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Approximation of general optimization problems∗

Jorge Álvarez-Mena Onésimo Hernández-Lerma†

Abstract

This paper concerns the approximation of a general optimiza-
tion problem (OP) for which the cost function and the constraints
are defined on a Hausdorff topological space. This degree of gen-
erality allows us to consider OPs for which other approximation
approaches are not applicable. First we obtain convergence re-
sults for a general OP, and then we present two applications of
these results. The first application is to approximation schemes
for infinite-dimensional linear programs. The second is on the ap-
proximation of the optimal value and the optimal solutions for the
so-called general capacity problem in metric spaces.
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1 Introduction

A constrained optimization problem (OP) is, in general, difficult to
solve in closed form, and so one is naturally led to consider ways to
approximate it. This in turn leads to obvious questions: how ”good”
are the approximations? Do they ”converge” in some suitable sense?
These are the questions studied in this paper for a general constrained
OP, where general means that the cost function and the constraints
are defined on a Hausdorff topological space. This degree of generality
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is important because then our results are applicable to large classes
of OPs, even in infinite-dimensional spaces. For instance, as shown in
Section 3, we can deal with approximation procedures for infinite linear
programming problems in vector spaces with (dual) topologies which
are Hausdorff but, say, are not necessarily metrizable.

To be more specific, consider a general constrained (OP)

IP∞ : minimize {f∞(x) : x ∈ F∞},

and a sequence of approximating problems

IPn : minimize {fn(x) : x ∈ Fn}.

(The notation is explained in section 2.) The questions we are interested
in are:

(i) the convergence of the sequence of optimal values {min IPn} —or
subsequences thereof— to min IP∞, and

(ii) the convergence of sequences of optimal solutions of {IPn} —or
subsequences thereof— to optimal solutions of IP∞.

We give conditions under which the convergence in (i) and (ii) holds
—see Theorem 2.3. We also develop two applications of these results.
The first one is on aggregation (of constraints) schemes to approximate
infinite-dimensional linear programs (l.p.’s). In the second application
we study the approximation of the optimal value and the optimal solu-
tions for the so-called general capacity (GC) problem in metric spaces.

This paper is an extended version of [2] which presents the main
theoretical results concerning (i) and (ii), including of course detailed
proofs. Here, we are mainly interested in the applications mentioned
in the previous paragraph. The main motivation for this paper was
that the convergence in (i) and (ii) is directly related to some of our
work on stochastic control and Markov games [1, 3], but in fact general
OPs appear in many branches of mathematics, including probability
theory, numerical analysis, optimal control, game theory, mathematical
economics and operations research, to name just a few [4, 5, 12, 13, 14,
15, 16, 17, 18, 19, 21, 22, 23].

The problem of finding conditions under which (i) and (ii) hold is
of great interest, and it has been studied in many different settings —
see e.g. [7, 8, 11, 14, 15, 16, 17, 19, 21, 22, 23] and their references. In
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particular, the problem can be studied using the notion of Γ-convergence
(or epi-convergence) of sequences of functionals [6, 10]. However, the
approach used in this paper is more direct and generalizes several known
results [6, 10, 11, 19, 21, 22] —see Remark 2.4. Even more, Example 4.7
shows that our assumptions are strictly weaker than those considered in
the latter references. Namely, in Example 4.7 we study a particular GC
problem in which our assumptions are satisfied, but the assumptions
considered in those references fail to hold. The GC problem has been
previously analyzed in e.g. [4, 5, 13] from different viewpoints.

The remainder of the paper is organized as follows. In section 2
we present our main results on the convergence and approximation of
general OPs. These results are applied in section 3 to the aggregation
schemes introduced in [15] to approximate infinite l.p.’s. In section 4
our results are applied to the GC problem, and a particular case of the
GC problem is analyzed.

2 Convergence of general OPs

We shall use the notation IN := {1, 2, . . .}, IN := IN ∪ {∞} and
IR := IR ∪ {∞,−∞}.

Let X be a Hausdorff topological space. For each n ∈ IN, consider a
function fn : X → IR, a set Fn ⊂ X , and the optimization problem

IPn : Minimize fn(x)

subject to : x ∈ Fn.

