
Morfismos, Vol. 11, No. 1, 2007, pp. 1–14

Dice games and stochastic

dynamic programming ∗

Henk Tijms

Abstract

This paper uses dice games such as the game of Pig and the game
of Hog to illustrate the powerful method of stochastic dynamic
programming. Many students have difficulties in understanding
the concepts and the solution method of stochastic dynamic pro-
gramming, but using challenging dice games this understanding
can be greatly enhanced and the essence of stochastic dynamic
programming can be explained in a motivating way.

2000 Mathematics Subject Classification: 90C40, 91A15, 91A05.
Keywords and phrases: stochastic dynamic programming, game of Pig,
game of Hog, heuristic rule, optimal rule, two-person game, television
game show.

1 Introduction

It is a great pleasure to make as Dutch mathematician this invited
contribution about stochastic dynamic programming at the occasion of
the 10th anniversary of the journal Morfismos of Mexican mathematics
students: where a Dutch school of researchers made significant contri-
butions to the field stochastic dynamic programming in the seventies
and the eighties of the last century, it was in the nineties the Mexican
school of researchers under leadership of professor Onésimo Hernández-
Lerma that was very influential in the further development of the field.
In this contribution we consider stochastic problems that are fun and
instructive to work on. These problems are the dice game Pig and the

∗Invited Article.

1

2 Henk Tijms

related dice game Hog. The game of Pig and the game of Hog are
not only teaching treasures but involve challenging research problems
as well. These control problems are of pedagogical use for

• stochastic dynamic programming

• Markov chains

• game theory.

The dice games of Pig and Hog are simple to describe, but it is not
that simple at all to find the optimal strategies. Let us first describe
the games.

The game of Pig

The game of Pig involves two players who in turn roll a die. The
object of the game is to be the first player to reach 100 points. In
each turn, a player repeatedly rolls a die until either a 1 is rolled or
the player holds. If the player rolls a 1, the player gets a score zero
for that turn and it becomes the opponent’s turn. If the player holds
after having rolled a number other than 1, the total number of points
rolled in that turn is added to the player’s total score and it becomes
the opponent’s turn. At any time during a player’s turn, the player
must choose between the two decisions “roll” or “hold”.

The game of Hog

The game of Hog (fast Pig) is a variation of the game of Pig in which
players have only one roll per turn but may roll as many dice as desired.
The number of dice a player chooses to roll can vary from turn to turn.
The player’s score for a turn is zero if one or more of the dice come up
with the face value 1. Otherwise, the sum of the face values showing on
the dice is added to the player’s score.

We will first analyze the single-player versions of the two stochastic
control problems. For various optimality criteria in the single player
problem, the stochastic dynamic programming approach for calculating
an optimal control rule will discussed. The optimal control rule is rather
complex and therefore its performance will also be compared with the
performance of a simple heuristic rule.

Dice Games and Stochastic Dynamic Programming 3

2 The game of Pig

We first consider the single-player version of the game of Pig before we
discuss the dynamic programming approach the case with two players.
In the two-player’s case the goal is to be the first player reaching 100
points. For the single-player version the following two optimality criteria
can be considered:

• minimal expected number of turns to reach 100 points

• maximal probability of reaching 100 points in a given number of
turns.

The optimal control rules can be calculated from the optimality equa-
tions from stochastic dynamic programming, but these optimal rules
are rather complex and difficult to use in practice. Therefore we also
consider the simple “hold at 20” heuristic and compare the performance
of this heuristic with the performance of the optimal rule. The “hold at
20” rule is as follows: after rolling a number other than 1 in the current
turn, the player holds that turn when the accumulated number of points
during the turn is 20 or more. The rationale of this simple heuristic is
easily explained. Suppose that k points have been accumulated so far in
the current turn. If you roll again, the expected number of points you
gamble away is 1

6 × k, while the expected number of additional points
you gain is equal to 5

6 × 4, using the fact the expected value of the out-
come of a roll of a die is 4 given that the outcome is not 1. The first
value of k for which 1

6 × k ≥ 5
6 × 4 is k = 20.

