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Noncooperative continuous-time

Markov games ∗

Héctor Jasso-Fuentes

Abstract

This work concerns noncooperative continuous-time Markov games
with Polish state and action spaces. We consider finite-horizon
and infinite-horizon discounted payoff criteria. Our aim is to give
a unified presentation of optimality conditions for general Markov
games. Our results include zero-sum and nonzero-sum games.
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1 Introduction

Continuous-time Markov games form a class of dynamic stochastic games
in which the state evolves as a Markov process. The class of Markov
games includes (deterministic) differential games, stochastic differential
games, jump Markov games and many others, but they are usually stud-
ied as separate, different, types of games. In contrast, we propose here a
unified presentation of optimality conditions for general Markov games.
In fact, we only consider noncooperative games but the same ideas can
be extended in an obvious manner to the cooperative case.

As already mentioned, our presentation and results hold for gen-
eral Markov games but we have to pay a price for such a generality;
namely, we restrict ourselves to Markov strategies, which depend only

∗Research partially supported by a CONACYT scolarship. This paper is part
of the author’s M. Sc. thesis presented at the Department of Mathematics of
CINVESTAV-IPN.

39
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on the current state. More precisely, at each decision time t, the players
choose their corresponding actions (independently and simultaneously)
depending only on the current state X(t) of the game. Hence, this ex-
cludes some interesting situations, for instance, some hierarchical games
in which some players “go first”.

Our references are mainly on noncooperative continuous-time games.
However, for cooperative games the reader may consult Filar/Petrosjan
[2], Gaidov [3], Haurie [5] and their references. For discrete time games
see, for instance, Basar/Oldsder [1], Gonzalez-Trejo et al. [4].

A remark on terminology: The Borel σ-algebra of a topological
space S is denoted by B(S). A complete and separable metric space is
called a Polish space.

2 Preliminaries

Throughout this section we let S be a Polish space, andX(·) = {X(t), t ≥
0} a S-valued Markov process defined on a probability space (Ω,F , IP).
Denote by IP(s, x, t, B) := IP(X(t) ∈ B|X(s) = x) for all t ≥ s ≥ 0,
x ∈ S and B ∈ B(S), the transition probability function of X(·).

2.1 Semigroups

Definition 2.1 Let M be the linear space of all real-valued measurable
functions v on Ŝ := [0,∞)× S such that∫

S
IP(s, x, t, dy) |v(s, y)| < ∞ for all 0 ≤ s ≤ t and x ∈ S.

For each t ≥ 0 and v ∈ M , we define a function Ttv on Ŝ as

Ttv(s, x) :=

∫
S
IP(s, x, s+ t, dy) v(s+ t, y).(1)

Proposition 2.2 The operators Tt, t ≥ 0, defined by (1), form a semi-
group of operators on M , that is,

(i) T0 = I, the identity, and

(ii) Tt+r = TtTr.

For a proof of this proposition see, for instance, Jasso-Fuentes [7], Propo-
sition 1.2.2.
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2.2 The extended generator

Definition 2.3 Let M0 ⊂ M be the family of functions v ∈ M for
which the following conditions hold:

a) limt↓0 Ttv(s, x) = v(s, x) for all (s, x) ∈ Ŝ;

b) there exist t0 > 0 and u ∈ M such that

Tt|v|(s, x) ≤ u(s, x) for all (s, x) ∈ Ŝ and 0 ≤ t ≤ t0.

Now let D(L) ⊂ M0 be the set of functions v ∈ M0 for which:

a) the limit

Lv(s, x) : = lim
t↓0

[Ttv(s, x)− v(s, x)]

t

= lim
t↓0

1

t

∫
S
IP(s, x, s+ t, dy)[v(s+ t, y)− v(s, x)](2)

exists for all (s, x) ∈ Ŝ,

b) Lv ∈ M0, and

c) there exist t0 > 0 and u ∈ M such that

|Ttv(s, x)− v(s, x)|
t

≤ u(s, x)

for all (s, x) ∈ Ŝ and 0 ≤ t ≤ t0.

