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An approximation scheme for the mass transfer

problem∗

J. Rigoberto Gabriel Beatris Escobedo-Trujillo

Abstract

This paper presents an approximation scheme for the Monge-
Kantorovich mass transfer (MT) problem in separable metric spa-
ces. A sequence of finite-dimensional linear programs (transport
problems) are introduced and it is proven that the value of the
MT problem is the limit of a subsequence of the optimal values of
these programs.
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1 Introduction

The Monge-Kantorovich mass transfer (MT) problem (introduced in
Section 3; see (3.1),(3.2)) is among the oldest and most well known
problems in probability theory and its applications. It was originally
introduced by Gaspar Monge in 1781 [19] but it was posed as a math-
ematical programming problem by L.V. Kantorovich in 1942 [17]. For
comments on the historical development and applications of the MT
problem see, for instance, [1, 7, 20, 21].

The MT problem has been studied by many authors with several
approaches [1, 8, 9, 10, 14, 16, 18, 22, 23]. In general, there are many
results on the MT problem, but how to obtain explicit solutions, ho-
wever, is still an open problem.

∗Invited Article. Research partially supported by PROMEP:UVER-EXB-01-
01.

1



2 J. Rigoberto Gabriel and Beatris Escobedo-Trujillo

In this paper we show how to approximate the MT problem by
a sequence of finite-dimensional linear programs. These programs are
solvable and each one has associated a probability measure (p.m.) with a
finite support. Moreover, there exists a subsequence of these p.m.s that
converges weakly to the optimal solution of the MT problem. We also
prove that the subsequence of optimal values converges to the optimal
value of the MT problem.

Actually, approximation schemes for the MT problem have been
studied by several authors. For example, in [1],[2] an algorithm is stud-
ied in the case in which the underlying spaces are the unit interval [0, 1]
(see Section 3). Hernández-Lerma and Lasserre [15] study the problem
in compact metric spaces and they give an approximation scheme based
on finite-dimensional linear programs. Other schemes are studied in
[4, 5, 6, 11, 13].

The remainder of the paper is organized as follows: In Section 2 we
study the so-called transport or transportation problem and under very
mild conditions we show that the problem is consistent and solvable.
In Section 3 we present our main results concerning the approximation
scheme described above.

2 The transportation problem

The classical transportation problem (TP) is a linear program defined
as follows:

TP minimize
M∑

k=1

N∑

j=1

ckjλkj(2.1)

subject to :
N∑

j=1

λkj = ak, 1 6 k 6 M,(2.2)

M∑

k=1

λkj = bj , 1 6 j 6 N,(2.3)

λkj ≥ 0, 1 6 k 6 M, 1 6 j 6 N.(2.4)

The decision variables λkj represent the amounts shipped from sour-
ce k to destination j. The demand at destination j is bj , the supply
at source k is ak and ckj is the unit shipping cost from source k to
destination j.
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The transportation problem is said to be consistent if there exists
a matrix Λ = (λkj) that satisfies (2.2),(2.3) and (2.4). As an example,
when the total supply equals the total demand, we have that TP is
consistent; see Theorem 2.3.

Let

Λ =




λ11 λ12 ... λ1N

λ21 λ22 ... λ2N
...

λM1 λM2 ... λMN


 , C =




c11 c12 ... c1N

c21 c22 ... c2N
...

cM1 cM2 ... cMN


 ,

A =
(

1 1 . . . 1
)
1×N

, B =
(

1 1 . . . 1
)
1×M

,

a =
(

a1 a2 . . . aM

)
and b =

(
b1 b2 . . . bN

)
.

We use the following notation:

a ≥ 0 if ak ≥ 0 for all k = 1, 2, ..., M

and
a À 0 if ak > 0 for all k = 1, 2, ..,M.

We can then express the TP problem in matrix form as:

TP minimize 〈Λ, C〉(2.5)

subject to : AΛT = a, BΛ = b, Λ ≥ 0,(2.6)

where 〈Λ, C〉 =
M∑

k=1

N∑

j=1

λkjckj and ΛT is the transpose of Λ.

A matrix Λ is said to be a feasible solution for the TP problem if it
satisfies (2.6).

Remark 2.1 The space of M × N matrices is a normed space, with
norm

‖Λ‖ =
M∑

k=1

N∑

j=1

|Λkj |.
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Definition 2.2 A matrix Λ∗ is said to be an optimal solution to TP if
it is feasible and

〈Λ∗, C〉 = inf (TP) := inf{〈Λ, C〉|Λ is afeasible solution}.