It turns out that the “hold at 20” heuristic performs very well the cri-
terion is to minimize the expected number of turns to reach 100 points.
As will be shown below, the expected value of the number of turns to
reach 100 point is 12.367 when the “hold at 20” heuristic is used and
this lies only 0.7% above the minimal expected value 12.545 that results
when an optimal control rule is used. The situation is different for the
criterion of maximizing the probability of reaching 100 points within a
given number of turns. Under the “hold at 20” heuristic the probability
of reaching 100 points within N turns has the respective values 0.0102,
0.0949, 0.3597, 0.7714, and 0.9429 for N =5, 7, 10, 15, and 20, whereas
this probability has the maximum values 0.1038, 0.2198, 0.4654, 0.8322,
and 0.9728 when an optimal rule is used. Thus, the “hold at 20” heuris-
tic performs unsatisfactorily for the second optimality criterion.

4 Henk Tijms

2.1 Analysis of the heuristic rule

The analysis for the “hold at 20” heuristic is based on recurrence rela-
tions that are derived by arguments used to analyze absorbing Markov
chains. Define µi as the expected value of the number of turns needed
to reach a total score of 100 points when starting a new turn with a
score of i points and using the “hold at 20” rule. The goal is to find µ0.
For a=0, 20, 21, 22, 23, 24, and 25, denote by α0,a the probability that
the player will end up with exactly a points in any given turn under the
“hold at 20” rule. Once the probabilities α0,a have been computed, we
calculate the µi by a backwards recursion. By the law of conditional
expectations,

µi = 1 + µiα0,0 +
25∑

a=20

µi+aα0,a for i = 99, 98 . . . , 0.

with the convention µk = 0 for k ≥ 100. Thus, initiating the recursion
with µ99 = 1 + µ99α0,0, we compute successively µ99, µ98, . . . , µ0. How
to calculate the probabilities α0,a? This goes along the same lines as
the computation of the absorption probabilities in a Markov chain with
absorbing states. For any fixed a, we use the intermediary probabilities
αb,a for 0 ≤ b ≤ 19, where αb,a is defined as the probability that the
current turn will end up with exactly a points when so far b points have
been accumulated during the current turn and the “hold at 20 rule” is
used. For a = 0, we find by the law of conditional probabilities that

αb,0 =
1
6

+
6∑

j=2

αb+j,0
1
6

for b = 19, 18, . . . , 0

with the convention αk,0 = 0 for k ≥ 20. For any a with 20 ≤ a ≤ 25,
we find by conditioning that

αb,a =
6∑

j=2

αb+j,a
1
6

for b = 19, 18, . . . , 0

with the convention αk,a = 1 for k = a and αk,a = 0 for k ≥ 20 and
k 6= a. Applying these recursion equations, we find α0,0 = 0.6245,
α0,20 = 0.0997, α0,21 = 0.0950, α0,22 = 0.0742, α0,23 = 0.0542, α0,24 =
0.0352, and α0,25 = 0.0172. Next the value µ100 = 12.637 is calculated
for the expected number of turns needed to reach 100 points if the “hold
at 20 rule” is used.

Dice Games and Stochastic Dynamic Programming 5

How do we calculate the probability of reaching 100 points in no
more than N turns under the “hold at 20” heuristic? To do so, we define
Qn(i) for i < 100 and n ≥ 1 the probability Qn(i) as the probability
of reaching 100 points in no more than n turns when the first turn is
started with a score of i points and the “hold at 20 rule” is used . Also,
let Qn(i) = 1 for any i ≥ 100 and n ≥ 1. If no more than a given number
of N turns are allowed, the desired probability is QN (0). Using the law
of conditional probabilities, it follows that the probabilities Qn(i) for
n = 1, 2, . . . can be computed from the recursion

Qn(i) = Qn−1(i)α0,0 +
25∑

a=20

Qn−1(i + a)α0,a

for i < 100 and n ≥ 1 with the boundary condition Q0(j) = 1 for
j ≥ 100 and Q0(j) = 0 for j < 100.

2.2 Dynamic programming for the single-player version

In the optimality analysis of the single-player version, a state variable
should be defined together with a value function. The state s of the
system is defined by a pair s = (i, k), where

i = the player’s score at the start of the current turn
k = the number of points obtained so far in the current turn.

We first consider the criterion of minimizing the expected number of
turns to reach 100 points. For this criterion, the value function V (s) is
defined by

V (s) = the minimal expected value of the number of turns including
the current turn to reach 100 points starting from state s

We wish to compute V (0, 0) together with the optimal decision rule.
This can be done from Bellman’s optimality equations. For k = 0,

V (i, 0) = 1 +
1
6
V (i, 0) +

6∑

r=2

1
6
V (i, r).