The operator L in (2) will be referred to as the extended generator
of the semigroup Tt, and the set D(L) is called the domain of L.

The following lemma (which is proved in [7], Lemma 1.3.2, for in-
stance) summarizes some properties of L.

Lemma 2.4 For each v ∈ D(L), the following conditions hold:

a) d+

dt Ttv := limh↓0 h
−1[Tt+hv − Ttv] = TtLv,

b) Ttv(s, x)− v(s, x) =
∫ t
0 Tr(Lv)(s, x) dr,

c) if ρ > 0 and vρ(s, x) := e−ρsv(s, x), then vρ is in D(L) and

Lvρ(s, x) = e−ρs[Lv(s, x)− ρv(s, x)].
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2.3 Expected rewards

Let X(·) = {X(t), t ≥ 0} be as in the previous paragraphs, that is, a
Markov process with values in a Polish space S and with transition prob-
abilities IP(s, x, t, B) for all t ≥ s ≥ 0, x ∈ S and B ∈ B(S). Recalling
the Definitions 2.1 and 2.3 the semigroup defined in (1) becomes

Ttv(s, x) = IEsx[v(s+ t,X(s+ t))],

where IEsx(·) := IE[ · |X(s) = x] is the conditional expectation given
X(s) = x. Similarly, we can rewrite part b) of Lemma 2.4 as

IEsx[v(s+ t,X(s+ t))]− v(s, x) = IEsx

[∫ t

0
Lv(s+ r,X(s+ r))dr

]
(3)

for each v ∈ D(L). We shall refer to (3) as Dynkin’s formula. The
extended generator L of the semigroup {Tt} will also be referred to as
the extended generator of the Markov process X(·).

The following fact will be useful in later sections.

Proposition 2.5 Fix numbers ρ ∈ IR and τ > 0. Let R(s, x) and
K(s, x) be measurable functions on Sτ := [0, τ ]×S, and suppose that R
is in M0. If a function v ∈ D(L) satisfies the equation

ρv(s, x) = R(s, x) + Lv(s, x)(4)

on Sτ , with the “terminal” condition

v(τ, x) = K(τ, x),(5)

then, for every (s, x) ∈ Sτ ,

v(s, x) = IEsx

[∫ τ

s
e−ρ(t−s)R(t,X(t))dt+ e−ρ(τ−s)K(τ,X(τ))

]
.(6)

If the equality in (4) is replaced with the inequality ”≤” or ”≥”, then
the equality in (6) is replaced with the same inequality, that is, ”≤” or
”≥” respectively.

Proof: Suppose that v satisfies (4) and let vρ(s, x) := e−ρsv(s, x).
Then, by (4) and Lemma 2.4 c), we obtain

Lvρ(s, x) = e−ρs[Lv(s, x)− ρv(s, x)]

= −e−ρsR(s, x).(7)
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Therefore, applying Dynkin’s formula (3) to vρ and using (7),

IEsx

[
e−ρ(s+t)v(s+ t,X(s+ t))

]
− e−ρsv(s, x)

= −IEsx

[∫ t

0
e−ρ(s+r)R(s+ r,X(s+ r))dr

]
(8)

= −IEsx

[∫ s+t

s
e−ρrR(r,X(r))dr

]
.

The latter expression, with s+ t = τ , and (5) give

IEsx
[
e−ρτK(τ,X(τ))

]
− e−ρsv(s, x)

= −IEsx

[∫ τ

s
e−ρrR(r,X(r))dr

]
.

Finally, multiply both sides of this equality by eρs and then rearrange
terms to obtain (6).

Concerning the last statement in the proposition, suppose that in-
stead of (4) we have ρv ≥ R+ Lv. Then (7) becomes

−e−ρsR(s, x) ≥ Lvρ(s, x)

and the same calculations in the previous paragraph show that the
equality in (6) should be replaced with “≥”. For “≤”, the result is
obtained similarly. 2

Observe that the number ρ in Proposition 2.5 can be arbitrary, but
in most applications in later sections we will require either ρ = 0 or
ρ > 0. In the latter case ρ is called a “discount factor”.