TP is solvable if it has an optimal solution.

Theorem 2.3 If
M∑

k=1

ak =
N∑

j=1

bj, a À 0, b À 0 and C ≥ 0, then TP is

solvable.

Proof: Define

IF := {Λ|AΛT = a and BΛ = b, Λ ≥ 0}

and
S := {〈Λ, C〉|Λ ∈ IF}.

Let t :=
M∑

k=1

ak =
N∑

j=1

bj . Then it can be proved that

λij =
aibj

t
for all i = 1, 2, ...,M and j = 1, 2, ..., N

is a feasible solution for TP. Therefore IF and S are both nonempty.
Moreover, as ckj ≥ 0, S is bounded from below, which implies that
inf (TP) ∈ IR.

Let {Λn} be a minimizing sequence for TP; that is, each Λn is a
feasible solution for TP and

〈Λn, C〉 ↓ inf (TP) = inf S.(2.7)

Furthermore 〈Λn, C〉 ≤ 〈Λ0, C〉 for all n in N, where Λ0 is some feasible
solution for TP.

Since a À 0, b À 0 and Λn is feasible for all n, then it can be proved
that {Λn} is bounded in IRnm. Hence by the Theorem of Bolzano-
Weierstrass ([3], pp. 93), there is a subsequence {Λm} of {Λn} and a
matrix Λ∗ such that Λm → Λ∗.

Clearly, Λ 7→ 〈Λ, C〉 is a continuous function. Hence

〈Λm, C〉 → 〈Λ∗, C〉(2.8)
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and, by (2.7), we obtain

〈Λ∗, C〉 = inf (TP).

Thus, to complete the proof it suffices to show that Λ∗ is a feasible
solution for TP.

Since Λm is in IF, we have AΛt
m = a, BΛm = b and Λm ≥ 0. Also,

AΛt and BΛ are continuous functions in Λ, and so, by (2.8), AΛ∗ = a,
BΛ∗ = b and, in addition, by the convergence of {Λm} we have that
Λ∗ ≥ 0. Therefore, Λ∗ is a feasible solution. ¤

In next section we introduce the MT problem and show how can we
approximate it by transportation problems.

3 The mass-transfer problem

In the MT problem we are concerned with the following data are given:

a) two metric spaces X and Y endowed with the corresponding Borel
σ-algebras IB(X) and IB(Y );

b) A nonnegative measurable function c : X × Y → IR, and

c) A probability measure (p.m.) v1 on X, and a p.m. v2 on Y .

Moreover, let M(X×Y ) be the linear space of finite signed measures
on X × Y , endowed with the topology of weak convergence, and let
M+(X×Y ) be the convex cone of nonnegative measures in M(X×Y ).

If µ is in M(X × Y ), we denote by Π1µ and Π2µ the marginals (or
projections) of µ on X and Y , respectively; that is, for all A ∈ IB(X)
and B ∈ IB(Y )

Π1µ(A) := µ(A× Y ) Π2µ(B) := µ(X ×B).

Then, with 〈µ, c〉 :=
∫

cdµ, the MT problem can be stated as follows:

MT minimize 〈µ, c〉(3.1)
subject to : Π1µ = v1, Π2µ = v2, µ ∈ M+(X × Y ).(3.2)

A measure µ ∈ M(X × Y ) is said to be a feasible solution for the
MT problem if it satisfies (3.2) and 〈µ, c〉 is finite. The MT problem
is called consistent if the set of feasible solutions is nonempty, in which
case its (optimal) value is defined as

inf(MT) := inf{〈µ, c〉| µ is a feasible solution for MT}.
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It is said that the MT problem is solvable if there is a feasible solution
µ∗ that attains the optimal value. In this case, µ∗ is called an opti-
mal solution for the MT problem and the value inf(MT) is written as
min(MT) = 〈µ∗, c〉.
Remark 3.1 a) Since v1 and v2 are p.m.’s, a feasible solution for MT

is also a p.m.

b) If c is a bounded function, then the product measure µ := v1 × v2 is
a feasible solution.

The latter fact is not necessarily true if c is unbounded; see Example
1.2 in [12]. However, even for unbounded c, mild assumptions ensure
that the MT problem is consistent [12].

We will need either one of the following assumptions.

Assumption 3.2 a) X and Y are separable metric spaces.

b) The “cost” function c(x, y) is nonnegative, continuous and inf-com-
pact, which means that, for each r ∈ R, the set

Kr = {(x, y)|c(x, y) ≤ r}

is compact.