For k ≥ 1 and i + k < 100,

V (i, k) = min

[
V (i + k, 0),

1
6
V (i, 0) +

6∑

r=2

1
6
V (i, k + r)

]
,

6 Henk Tijms

where V (i, k) = 0 for those (i, k) with i + k ≥ 100. The first term in
the right side of the last equation corresponds to the decision “hold”
and the second term corresponds to the decision “roll”. The optimality
equation can be solved by the method of successive substitutions. Start-
ing with V0(s) = 0 for all s, the functions V1(s), V2(s), . . . are recursively
computed from

Vn(i, 0) = 1 +
1
6
Vn−1(i, 0) +

6∑

r=2

1
6
Vn−1(i, r), n = 1, 2, . . .

and

Vn(i, k) = min

[
Vn−1(i + k, 0),

1
6
V (i, 0) +

6∑

r=2

1
6
Vn−1(i, k + r)

]
,

n = 1, 2,

By a basic result from the theory of stochastic dynamic programming
(see for instance [1] or [2]),

lim
n→∞Vn(s) = V (s) for all s.

In the literature bounds are known for the difference |Vn(s) − V (s)|,
providing a stopping criterion for the method of successive substitutions.

Let us next consider the optimality criterion of maximizing the prob-
ability of reaching 100 points in no more than N turns with N a given
integer. Then, we define for m = 0, 1, . . . , N the value function Pm(s)
by

Pm(s) = the maximal probability of reaching 100 points from
state s if no more than m turns can be used including
the current turn,

where Pm(s) = 1 for all s = (i, k) with i + k ≥ 100. The desired
probability PN (0, 0) and the optimal decision rule can be calculated
from Bellman’s optimality equation. For k = 0 and i = 99, 98, . . . , 0

Pm(i, 0) =
1
6
Pm−1(i, 0) +

6∑

r=2

1
6
Pm(i, r), m = 1, . . . , N

Dice Games and Stochastic Dynamic Programming 7

and for i = 98, 97, . . . , 0 and k = 99− i, . . . , 1

Pm(i, k) = min

[
Pm−1(i + k, 0),

1
6
Pm−1(i, 0) +

6∑

r=2

1
6
Pm(i, k + r)

]
,

1 ≤ m ≤ N.

The value functions P1(s), P2(s), . . . , PN (s) can be recursively calcu-
lated, using the fact that Pm(i, k) = 1 if i + k ≥ 100 and starting with

P0(i, k) =
{

1 if i + k ≥ 100
0 if i + k < 100.

2.3 Dynamic programming for the two-players case

To conclude this section, we consider for the game of Pig the case of two
players. The players alternate in taking turns rolling the die. The first
player to reach 100 points is the winner. Since there is an advantage in
going first in Pig, it is assumed that a toss of a fair coin decides which
player begins in the game of Pig. Then, under optimal play of both
players, each player has a probability of 50% of being the ultimate win-
ner. But how to calculate the optimal decision rule. By the assumption
that players alternate in taking turns rolling the die, the optimal de-
cision rule can be computed by using standard dynamic programming
techniques. In the final section of this paper we will consider a vari-
ant of the game of Hog in which in each round the two players have to
decide simultaneously how many dice to roll, where the players cannot
observe each other’s decision. Such a variant with simultaneous actions
of both players in the same turn can also be considered for the game
of Pig. Then, methods from standard dynamic programming cannot be
longer used but instead one should use much more involved methods
from game theory.

The dynamic programming solution for the game of Pig with two
players who alternate in taking turns proceeds as follows. The state s
is defined by s = ((i, k), j), where (i, k) indicates that the player whose
turn it is has a score i and has k points accumulated so far in the current
turn and j indicates that the opponent’s score is j. Define the value
function P (s) by

P (s) = the probability of the player winning whose turn it is
given that the present state is state s,

8 Henk Tijms

where P (s) is taken to be equal to 1 for those s = ((i, k), j) with i+k ≥
100 and j < 100. To write down the optimality equations, we use the
simple observation that the probability of a player winning after rolling
a 1 or holding is one minus the probability that the other player will
win beginning with the next turn. Thus, for state s = ((i, k), j) with
k = 0,

P ((i, 0), j) =
1
6
[1− P ((j, 0), i)] +

6∑

r=2

1
6
P ((i, r), j).

