 14]. A solution to the optimality equation has
been obtained in [11] by a fixed point argument. However, in contrast to
the previous case the Banach theorem cannot be applied directly. This
is because the operator T need not map the space LW into itself. To see
this peculiarity observe that the function k(x) := 1C(x)

∫
X u(y)µ(dy) is

only Borel measurable. Even if the set C was closed (or open), we would
not know the sign of the integral

∫
X u(y)µ(dy) for different functions

u ∈ LW . Consequently, k(x) is not necessarily lower semicontinuous.
Therefore, we first have to regularise/smooth an appropriate function
in the following way

Φu(x, a) := lim inf
x′→x, a′→a

[
c(x′, a′)− gτ(x′, a′) +

∫

X
u(y)q(dy|x′, a′)

−1C(x′)
∫

X
u(y)µ(dy)

]

Then, the function Φu is lower semicontinuous on K and the operator
T̃ defined as

(T̃u)(x) := inf
a∈A(x)

Φu(x, a)

maps the space LW into itself and is contractive. For these properties
the reader is referred to Lemma 3.3 in [11]. Consequently, there exists
a fixed point of T̃, a function h ∈ LW such that

h(x) = inf
a∈A(x)

Φh(x, a)(11)
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= inf
a∈A(x)

[
lim inf

x′→x, a′→a

(
c(x′, a′)− gτ(x′, a′)

+
∫

X
h(y)q(dy|x′, a′)− 1C(x′)

∫

X
h(y)µ(dy)

)]
.

Now it suffices to prove that
∫
X h(y)µ(dy) = 0 and at the same time

dispose of the liminf in (11). This fact has been shown in [11]. Thus,
(10) holds with the function h and constant g∗ = g. Parts (b) and (c)
are obvious.

Generally, semi-Markov control processes with Feller transition pro-
babilities require more delicate handling. Indeed, even for V -geometric
ergodic Markov decision models, for which the jump times occur at
integer points, the issue is not a simple matter, see [6, 13, 15, 22].
For instance, Jaśkiewicz and Nowak [13] and Schäl [22] apply the Fa-
tou lemma for weakly convergent measures, which only yields the op-
timality inequality. Küenle [15], on the other hand, introduces certain
contraction operators that lead to a parametrized family of functional
equations. Making use of some continuity and monotonicity properties
of the solutions to these equations (with respect to the parameter) he
obtains a lower semicontinuous solution of the optimality equation. In
contrast to his approach, González-Trejo et al. [6] apply directly the
Banach fixed point theorem. Nevertheless, their method has some dis-
advatages, namely, it requires stronger assumptions and excludes many
interesting examples (see Remark 4(b) in [13]).

For further interesting examples of (semi-)Markov control processes
the reader is referred to [5, 6, 7, 8, 11, 18, 23] and reference therein.

5 The time-average cost criterion

The following result is concerned with the equivalence of the ratio-
average and time-average cost criteria. Generally, these two criteria
may have nothing to do with each other, and may lead to different
optimal policies and costs (see Example).

Theorem 3. Assume (GE, R, I).

(a)If (B0) is satisfied and K admits a graph, then g∗=infπ∈Π0j(x, π),
and for any ε0 > 0, the policy fε0 ∈ F 0 is an ε0-optimal.

(b)If either (B1) or (B2) holds, then g∗ = infπ∈Π j(x, π) = j(x, f̃).
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The proof of Theorem 3 is based on the optional sampling theorem
applied to the appropriate sub- and supermartingales that are uniformly
integrable. The property of uniform integrability is the main difficulty
in the proof and in order to overcome it one needs to employ some
basic facts from renewal theory and certain consequences of V -geometric
ergodicity. Let us mention that this issue was thoroughly studied in [10]
under assumptions (B1) and in [14] under conditions (B2). Therefore,
part (b) follows immediately from Theorem in [10] and Theorem 2 in
[14].

As far as part (a) is concerned, its proof is similar to that of part (b).
There are only two matters in question that require some explanation.
Firstly, we claim that any universally measurable policy can be replaced
by a Borel measurable one. This fact is formulated in Lemma 3 below.
Secondly, we note that the proof of Theorem 2 in [14] is also valid for any
Borel measurable q (not only weakly continuous). Hence, all lemmas in
[10, 14] hold true within our general framework. We provide a rough
idea of the proof.

Lemma 3. Assume that π ∈ Π and x ∈ X is fixed and let d : X 7→ R
be a Borel measurable function such that ‖d‖W ≤ +∞. If K contains a
graph,
(a) there exists a Borel measurable semi-Markov policy π̃x, for which

Eπ
xd(xn) = Eπ̃x

x d(xn), n = 0, 1, ...

(b) the function

D(x) := sup
π∈Π0

Eπ
xd(xn) = sup

π̃∈Π

Eπ̃
xd(xn), n = 0, 1, ...

is universally measurable in x.

The proof of part (a) consists of two steps. We first follow Propo-
sition 8.1 in [1] replacing π by an universally measurable semi-Markov
policy. Next this policy is superseded by a Borel measurable one (note
that this can be done since K contains a graph). Part (b) is a conse-
quence of part (a) and Lemma 7.1 in [24].