Assumption 3.3 a) X and Y are σ-compact and separable metric
spaces.

b) The “cost” function c(x, y) is nonnegative and continuous.

The following Theorem from [14] establishes that the MT problem
is solvable.

Theorem 3.4 If either Assumption 3.2 or 3.3 holds, then the MT prob-
lem is solvable.

Now we introduce a sequence of finite-dimensional linear programs
in the following way. By the proof of Proposition 6.3 in [13], there
are two sequences of probability measures {vi

1} on IB(X) and {vi
2} on

IB(Y ) with supports in finite sets {xi
1, ..., x

i
Mi+1} and {yi

1, ..., y
i
Ni+1},

respectively, such that {vi
1} converges weakly to v1 and {vi

2} converges
weakly to v2. In addition, {xi

1, ..., x
i
Mi+1} ⊂ X∞, {yi

1, ..., y
i
Ni+1} ⊂ Y∞

with X∞, Y∞ denumerable dense sets in X and Y , respectively.
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For each positive integer i, consider the following MT problem

MTi : minimize 〈µ, ci〉(3.3)
subject to : Π1µ = vi

1, Π2µ = vi
2, µ ≥ 0,(3.4)

where ci = min{c, i}.
Proposition 3.5 If µ is a feasible solution for MTi, then µ has a finite
support and, moreover,

supp(µ) ⊂ {xi
1, ..., x

i
Mi+1} × {yi

1, ..., y
i
Ni+1},

where supp(µ) means the support of µ.

Proof: Let S1 := supp(vi
1) and S2 := supp(vi

2). Then

(S1 × S2)c ⊂ (Sc
1 × Y ) ∪ (X × Sc

2),

which implies

0 ≤ µ[(S1 × S2)c] ≤ µ(Sc
1 × Y ) + µ(X × Sc

2)

= vi
1(S

c
1) + vi

2(S
c
2) = 0.

Therefore µ[(S1 × S2)c] = 0, i.e., supp(µ) ⊂ (S1 × S2). ¤
Let µi be a feasible solution for the MTi problem. Then µi is of the

form

µi(E) =
Mi+1∑

k=1

Ni+1∑

j=1

λi
kjδ(xi

k,yi
j)

(E) ∀ E ∈ IB(X × Y ),(3.5)

where δ(x,y) denotes the Dirac measure concentrated at (x, y) ∈ X × Y .
Since µi is a p.m.,

Mi+1∑

k=1

Ni+1∑

j=1

λi
kj = 1 and λi

kj ≥ 0(3.6)

∀ 1 ≤ k ≤ Mi + 1, 1 ≤ j ≤ Ni + 1.

In addition, (3.3) becomes

〈µi, ci〉 =
∫

cidµi =
Mi+1∑

k=1

Ni+1∑

j=1

λi
kjci(xi

k, y
i
j).(3.7)
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Let
ci
kj := ci(xi

k, y
i
j),

and let S1 and S2 be as in the proof of Proposition 3.5. To calculate the
marginals vi

1 and vi
2 on sets A ⊂ IB(X) and B ⊂ IB(Y ), respectively, it

suffices to calculate the marginals on A ∩ S1 and B ∩ S2. In particular,
for any fixed xi

k0
∈ X, by (3.4) and (3.5) we have:

vi
1({xi

k0
}) = Π1µi({xi

k0
})

= µi({xi
k0
} × Y )

=
Mi+1∑

k=1

Ni+1∑

j=1

λi
kjδ(xi

k,yi
j)

({xi
k0
} × Y )

=
Ni+1∑

j=1

λi
k0j .(3.8)

We define ai
k := vi

1({xi
k}) for all k = 1, 2, ..., Mi + 1.

Similarly,

vi
2({yi

j0}) = Π2µi({yi
j0})

= µi(X × {yi
j0})

=
Mi+1∑

k=1

Ni+1∑

j=1

λi
kjδ(xi

k,yi
j)

(X × {yi
j0})

=
Mi+1∑

k=1

λkj0 .(3.9)

We define bi
j := vi

2({yi
j}) for all j = 1, 2, ..., Ni + 1.