For state s = ((i, k), j) with k ≥ 1 and i + k, j < 100,

P ((i, k), j)) = min
[
1− P ((j, 0), i + k),

1
6
[1− P ((j, 0), i)] +

6∑

r=2

1
6
P ((i, k + r), j)

]
,

where the first expression in the right side of the last equation corre-
sponds to the decision “hold” and the second expression corresponds to
the decision “roll”. Using the method of successive substitution, these
optimality equations can be numerically solved, yielding the optimal
decision to take in any state s = ((i, k), j).

3 The game of Hog

We first give the analysis for the single-player version of the game. In
the game of Hog (Fast Pig) the player has to decide in each turn how
many dice to roll simultaneously. A similar heuristic as the “hold at 20”
rule manifests itself in the game of Hog (Fast Pig). This heuristic is the
“five dice” rule that prescribe to roll five dice in each turn. The rationale
of this rule is as follows: five dice are the optimal number of dice to roll
when the goal is to maximize the expected value of the score in a single
turn. The expected value of the total score in a single turn with d dice
is (1−(5/6)d)×0+(5/6)5×4d and this expression is maximal for d = 5.
The number of turns needed to reach 100 points has the expected value
13.623 when the “five dice” rule is used, while the expected value of the
number of turns needed to reach 100 points has the value 13.039 when
an optimal decision rule is used. Again, a very good performance of the
heuristic rule when the criterion is to minimize the expected number of

Dice Games and Stochastic Dynamic Programming 9

turns. However, the story is different when the criterion is to maximize
the probability of reaching 100 points in no more than N turns with N
given. This probability has the respective values 0.0056, 0.0610, 0.2759,
0.6993, and 0.9159 for N=5, 7, 10, 15, and 20 when the “five dice” rule
is used, while the respective values are 0.0869, 0.1914, 0.4240, 0.8004,
and 0.9631 under an optimal rule.

3.1 Analysis for the single-player version

For both the criterion of the expected number of turns to reach 100
points and the criterion of the probability to reach 100 points in a given
number of turns, we will give a unified analysis that covers both the
heuristic rule and the optimal rule. Instead of taking the state as the
current score of the player, it is convenient to define the state as the
number of points the player still needs to reach the goal when a new
turn is about to begin. The decision d in any state s prescribes to roll
simultaneously d dice. Denoting the set of possible decisions in state s
by D(s), we can give a unified analysis by taking D(s) = {5} for the
analysis of the “five dice” rule and taking D(s) = {1, 2, . . . , D} for the
analysis of an optimal rule, where D is finite but large number. A key
ingredient in the computations are the probabilities q

(d)
i to be defined

by

q
(d)
i = the probability of obtaining i points in a turn

when the decision is to roll d dice,

To calculate this probabilities, we need the probability r
(d)
i which is de-

fined as the conditional probability that a roll of d dice gives i points
given that no 1s are rolled. Using the fact that the conditional distri-
bution of the outcome of the roll of a single die is uniformly distributed
on the integers 2, . . . , 6 given that the outcome is not 1, it follows that
the r

(d)
i can be recursively calculated from the convolution formula

r
(d)
i =

6∑

j=2

1
5
r
(d−1)
i−j for i = 2d, 2d+1, . . . , 6d, and r

(d)
i = 0 otherwise,

with the convention r
(0)
0 = 1 and r

(0)
i = 0 for i 6= 0. Next, the q

(d)
i follow

from

q
(d)
0 = 1−

(
5
6

)d

and q
(d)
i =

(
5
6

)d

r
(d)
i for i, d = 1, 2,

10 Henk Tijms

For the criterion of the expected number of turns to reach the goal,
we define the value-function V (i) as the minimal expected number of
additional turns to get i additional points when using the decision sets
D(i) (in case D(i) = {5} for all i, the minimal expected number should
of course be read as the expected number). The goal is to calculate
V (100). Then, letting V (i) = 0 for i ≤ 0, we have the dynamic pro-
gramming equation:

V (i) = min
d∈D(i)

{
1 + q

(d)
0 V (i) +

6d∑

r=2d

q(d)
r V (i− r)

}

or, equivalently,

V (i) = min
d∈D(i)

{
1

1− q
(d)
0

[
1 +

6d∑

r=2d

q(d)
r V (i− r)

] }
.