On the other hand, if the function R(s, x) is interpreted as a “reward
rate”, then (6) represents an expected total reward during the time
interval [s, τ ] with initial condition X(s) = x and terminal reward K.
This expected reward will be associated with finite-horizon games. In
contrast, the expected reward in (11), below, will be associated with
infinite-horizon games.

Proposition 2.6 Let ρ > 0 be a given number, and R ∈ M0 a function
on Ŝ := [0,∞)× S . If a function v ∈ D(L) satisfies

ρv(s, x) = R(s, x) + Lv(s, x) for all (s, x) ∈ Ŝ(9)

and is such that, as t → ∞,

e−ρtTtv(s, x) = e−ρtIEsx [v(s+ t,X(s+ t))] → 0,(10)
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then

v(s, x) = IEsx

[∫ ∞

s
e−ρ(t−s)R(t,X(t))dt

]
(11)

=

∫ ∞

0
e−ρtTtR(s, x)dt.

Moreover, if the equality in (9) is replaced with the inequality “≤” or
“≥”, then the equality in (11) should be replaced with the same inequa-
lity.

Proof: Observe that the equations (9) and (4) are essentially the same,
the only difference being that the former is defined on Ŝ and the latter
on Sτ . At any rate, the calculations in (7)-(8) are also valid in the
present case. Hence, multiplying both sides of (8) by eρs and then
letting t → ∞ and using (10) we obtain (11). The remainder of the
proof is as in Proposition 2.5. 2

3 The game model and strategies

For notational case, we shall restrict ourselves to the two-player situ-
ation. However, the extension to any finite number ≥ 2 of players is
completely analogous.

3.1 The game model

Some of the main features of a (two-player) continuous-time Markov
game can be described by means of the game model

GM := {S, (Ai, Ri)i=1,2, L
a1,a2}(12)

with the following components.

• S denotes the game’s state space, which is assumed to be a Polish
space.

• Associated with each player i = 1, 2, we have

(Ai, Ri)(13)

where Ai is a Polish space that stands for the action space (or
control set) for player i. Let

A := A1 ×A2, and K := S ×A.
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The second component in (13) is a real-valued measurable function
Ri on

[0,∞)×K = [0,∞)× S ×A = Ŝ ×A (Ŝ := [0,∞)× S),

which denotes the reward rate function for player i. (Observe
that Ri(s, x, a1, a2) depends on the actions (a1, a2) ∈ A of both
players.)

• For each pair a = (a1, a2) ∈ A there is a linear operator La

with domain D(La), which is the extended generator of a S-valued
Markov process with transition probability IPa(s, x, t, B).

The game model (12) is said to be time-homogeneous if the re-
ward rates are time-invariant and the transition probabilities are time-
homogeneous, that is,

Ri(s, x,a) = Ri(x,a) and IPa(s, x, t, B) = IPa(t− s, x,B).

Summarizing, the game model (12) tells us where the game lives
(the state space S) and how it moves (according to the players’ actions
a = (a1, a2) and the Markov process associated to La). The reward
rates Ri are used to define the payoff function that player i (i = 1, 2)
wishes to “optimize”— see for instance (15) and (16) below. To do this
optimization each player uses, when possible, suitable “strategies”, such
as those defined next.

3.2 Strategies

We will only considerMarkov (also known as feedback) strategies, namely,
for each player i = 1, 2, measurable functions πi from Ŝ := [0,∞) × S
to Ai. Thus, πi(s, x) ∈ Ai denotes the action of player i prescribed by
the strategy πi if the state is x ∈ S at time s ≥ 0. In fact, we will
restrict ourselves to classes Π1, Π2 of Markov strategies that satisfy the
following.

Assumption 3.1 For each pair π = (π1, π2) ∈ Π1 × Π2, there exists a
strong Markov process Xπ(·) = {Xπ(t), t ≥ 0} such that:

a) Almost all the sample paths of Xπ(·) are right-continuous, with
left-hand limits, and have only finitely many discontinuities in any
bounded time interval.
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b) The extended generator Lπ of Xπ(·) satisfies that

Lπ = La if (π1(s, x), π2(s, x)) = (a1, a2) = a.