We call Fn the set of feasible solutions for IPn. If Fn is nonempty, the
(optimum) value of IPn is defined as inf IPn := inf{fn(x) | x ∈ Fn};
otherwise, inf IPn := +∞. The problem IPn is said to be solvable if
there is a feasible solution x∗ that achieves the optimum value. In this
case, x∗ is called an optimal solution for IPn, and the value inf IPn is then
written as min IPn = fn(x

∗). We shall denote by Mn the minimum set,
that is, the set of optimal solutions for IPn.

To state our assumptions we will use Kuratowski’s [20] concept of
outer and inner limits of {Fn}, denoted by OL{Fn} and IL{Fn}, re-
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spectively, and defined as follows.

OL{Fn} := {x ∈ X | x = limi→∞ xni , where {ni} ⊂ IN

is an increasing sequence such that xni ∈ Fni for all i}.

Thus a point x ∈ X is in OL{Fn} if x is an accumulation point of a
sequence {xn} with xn ∈ Fn for all n. On the other hand, if x is the
limit of the sequence {xn} itself, then x is in the inner limit IL{Fn},
i.e.

IL{Fn} := {x ∈ X | x = limn→∞ xn,

where xn ∈ Fn for all but a finite number of n′s}.

In these definitions we may, of course, replace {Fn} with any other
sequence of subsets of X . Also note that IL{·} ⊂ OL{·}.

We shall consider two sets of hypotheses.

Assumption 2.1

(a) The minimum sets Mn satisfy that

(1) OL{Mn} ⊂ F∞.

(b) If xni is in Mni for all i and xni → x (so that x is in OL{Mn}),
then

(2) lim inf
i→∞

fni(xni) ≥ f∞(x).

(c) For each x ∈ F∞ there exist N ∈ IN and a sequence {xn} with
xn ∈ Fn for all n ≥ N , and such that xn → x and lim

n→∞
fn(xn) =

f∞(x).

Assumption 2.2 Parts (b) and (c) are the same as in Assumption 2.1.
Moreover

(a) The minimum sets Mn satisfy that

(3) IL{Mn} ⊂ F∞.
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Note that Assumption 2.1(c) implies, in particular, F∞ ⊂ IL{Fn},
but the equality does not hold necessarily. In fact, in section 4 we give
an example in which Assumption 2.1 is satisfied, in particular F∞ ⊂
IL{Fn}, but F∞ ̸= IL{Fn} (see Example 4.7).

On the other hand, note that Assumptions 2.2 (a),(c) yield that

IL{Mn} ⊂ F∞ ⊂ IL{Fn}.

Theorem 2.3 (a) If Assumption 2.1 holds, then

(4) OL{Mn} ⊂ M∞.

In other words, if {xn} is a sequence of minimizers of {IPn}, and a
subsequence {xni} of {xn} converges to x ∈ X, then x is optimal for
IP∞. Furthermore, the optimal values of IPni converge to the optimal
value of IP∞, that is,

(5) min IPni = fni(xni) → f∞(x) = min IP∞.

(b) Suppose that Assumption 2.2 holds. Then

IL{Mn} ⊂ M∞.

If in addition IL{Mn} is nonempty, then

(6) min IPn → min IP∞.

Proof: We only prove (a) because the proof of (b) is quite similar.

To prove (a), let x ∈ X be in the outer limit OL{Mn}. Then there
is a sequence {ni} ⊂ IN and xni ∈ Mni for all i such that

(7) xni → x.

Moreover, by Assumption 2.1(a), x is in F∞. To prove that x is in M∞,
choose an arbitrary x′ ∈ F∞ and let {x′n} and N be as in Assumption
2.1(c) for x′, that is, x′n is in Fn for all n ≥ N , x′n → x′, and fn(x

′
n) →

f∞(x′). Furthermore, if {ni} ⊂ IN is as in (7), then the subsequence
{x′ni

} of {x′n} also satisfies

(8) x′ni
is in Fni , x′ni

→ x′, and fni(x
′
ni
) → f∞(x′).
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Combining the latter fact with Assumption 2.1(b) and the optimality
of each xni we get

f∞(x) ≤ lim inf
i→∞

fni(xni) (by (2))

≤ lim inf
i→∞

fni(x
′
ni
)

= f∞(x′) (by (8)).

Hence, as x′ ∈ F∞ was arbitrary, it follows that x is in M∞, that is,
(4) holds.