The function values V (i) can be computed recursively for i = 1, . . . , 100.
For the criterion of the probability of reaching the goal within a given

number of N turns, the value function Pm(i) is defined as the maximal
probability to get i additional points when no more than m turns are
allowed, where m runs from 1 to N . We wish to find PN (100). Letting
Pm(i) = 1 for i ≤ 0, we have the dynamic programming equation:

Pm(i) = min
d∈D(i)

{
q
(d)
0 Pm−1(i) +

6d∑

r=2d

q(d)
r Pm−1(i− r)

}
.

The recursion is initiated with the boundary condition P0(i) = 1 for
i ≤ 0 and P0(i) = 0 for i > 0.

3.2 Analysis for the case of two players

To conclude this section, we consider for the game of Hog the original
case of two players. The players alternate in taking turns rolling the
die. The first player to reach 100 points is the winner. Since there is an
advantage in going first in Hog, it is assumed that a toss of a fair coin
decides which player begins in the game of Hog. The dynamic program-
ming solution for the game of Hog with two players who alternate in
taking turns proceeds as follows. The state defined as s = (i, j), where
i indicates the number of points the player whose turn it is still needs
for the winning score and j indicates the number of points the opponent

Dice Games and Stochastic Dynamic Programming 11

still needs for the winning score. Define the value function P (s) as the
win probability of the player whose turn it is given that the present
state is state s and both players act optimally in each turn. Then, for
the states (i, j) with i, j > 0, the optimality equation is

P (i, j) = max
d=1,...,D

{
q
(d)
0 [1− P (j, i)] +

6d∑

r=2d

q(d)
r [1− P (j, i− r)]

}
,

with the convention P (j, k) = 0 for j > 0 and k ≤ 0, where D denotes
the largest number of dice that can be rolled.

4 A game-theoretic problem

This section considers a variant of the game of Hog, where the two
players have to take simultaneously a decision in each round of the
game. This variant deals with a television game show and the problem
is as follows. At the end of the television game show the two remaining
contestants have to play a dice game. The contestants each sit behind
a panel with a battery of buttons numbered as 1, 2, . . . , D, say D=10.
In each stage of the game, both contestants must simultaneously press
one of the buttons, where the contestants cannot observe each other’s
decision. The number on the button pressed by the contestant is the
number of dice that are thrown for the contestant. For each contestant
the score of the throw for that contestant is added to his/her total,
provided that none of the dice in that throw showed the outcome 1;
otherwise no points are added to the current total of the candidate.
The candidate who first reaches a total of 100 points is the winner. In
case both candidates reach the goal of 100 points in the same move, the
winner is the candidate who has the largest total. In the event of a tie,
the winner is determined by a toss of a fair coin. At each stage of the
game both candidates have full information about his/her own current
total and the current total of the opponent. What does the optimal
strategy look like?

The computation and the structure of an optimal strategy is far
more complicated than in the problems discussed before. The optimal
rules for the decision problems considered before were deterministic, but
the optimal strategy will involve randomized actions for the problem of
the television game show. In zero-sum games randomization is a key
ingredient of the optimal strategy.

12 Henk Tijms

We will give only an outline of the solution procedure. The rules of
the game state that in each round the two players have to decide at the
same moment upon the number of dice to use, so without seeing what
the opponent is doing but knowing and using the scores so far. So, after
a number of rounds player 1 still needs a points and player 2 needs b
points. This describes the state of the system. If now player 1 decides
to use k dice and player 2 uses l dice, then the state changes from (a, b)
into (a − i, b − j) with probability q

(k)
i q

(l)
j . The game is a stochastic

terminating zero-sum game. The value of the game is defined as the
probability that player 1 will win minus the probability that player 2
will win, given that both players play optimally. Define

V (a, b) =





1 if a < b and a ≤ 0
0 if a = b ≤ 0
−1 if a > b and b ≤ 0.

We want to determine V (a, b) for both a and b positive and the
optimal, possibly randomized, actions that guarantee this value. The
value of the game and the optimal moves of the two players can be
computed by repeatedly solving the appropriate matrix games. Let
x = (x1, x2, . . . , xD) be a randomized move for player 1, i.e., player 1
rolls d dice with probability xd, where

∑

d

xd = 1.