The set Π1×Π2 in Assumption 3.1 is called the family of admissible
pairs of Markov strategies. A pair (π1, π2) ∈ Π1 × Π2 is said to be
stationary if πi(s, x) ≡ πi(x) does not depend on s ≥ 0.

Clearly, the function spaces M ⊃ M0 ⊃ D(L) introduced in Section
2 depend on the pair π = (π1, π2) ∈ Π1 × Π2 of strategies being used,
because so does IPπ. Hence, these spaces will now be written as Mπ,
Mπ

0 , D(Lπ), and they are supposed to verify the following conditions.

Assumption 3.2 a) There exist nonempty spaces M ⊃ M0 ⊃ D,
which do not depend on π, such that, for all π = (π1, π2) ∈ Π1×Π2

M ⊂ Mπ , M0 ⊂ Mπ
0 , D ⊂ D(Lπ)

and, in addition, the operator Lπ is the closure of its restriction
to D.

b) For π = (π1, π2) ∈ Π1×Π2 and i = 1, 2, the reward rate Ri(s, x, a1, a2)
is such that Rπ

i is in M0, where

Rπ
i (s, x) := Ri(s, x, π1(s, x), π2(s, x)).

Sometimes we shall use the notation

Rπ
i (s, x) := Ri(s, x, π1, π2) for π = (π1, π2), i = 1, 2.(14)

If the game model is time-homogeneous and the pair (π1, π2) is station-
ary, then (14) reduces to

Rπ
i (x) := Ri(x, π1(x), π2(x)) = Ri(x, π1, π2).

Throughout the remainder of this paper we consider the game model
GM in (12) under Assumptions 3.1 and 3.2.

4 Noncooperative equilibria

Let GM be as in (12). In this work, we are concerned with the following
two types of payoff functions, where we use the notation (14). For each
pair of strategies (π1, π2) ∈ Π1 ×Π2 and each player i = 1, 2:
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• The finite-horizon payoff

V i
τ (s, x, π1, π2) : = IEπ1,π2

sx

[∫ τ

s
e−ρ(t−s)Ri(t,X(t), π1, π2)dt

(15)

+e−ρ(τ−s)Ki(τ,X(τ)) ]

where 0 ≤ s ≤ τ , x ∈ S, Ki is a function in M (the space in
Assumption 3.2 a)), and ρ ≥ 0 is a “discount factor”. The time
τ > 0 is called the game’s horizon or “terminal time”, and Ki is a
“terminal reward”.

• The infinite-horizon discounted payoff

V i(s, x, π1, π2) := IEπ1,π2
sx

[∫ ∞

s
e−ρ(t−s)Ri(t,X(t), π1, π2)dt

]
(16)

where s ≥ 0, x ∈ S, and ρ > 0 is a (fixed) discount factor.

Each player i = 1, 2 wishes to “optimize” his payoff in the following
sense.

Definition 4.1 For i = 1, 2, let V i
τ be as in (15), and define Sτ :=

[0, τ ] × S. A pair (π∗
1, π

∗
2) ∈ Π1 × Π2 of admissible strategies is said to

be a noncooperative equilibrium, also known as a Nash equilibrium, if
for all (s, x) ∈ Sτ

V 1
τ (s, x, π

∗
1, π

∗
2) ≥ V 1

τ (s, x, π1, π
∗
2) for all π1 ∈ Π1(17)

and
V 2
τ (s, x, π

∗
1, π

∗
2) ≥ V 2

τ (s, x, π
∗
1, π2) for all π2 ∈ Π2.(18)

Hence, (π∗
1, π

∗
2) is a Nash equilibrium if for each i = 1, 2, π∗

i maxi-
mizes over Πi the payoff function V i

τ of player i when the other player,
say j ̸= i, uses the strategy π∗

j .
For the infinite-horizon payoff function in (16), the definition of Nash

equilibrium is the same as in Definition 4.1 with V i and Ŝ := [0,∞)×S
in lieu of V i

τ and Sτ , respectively.