To prove (5), suppose again that x is in OL{Mn} and let xni ∈ Mni

be as in (7). By Assumption 2.1(c), there exists a sequence x′ni
∈ Fni

that satisfies (8) for x instead of x′; thus

f∞(x) ≤ lim inf
i→∞

fni(xni) (by (2))

≤ lim sup
i→∞

fni(xni)

≤ lim sup
i→∞

fni(x
′
ni
)

= f∞(x) (by (8)).

This proves (5). 2

In Theorem 2.3 it is not assumed the solvability of each IPn. Thus
OL{Mn} might be empty; in fact, it might be empty even if each
IPn is solvable. In this case, the (convergence of minimizers) inclusion
(4) trivially holds. In the convergence of the optimal values (5) and
(6), unlike the convergence of minimizers, it is implicitly assumed that
OL{Mn} is nonempty.

Remark 2.4 (i) Parts (a) and (b) of Theorem 2.3 generalize in par-
ticular some results in [21, 22] and [11, 19], respectively. Indeed, using
our notation, in [11, 19, 21, 22] it is assumed that the cost functions fn
are continuous and converge uniformly to f∞. On the other hand, with
respect to the feasible sets Fn, in [11] it is assumed that IL{Fn} = F∞,
whereas in [19, 21, 22] it is required that Fn → F∞ in the Hausdorff
metric. These hypotheses trivially yield the following conditions:

(C1) The inner and/or the outer limit of the feasible sets Fn coincide
with F∞, i.e.

(9) IL{Fn} = F∞
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or

(10) OL{Fn} = IL{Fn} = F∞.

(C2) For every x in X and for every sequence {xn} in X converging to
x, it holds that

(11) lim
n→∞

fn(xn) = f∞(x).

However, instead of (10) and (11) we require (the weaker) Assump-
tion 2.1, and instead of (9) and (11) we require (the weaker) Assumption
2.2.

(ii) Theorem 2.3 generalizes the results in [6, 10], where it is used
the notion of Γ-convergence. Indeed, [6, 10] study problems of the form

(12) min
x∈X

Fn(x).

Each of our problems IPn can be put in the form (12) by letting

Fn(x) :=

{
fn(x) if x ∈ Fn,
∞ if x /∈ Fn,

and then, when the space X is first countable, the assumptions in [6,
10] can be translated to this context as follows: the sequence {Fn} Γ-
converges to F∞ —see Theorems 7.8 and 7.18 in [10]. On the other
hand, when X is first countable, the sequence {Fn} Γ-converges to F∞
if and only if

(C3) For every x in X and for every sequence {xn} in X converging to
x, it holds that

lim inf
n→∞

Fn(xn) ≥ F∞(x).

(C4) For every x in X there exists a sequence {xn} in X converging to
x such that

lim
n→∞

Fn(xn) = F∞(x).

See Proposition 8.1 in [10]. It is natural to assume that fn(x) < ∞
for each x ∈ Fn and n ∈ IN, and that F∞ is nonempty. In this case,
(C3) implies part (b) of Assumptions 2.1 and 2.2, (C4) implies part (c),
and (C3) together with (C4) imply part (a). Indeed, the last statement
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can be proved as follows. Let x ∈ X be in OL{Mn}. Then there is a
sequence {ni} ⊂ IN and xni ∈ Mni for all i such that xni → x. Now,
as F∞ is nonempty we can take x′ in F∞. For this x′, let {x′n} ∈ X be
as in (C4), so that

F∞(x) ≤ lim inf
i→∞

Fni(xni) (by (C3))

≤ lim inf
i→∞

Fni(x
′
ni
) (because xni is in Mni)

= lim
i→∞

Fn(x
′
n) (by (C4))

= F∞(x′) < ∞ (by (C4)).

Hence x is in F∞.

On the other hand, if in addition we assume that fn(x) ≤ K for all
x ∈ Fn, n ∈ IN and someK ∈ IR, then (C3) and (C4) imply (10). In fact,
(C4) implies the inclusion F∞ ⊂ IL{Fn} ⊂ OL{Fn}, and (C3) together
with the uniform boundedness condition imply the reverse inclusion.

In the next two sections we present applications of Theorem 2.3. We
also show, in Example 4.7, a particular problem in which Assumption
2.1 is satisfied, but the assumptions considered in [6, 10, 11, 19, 21, 22]
do not hold.

3 Approximation schemes for l.p.’s

As a first application of Theorem 2.3, in this section we consider the
aggregation (of constraints) schemes introduced in [15] to approximate
infinite linear programs (l.p.’s). (See also [17] or chapter 12 in [16]
for applications of the aggregation schemes to some stochastic control
problems.) Our main objective is to show that the convergence of these
schemes can be obtained from Theorem 2.3.