By (3.6),(3.8) and (3.9) we have that MTi is equivalent to the trans-
portation problem

TPi : minimize
Mi+1∑

k=1

Ni+1∑

j=1

ci
kjλ

i
kj(3.10)

subject to :
Ni+1∑

j=1

λi
kj = ai

k, 1≤k≤Mi+1(3.11)

Mi+1∑

k=1

λi
kj = bi

j , 1≤j≤Ni+1.(3.12)
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Since

Mi+1∑

k=1

ai
k =

Mi+1∑

k=1

vi
1({xi

k}) = 1 =
Ni+1∑

j=1

vi
2({yi

j}) =
Ni+1∑

j=1

bi
j ,

it follows from Theorem 2.3 that TPi is solvable for each i in IN.
Let µ∗i be an optimal solution for the TPi problem, that is,

µ∗i (·) =
Mi+1∑

k=1

Ni+1∑

j=1

λi
kjδ(xi

k,yi
j)

(·).

(Recall (3.5).) We can now state our main result as follows

Theorem 3.6 If either Assumption 3.2 or Assumption 3.3 holds, there
exists a subsequence {µ∗in} of {µ∗i } and a probability measure µ∗ such
that

a) {µ∗in} converges weakly to µ∗,

b) µ∗ is an optimal solution to the MT problem and

c) lim
n→∞〈µ

∗
in , cin〉 = lim

n→∞




Min+1∑

k=1

Nin+1∑

j=1

ci
kjλ

i
kj




= 〈µ∗, c〉 = min(MT).

Proof: The hypothesis (Assumption 3.2 or 3.3) implies that the se-
quence {µ∗i } is tight; see Lemma 2.4 and Remark 2.5 in [14]. Hence, by
Prohorov’s Theorem there is a subsequence {µ∗in} of {µ∗i } and a p.m.
µ∗ on IB(X × Y ), such that {µ∗in} converges weakly to µ∗.

Observe that µ∗in is a feasible solution to MTin . Hence

Π1µ
∗
in

= vin
1 and Π2µ

∗
in

= vin
2 ,

and by Lemma 2.7 in [14], we have that the marginals Π1µ
∗
in

and Π2µ
∗
in

converge to the marginals Π1µ
∗ and Π2µ

∗, respectively. This implies
that Π1µ

∗ = v1 and Π2µ
∗ = v2, that is, µ∗ is a feasible solution for the

MT problem.
By Theorem 3.4 there exists an optimal solution µ for the MT prob-

lem and by Theorem 6.4 in [13], there is a sequence {µin} of p.m.s on
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IB(X × Y ) such that {µin} converges weakly to µ, and µin is a feasi-
ble solution for TPin . Since µ is an optimal solution for MT and µ∗ is
feasible for MT, we have

〈µ, c〉 ≤ 〈µ∗, c〉.(3.13)

Now, for each i, we have

〈µi, ci〉 ≥ 〈µ∗i , ci〉,
and by Theorem 6.4 in [13], we have

〈µ, c〉 = lim
n→∞〈µin , cin〉 ≥ lim sup

n→∞
〈µ∗in , cin〉 ≥ 0(3.14)

Pick an arbitrary ε > 0. Since cn ↑ c, there exists an integer m such
that

〈µ∗, c〉 ≥ 〈µ∗, cm〉 ≥ 〈µ∗, c〉 − ε.(3.15)

For each in ≥ m we have

0 ≤ 〈µ∗in , cm〉 ≤ 〈µ∗in , cin〉,
and as µ∗in → µ∗ we obtain

〈µ∗, cm〉 = lim
n→∞〈µin , cm〉 ≤ lim sup

n→∞
〈µ∗in , cin〉.

Therefore, by (3.15), it follows that

〈µ∗, c〉 ≤ lim
n→∞〈µ

∗
in , cin〉+ ε.

Consequently, as ε was arbitrary,

〈µ∗, c〉 ≤ lim sup
n→∞

〈µ∗in , cin〉,

which together with (3.14) gives

〈µ∗, c〉 ≤ 〈µ, c〉.(3.16)

Thus, from (3.13) and (3.16) we obtain 〈µ, c〉 = 〈µ∗, c〉, that is, µ∗ is an
optimal solution for MT. ¤

Observe that the same reasoning of the former theorem, can be
applied for any subsequence {µ∗k} of {µ∗i } and we get that there are
a subsequence {µ∗l } of {µ∗k} and probability measure µ, such that µ∗l
converges weakly to µ. Therefore µ is also an optimal solution for MT
problem.

Then we have following theorem
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Theorem 3.7 If either Assumption 3.2 or 3.3 holds, then

lim
i→∞

〈µ∗i , c〉 = 〈µ∗, c〉 = min(MT).
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Universidad Veracruzana,
A.P. 270,
Xalapa, Ver., 91090,
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