Zero-sum games. For i = 1, 2, let Fi(s, x, π1, π2) be the payoff func-
tion in either (15) or (16). The game is called a zero-sum game if

F1(s, x, π1, π2) + F2(s, x, π1, π2) = 0 for all s, x, π1, π2,
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that is, F1 = −F2. Therefore, if we define F := F1 = −F2, it follows
from (17) and (18) that player 1 wishes to maximize F (s, x, π1, π2) over
Π1, whereas player 2 wishes to minimize F (s, x, π1, π2) over Π2, so (17)
and (18) become

F (s, x, π1, π
∗
2) ≤ F (s, x, π∗

1, π
∗
2) ≤ F (s, x, π∗

1, π2)(19)

for all π1 ∈ Π1 and π2 ∈ Π2, and all (s, x). In this case the Nash
equilibrium (π∗

1, π
∗
2) is called a saddle point.

In the zero-sum case, the functions

L(s, x) := sup
π1∈Π1

inf
π2∈Π2

F (s, x, π1, π2)(20)

and

U(s, x) := inf
π2∈Π2

sup
π1∈Π1

F (s, x, π1, π2)(21)

play an important role. The function L(s, x) is called the game’s lower
value (with respect to the payoff F (s, x, π1, π2)) and U(s, x) is the game’s
upper value. Clearly, we have

L(s, x) ≤ U(s, x) for all (s, x).(22)

If the upper and lower values coincide, then the game is said to have a
value, and the value of the game, call it V(s, x) is the common value of
L(s, x) and U(s, x), i.e.

V(s, x) := L(s, x) = U(s, x) for all (s, x).

On the other hand, if (π∗
1, π

∗
2) satisfies (19), a trivial calculation

yields

U(s, x) ≤ F (s, x, π∗
1, π

∗
2) ≤ L(s, x) for all (s, x),

which together with (22) gives the following.

Proposition 4.2 If the zero-sum game with payoff function F has a
saddle point (π∗

1, π
∗
2), then the game has the value

V(s, x) = F (s, x, π∗
1, π

∗
2) for all (s, x).

The next proposition gives conditions for a pair of strategies to be
a saddle point.
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Proposition 4.3 Suppose that there is a pair of admissible strategies
π∗
1, π

∗
2 that satisfy, for all (s, x),

F (s, x, π∗
1, π

∗
2) = sup

π1∈Π1

F (s, x, π1, π
∗
2)

(23)

= inf
π2∈Π2

F (s, x, π∗
1, π2).

Then (π∗
1, π

∗
2) is a saddle point.

Proof: Let (π∗
1, π

∗
2) be a pair of admissible strategies that satisfy (23).

Then, for all (s, x), from the first equality in (23) we obtain

F (s, x, π∗
1, π

∗
2) ≥ F (s, x, π1, π

∗
2) for all π1 ∈ Π1,

which is the first inequality in (19). Similarly, the second equality in
(23) yields the second inequality in (19), and it follows that (π∗

1, π
∗
2) is

a saddle point. 2

In the next section we give conditions for a pair of strategies to be a
saddle point, and in Section 6 we study the so-called nonzero-sum case
as in (17), (18).

5 Zero-sum games

In this section we study the existence of saddle points for the finite-
horizon and infinite-horizon payoffs in (15) and (16), respectively.

Finite-horizon payoff

As in (19)-(21), the finite-horizon payoff (15), in the zero-sum case,
does not depend on i = 1, 2. Hence, we have the payoff

Vτ (s, x, π1, π2) : = IEπ1,π2
sx

[∫ τ

s
e−ρ(t−s)R(t,X(t), π1, π2)dt

+e−ρ(τ−s)K(τ,X(τ)) ] .