First we introduce the l.p. we shall work with. Let (X ,Y) and
(Z,W) be two dual pairs of vector spaces. The spaces X and Y are
assumed to be endowed with the weak topologies σ(X ,Y) and σ(Y,X ),
respectively. Thus, in particular, the topological spaces X and Y are
Hausdorff. We denote by ⟨·, ·⟩ the bilinear form on both X × Y and
Z ×W.

Let A : X → Z be a weakly continuous linear map with adjoint
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A∗ : W → Y, i.e.

⟨x,A∗w⟩ := ⟨Ax,w⟩ ∀ x ∈ X , w ∈ W .

We denote by K a positive cone in X . For given vectors c ∈ Y and
b ∈ Z, we consider the (primal) l.p.

LP : Minimize ⟨x, c⟩(13)

subject to: Ax = b, x ∈ K.(14)

A vector x ∈ X is said to be a feasible solution for LP if it satisfies
(14), and we denote by F the set of feasible solutions for LP. The
program LP is called consistent if it has a feasible solution, i.e. F is
nonempty.

The following assumption ensures that LP is solvable.

Assumption 3.1 LP has a feasible solution x0 with ⟨x0, c⟩ > 0 and,
moreover, the set

∆0 := {x ∈ K|⟨x, c⟩ ≤ ⟨x0, c⟩}

is weakly sequentially compact.

Remark 3.2 Assumption 3.1 implies that the set ∆r := {x ∈ K|
⟨x, c⟩ ≤ r} is weakly sequentially compact for every r > 0, since ∆r =
(r/⟨x0, c⟩)∆0.

Lemma 3.3 If Assumption 3.1 holds, then LP is solvable.

For a proof of Lemma 3.3, see Theorem 2.1 in [15].

If E is a subset of a vector space, then sp(E) denotes the space
spanned (or generated) by E.

Aggregation schemes. To realize the aggregation schemes the
main assumption is on the vector space W.

Assumption 3.4 There is an increasing sequence of finite sets Wn in
W such that W∞ := ∪∞

n=1Wn is weakly dense in W, where Wn =
sp(Wn).
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For each n ∈ IN, let Zn be the algebraic dual of Wn, that is, Zn :=
{f : Wn → IR | f is a linear functional}. Thus (Zn,Wn) is a dual pair
of finite-dimensional vector spaces with the natural bilinear form

⟨f, w⟩ := f(w) ∀ w ∈ Wn, f ∈ Zn.

Now let An : X → Zn be the linear operator given by

(15) Anx(w) := ⟨Ax,w⟩ ∀ w ∈ Wn.

The adjoint A∗
n : Wn → Y of An is the adjoint A∗ of A restricted to Wn,

that is, A∗
n := A∗|Wn . Finally, we define bn ∈ Zn by bn(·) := ⟨b, ·⟩|Wn .

With these elements we can define the aggregation schemes as fol-
lows. For each n ∈ IN,

LPn : Minimize ⟨x, c⟩
subject to : Anx = bn, x ∈ K,(16)

which is as our problem IPn (in section 2) with fn(x) := ⟨x, c⟩ and Fn

the set of vectors x ∈ X that satisfy (16). The l.p. LPn is called an
aggregation (of constraints) of LP. Moreover, from Proposition 2.2 in
[15] we have the following.

Lemma 3.5 Under the Assumptions 3.1 and 3.4, the l.p. LP∞ is
equivalent to LP in the sense that (using Lemma 3.3)

(17) minLP = minLP∞.

The following lemma provides the connection between the aggrega-
tion schemes and Theorem 2.3.

Lemma 3.6 The Assumptions 3.1 and 3.4 imply that the aggregation
schemes LPn satisfy Assumption 2.1.

Proof: To check parts (a) and (c) of Assumption 2.1, for each n ∈ IN
let xn ∈ Fn be such that xn → x weakly in X . Thus, by definition of the
weak topology on X , ⟨xn, y⟩ → ⟨x, y⟩ for all y ∈ Y, which in particular
yields

lim
n→∞

⟨xn, c⟩ = ⟨x, c⟩.
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This implies part (b) of Assumption 2.1, and also that the sequence xn
is in the weakly sequentially compact set ∆r for some r > 0 (see Remark
3.2). In particular, x is in K, and from (16) and the definitions of An

and bn we get

A∞x(w) = lim
n→∞

Anxn(w) = lim
n→∞

bn(w) = b∞(w) ∀ w ∈ W∞.