The first approach to think off is to recursively compute V (a, b) via a
sequence of LP -problems, starting in (a, b) = (1, 1) and working back-
wards, step by step, until (a, b) = (G,G) with G = 100. This requires
to solve the optimization problem:

maximize V subject to

∑

d

xd


 ∑

i+j>0

q
(d)
i q

(l)
j V (a− i, b− j) + q

(d)
0 q

(l)
0 V


 ≥ V, l = 1, . . . , D,

xd ≥ 0, d = 1, . . . , D,
∑

d

xd = 1 ,

where, for i + j > 0, the values V (a − i, b − j) have been computed
before and hence are known. (V is unrestricted in sign.) However,

Dice Games and Stochastic Dynamic Programming 13

this optimization problem is not exactly an LP -problem because of the
nonlinear term ∑

d

xdq
(d)
0 q

(l)
0 V.

To make an LP -approach possible, we proceed as follows. Define
V (n)(a, b) as the value of the game if it is played at most n times with
a terminal reward 0, if after n steps the game has not yet reached the
payoff-zone. Thus, V (0)(a, b) := 0 if a > 0 and b > 0. Also, define

V (n)(a, x, b, l) =
∑

d

xd

∑

i,j

q
(d)
i q

(l)
j V (n−1)(a− i, b− j), n > 0 ,

with the convention that, for n ≥ 0 and a ≤ 0 or b ≤ 0, V (n)(a, b) =
V (a, b). Then, in iteration n for state (a, b), the value of the game
and an optimal move for player 1 can be obtained from the following
LP -problem for a matrix game:

maximize V subject to

V (n)(a, x, b, l) ≥ V, l = 1, . . . , D,

xd ≥ 0, d = 1, . . . , D,
∑

d

xd = 1.

The optimal value V satisfies V = V (n)(a, b) and the optimal x(n)(a, b)
represents an optimal move for player 1 in state (a, b) in iteration n.
V (n)(a, x, b, l) converges exponentially fast to the value of the game,
and x(n) is nearly optimal for n sufficiently large. Of course, for reasons
of symmetry, the optimal move for player 2 in state (a, b) is the same
as the optimal move for player 1 in state (b, a). The computations for
an optimal strategy are formidable for larger values of D with D being
the maximum number of dice that can be rolled. The computations
reveal that the optimal strategy uses indeed randomized actions. For
example, for the case of D = 5, player 1 uses 2, 4 or 5 dice with respective
probabilities 0.172, 0.151 and 0.677 when player 1 still needs 1 point and
player 2 still needs 3 points. Also, the numerical calculations reveal a
kind of turnpike result: for states (i, j) sufficiently far from (0, 0) the
players use non-randomized decisions only (for example in state (5,13)
in which player 1 still needs 5 points and player 2 still needs 13 points,
player 1 uses 4 dice and player 2 uses 5 dice when D = 5). It would be
nice to have a theoretical proof of this intuitively obvious turnpike result

14 Henk Tijms

as well to have a theoretical proof of certain monotonicity properties of
the optimal strategy.

There are various modifications of the television game show possible.
To mention a few:

1. Suppose that a player gets not only a score 0 but also loses all (or
some of) the points collected so far if there is an outcome 1 in the
throw of his dice.

2. Suppose the players know the outcomes of their own throws, but
don’t know what the other player has been doing at all. This is
a game with imperfect information. Is it possible to determine an
optimal strategy?

3. Suppose that, in addition to the previous situation, you also know
how many dice your opponent has used. This too is a game with
imperfect information.

Henk Tijms
Department of Econometrics and
Operations Research,
Vrije University, Amsterdam,
The Netherlands,
tijms@feweb.vu.nl

References

[1] Derman C., Finite State Markovian Decision Problems, Academic
Press, New York, 1970.

[2] Hernández-Lerma O., Adaptive Markov Control Processes, Spring-
er Verlag, New York, 1989.

[3] Neller T. W.; Presser C. G. M., Optimal play of the dice game Pig,
The UMAP Journal 25 (2004), 25–47. See also the material on the
website http://cs.gettysburg.edu/projects/pig/

[4] Tijms, H. C., Understanding Probability, Chance Rules in Every-
day Life, 2nd edition, Cambridge University Press, Cambridge,
2007.

[5] Tijms H. C.; Van der Wal J., A real-world stochastic two-person
game, Probability in the Engineering and Informational Sciences
20 (2006), 599–608.