This function Vτ plays now the role of F in (19)-(23). Recall that the
Assumptions 3.1 and 3.2 are supposed to hold.
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Theorem 5.1 Consider ρ ∈ IR and τ > 0 fixed. Moreover let R(s, x, a1, a2)
and K(s, x, a1, a2) be measurable functions on Sτ × A, where Sτ :=
[0, τ ] × S and A := A1 × A2. Suppose that for each pair (π1, π2) ∈
Π1×Π2, the function R(s, x, π1, π2) is in M0. In addition, suppose that
there is a function v(s, x) ∈ D and a pair of strategies (π∗

1, π
∗
2) ∈ Π1×Π2

such that, for all (s, x) ∈ Sτ ,

ρv(s, x) = inf
π2∈Π2

{R(s, x, π∗
1, π2) + Lπ∗

1 ,π2v(s, x)}(24)

= sup
π1∈Π1

{R(s, x, π1, π
∗
2) + Lπ1,π∗

2v(s, x)}(25)

= R(s, x, π∗
1, π

∗
2) + Lπ∗

1 ,π
∗
2v(s, x)(26)

with the boundary condition

v(τ, x) = K(τ, x) for all x ∈ S.(27)

Then

a) v(s, x) = Vτ (s, x, π
∗
1, π

∗
2) for all (s, x) ∈ Sτ ;

b) (π∗
1, π

∗
2) is a saddle point and v(s, x) is the value of the game.

Proof:

a) Comparing (26)-(27) with (4)-(5), we conclude that part a) follows
from Proposition 2.5.

b) Assume for a moment that, for all (s, x) ∈ Sτ and all pairs (π1, π2)
of admissible strategies, we have

Vτ (s, x, π1, π
∗
2) ≤ v(s, x) ≤ Vτ (s, x, π

∗
1, π2)(28)

If this is indeed true, then b) will follow from part a) together with (19)
and Proposition 4.2. Hence it suffices to prove (28).

To this end, let us call F (s, x, π1, π2) the function inside the brackets
in (24)-(25), i.e.

F (s, x, π1, π2) := R(s, x, π1, π2) + Lπ1,π2v(s, x).(29)

Interpreting this function as the payoff of a certain game, it follows
from (24)-(26) and the Proposition 4.3 that the pair (π∗

1, π
∗
2) is a saddle

point, that is, F (s, x, π∗
1, π

∗
2) = ρv(s, x) satisfies (19). More explicitly,
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from (29) and the equality F (s, x, π∗
1, π

∗
2) = ρv(s, x), (19) becomes: for

all π1 ∈ Π1 and π2 ∈ Π2,

R(s, x, π1, π
∗
2) + Lπ1,π

∗
2 v(s, x) ≤ ρv(s, x) ≤ R(s, x, π∗

1 , π2) + Lπ∗
1 ,π2v(s, x).

These two inequalities together with the second part of Proposition 2.5
give (28). 2

Infinite-horizon discounted payoff

We now consider the infinite-horizon payoff in (16), which in the
zero-sum case can be interpreted as

V (s, x, π1, π2) = IEπ1,π2
sx

[∫ ∞

s
e−ρ(t−s)R(t,X(t), π1, π2)dt

]
.

Exactly the same arguments used in the proof of Theorem 5.1 but
replacing Proposition 2.5 with Proposition 2.6, give the following result
in the infinite-horizon case.

Theorem 5.2 Suppose ρ > 0. Let R(s, x, a1, a2) be as in Assumption
3.2 b). Suppose that there exist a function v ∈ D and a pair of strategies
(π∗

1, π
∗
2) ∈ Π1 ×Π2 such that, for all (s, x) ∈ Ŝ := [0,∞)× S,

ρv(s, x) = inf
π2∈Π2

{R(s, x, π∗
1, π2) + Lπ∗

1 ,π2v(s, x)}

= sup
π1∈Π1

{R(s, x, π1, π
∗
2) + Lπ1,π∗

2v(s, x)}

= R(s, x, π∗
1, π

∗
2) + Lπ∗

1 ,π
∗
2v(s, x)(30)

and, moreover, for all (s, x) ∈ Ŝ and (π1, π2) ∈ Π1 ×Π2,

e−ρtIEπ1,π2
sx [v(s+ t,X(s+ t))] → 0 as t → ∞.(31)

Then

a) v(s, x) = V (s, x, π∗
1, π

∗
2) for all (s, x) ∈ Ŝ;

b) (π∗
1, π

∗
2) is a saddle point for the infinite-horizon discounted payoff,

and v(s, x) is the value of the game.