Proof of Theorem 3. Let Fn be the σ-algebra generated by all events
up to the nth state. By (6) we infer that

Sn =
n−1∑

k=0

(c(xk, ak)− g∗τ(xk, ak)) + h(xn)
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is a submartingale with respect to Fn, and by (7)

S̃n =
n−1∑

k=0

(c(xk, f
ε(xk))− ε− g∗τ(xk, f

ε(xk))) + h(xn)

is a supermartingale with respect to Fn. From [10, 14] it follows that
{Sn} and {S̃n} are uniformly integrable, that is,
(I) Eπ

x |SN(t)+1| and Efε

x |S̃N (t)+1| are well defined;
(II) Eπ

x [|Sn|; N(t) ≥ n] and Efε

x [|S̃n|; N(t) ≥ n] tend to 0, when n →∞.
Now applying the optional sampling theorem to {Sn} with two stopping
times 0 and N(t) + 1, we get

h(x) ≤ Eπ
x




N(t)∑

k=0

(c(xk, ak)− g∗τ(xk, ak))


 + Eπ

xh(xN(t)+1).

Simple rearrangments and the fact that

Eπ
x




N(t)∑

k=0

τ(xk, ak)


 = Eπ

xTN(t)+1

yield

g∗
1
t
Eπ

xTN(t)+1 ≤ 1
t
Eπ

x




N(t)∑

k=0

c(xk, ak)


(12)

+Eπ
x

(
h(xN(t)+1)

t

)
− h(x)

t
.

From the proofs of Lemma 8 in [10] and Theorem 2 in [14], it follows
that

lim
t→∞

1
t
Eπ

xTN(t)+1 = 1.

In addition, since h ∈ LW , then ‖h‖V < +∞ (because ‖h‖W < +∞).
Hence, making use of Lemma 8 in [10] and Theorem 2 in [14] we conclude

lim
t→∞

1
t
Eπ

xh(xN(t)+1) = 0.

Letting t →∞ in (12) we infer

g∗ ≤ lim sup
t→∞

Eπ
x

(∑N(t)
k=0 c(xk, ak)

)

t
= j(x, π).
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Since π ∈ Π is arbitrary, we have

g∗ ≤ inf
π∈Π0

j(x, π).(13)

Now consider S̃n. Applying the optional sampling theorem to {S̃n} with
two stopping times 0 and N(t) + 1 we obtain

εEfε

x N(t)
t

+
h(x)

t
+ g∗

Efε

x TN(t)+1

t
≥

Efε

x

(∑N(t)
k=0 (c(xk, f

ε(xk)))
)

t
(14)

+
Efε

x h(xN (t))
t

.

Letting t → ∞ in (14) and arguing in the same way as above, we
deduce

lim sup
t→∞

εEfε

x N(t)
t

+ g∗ ≥ j(x, f ε).

Let M(t) be a renewal function that corresponds to an i.i.d. sequence
of random variables, each with the following distribution

H̃(t) :=

{
β, t ∈ [0, κ)
1, t ≥ κ,

H̃(t) = 0, t < 0.

The constants κ and β were introduced in (R). From Lemma 6(b) in
[10], it follows that

Efε

x N(t) ≤ θCM(t) + θ(x),

with

θ(x) :=
1

ln(1/λ)

(
ln V (x) +

η

λ
1C(x)

)
, θC := sup

x∈C
θ(x) (see (GE)).

Moreover,

lim
t→∞

M(t)
t

=
1

κ(1− β)
(by Theorem 3.3.2(a) in [19]).

Thus,

lim sup
t→∞

εEfε

x N(t)
t

≤ ε lim sup
t→∞

θCM(t) + θ(x)
t

=
ε

κ(1− β)
=: ε0
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Let fε0 := fε. We infer that

g∗ ≥ j(x, fε0)− ε0.

From the fact that ε > 0 is arbitrary (so is ε0), we obtain

g∗ ≥ inf
π∈Π0

j(x, π).(15)

Combining (13) and (15) together yields part (a). 2

Remark 2. The proof of Theorem 3 discovers a suprising feature of an
ε-optimal policy fε obtained in Theorem 1. Namely, it turns out that
fε is ε0-optimal within the time-average cost criterion, and ε0 does not
have to be ε. However, ε0 can be expressed by ε and other constants
used in the assumptions.

We present Example 3.2 in [4]. It shows that the two average optimal
costs and corresponding optimal policies may be different.

Example. Let X = {1, 2, 3}, A(1) = {c, s} and A(2) = A(3) = {s}.
The mean holding time equals τ(1, c) = τ(1, s) = τ(2, s) = 1, τ(3, s) =
2. The transition probabilities are given by q(2|1, s) = q(3|1, s) = 1

2 ,
q(2|2, s) = q(3|3, s) = q(1|1, c), whilst the one-step cost function is
r(2, s) = 1, r(1, c) = 2

5 , and 0 otherwise.
In this model, there are two stationary policies f(1) = c and d(1) =

s. Let x0 = 1, then

j(1, d) =
1
2
, J(1, d) = lim sup

n→∞

1
2n

1 + 3
2n

=
1
3

and
j(1, f) =

2
5
, J(1, f) =

2
5
.

Therefore, for the time-average cost criterion, policy f is better than d,
whereas for the other one d is better.
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