Proof: Comparing (30)-(31) with (9)-(10) we can use Proposition 2.6
to obtain a).

To obtain b), we follow the same steps used in the proof of Theorem
5.1 but replacing Proposition 2.5 with Proposition 2.6, and Sτ with Ŝ. 2
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6 Nonzero-sum games

An arbitrary game which does not satisfy the zero-sum condition is
called a nonzero-sum game. In this section we are concerned with the
existence of Nash equilibria for nonzero-sum continuous-time Markov
games with the payoff functions (15) and (16).

Finite-horizon payoff

For i = 1, 2, let V i
τ (s, x, π1, π2) be the finite-horizon payoff in (15).

In this setting, the following theorem gives sufficient conditions for the
existence of a Nash equilibrium — see Definition 4.1.

Theorem 6.1 Suppose that for i = 1, 2, there are functions vi(s, x) in
D and strategies π∗

i ∈ Πi that satisfy, for all (s, x) ∈ Sτ , the equations

ρv1(s, x) = max
π1∈Π1

{R1(s, x, π1, π
∗
2) + Lπ1,π∗

2v1(s, x)}

(32)

= R1(s, x, π
∗
1, π

∗
2) + Lπ∗

1 ,π
∗
2v1(s, x)

and

ρv2(s, x) = max
π2∈Π2

{R2(s, x, π
∗
1, π2) + Lπ∗

1 ,π2v2(s, x)}

(33)

= R2(s, x, π
∗
1, π

∗
2) + Lπ∗

1 ,π
∗
2v2(s, x),

as well as the boundary (or “terminal”) conditions

v1(τ, x) = K1(τ, x) and v2(τ, x) = K2(τ, x) for all x ∈ S.(34)

Then (π∗
1, π

∗
2) is a Nash equilibrium and for each player i = 1, 2 the

expected payoff is

vi(s, x) = V i
τ (s, x, π

∗
1, π

∗
2) for all (s, x) ∈ Sτ .(35)

Proof: From the second equality in (32) together with the first bound-
ary condition in (34), the Proposition 2.5 gives (35) for i = 1. A similar
argument gives of course (35) for i = 2.

On the other hand, from the first equality in (32) we obtain

ρv1(s, x) ≥ R1(s, x, π1, π
∗
2) + Lπ1,π∗

2v1(s, x) for all π1 ∈ Π1.
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Thus using again Proposition 2.5 we obtain

v1(s, x) ≥ V 1
τ (s, x, π1, π

∗
2) for all π1 ∈ Π1,

which combined with (35) for i = 1 yields (17). A similar argument
gives (18) and the desired conclusion follows. 2

Infinite-horizon discounted payoff

Let us now consider the infinite-horizon payoff V i(s, x, π1, π2) in
(16). The corresponding analogue of Theorem 6.1 is as follows.

Theorem 6.2 Suppose that, for i = 1, 2, there are functions vi(s, x) ∈
D and strategies π∗

i ∈ Πi that satisfy, for all (s, x) ∈ Ŝ, the equations
(32) and (33) together with the condition

e−ρtT π1,π2
t vi(s, x) → 0 as t → ∞

for all π1 ∈ Π1, π2 ∈ Π2, i = 1, 2, and (s, x) ∈ Ŝ. Then (π∗
1, π

∗
2) is a

Nash equilibrium for the infinite-horizon discounted payoff (16) and the
expected payoff is

vi(s, x) = Vi(s, x, π
∗
1, π

∗
2) for all (s, x) ∈ Ŝ, i = 1, 2.

We omit the proof of this theorem because it is essentially the same
as the proof of Theorem 6.1 (using Proposition 2.6 in lieu of Proposition
2.5).

7 Concluding remarks

In this paper we have presented a unified formulation of continuous-time
Markov games, similar to the one-player (or control) case in Hernández-
Lerma[6]. This formulation is quite general and it includes practically
any kind of Markov games, but of course it comes at price because we
have restricted ourselves to Markov strategies, which are memoryless.
In other words, our players are not allowed to use past information;
they base their decisions on the current state only. This is a serious
restriction that needs to be eliminated, and so it should lead to future
work.
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