Thus x is in F∞, which yields that OL{Fn} ⊂ F∞, and so Assumption
2.1(a) follows.

Finally, to verify part (c) of Assumption 2.1, choose an arbitrary
x ∈ F∞. Then, by (15) and the definition of bn,

A∞x(w) = ⟨Ax,w⟩ = ⟨b, w⟩ = b∞(w) ∀ w ∈ W∞.

In particular, if w ∈ Wn for some n ∈ IN, the latter equation becomes

Anx(w) = bn(w).

Hence Anx = bn. It follows that F∞ ⊂ Fn for all n ∈ IN and, moreover,
the sets Fn form a nonincreasing sequence, i.e.

(18) Fn ⊇ Fn+1 ∀ n ∈ IN,

which implies part (c) of Assumption 2.1. 2

To summarize, from Lemma 3.6 and Theorem 2.3, together with
(17) and (18) we get the following.

Theorem 3.7 Suppose that Assumptions 3.1 and 3.4 are satisfied.
Then

(a) The aggregation LPn is solvable for every n ∈ IN.

(b) For every n ∈ IN, let xn ∈ Fn be an optimal solution for LPn.
Then, as n → ∞,

(19) ⟨xn, c⟩ ↑ minLP∞ = minLP,

and, furthermore, every weak accumulation point of the sequence
{xn} is an optimal solution for LP.
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Proof: (a) It is clear that Assumption 3.1 also holds for each aggre-
gation LPn. Thus the solvability of LPn follows from Lemma 3.3.

(b) From Lemma 3.6, we see that Theorem 2.3(a) holds for the
aggregations LPn. Hence to complete the proof we only need to verify
(19). To do this, note that (18) yields minLPn ≤ minLPn+1 for each
n ∈ IN, and, moreover, the sequence of values minLPn is bounded above
by minLP∞. This fact together with (5) and Lemma 3.5 give (19). 2

Theorem 3.7 was obtained in [15] using a different approach.

Remark 3.8 In the aggregation schemes LPn, the vector spaces Zn

and Wn are finite-dimensional for n ∈ IN, and so each LPn is a so-
called semi-infinite l.p. Hence Theorem 3.7 can be seen as a result on the
approximation of the infinite-dimensional l.p. LP by semi-infinite l.p.’s.
On the other hand, a particular semi-infinite l.p. is when the vector
space X of decision variables (or just the cone K) is finite-dimensional,
but the vector b lies in an infinite-dimensional space W [5, 14, 18]. In
the latter case, the aggregation schemes would be approximations to
LP by finite l.p.’s.

4 The GC problem

The general capacity (GC) problem is related to the problem of
determining the electrostatic capacity of a conducting body. In fact,
it originated in the mentioned electrostatic capacity problem —see, for
instance, [4, 5].

Let X and Y be metric spaces endowed with their corresponding
Borel σ-algebras B(X) and B(Y ). We denote by M(Y ) the vector space
of finite signed measures on Y , and by M+(Y ) the cone of nonnegative
measures in M(Y ).

Now let b : X → IR, c : Y → IR, and g : X × Y → IR be nonnegative
Borel-measurable functions. Then the GC problem can be stated as
follows.

GC: Minimize

∫
Y
c(y) µ(dy)

subject to :

∫
Y
g(x, y) µ(dy) ≥ b(x) ∀x ∈ X, µ ∈ M+(Y ).
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In this section we study the convergence problem (see (i) and (ii) in
section 1) in which g and c are replaced with sequences of nonnegative
measurable functions gn : X×Y → IR and cn : Y → IR, for n ∈ IN, such
that gn → g∞ =: g and cn → c∞ =: c uniformly.

Thus we shall deal with GC problems

GCn : Minimize

∫
Y
cn(y) µ(dy)

subject to :

∫
Y
gn(x, y) µ(dy) ≥ b(x) ∀x ∈ X, µ ∈ M+(Y ),(20)

for n ∈ IN. For each n ∈ IN, we denote by Fn the set of feasible solutions
for GCn, that is, the set of measures µ that satisfy (20), but in addition∫
Y cn dµ < ∞.

Convergence. We shall study the convergence issue via Theorem
2.3. First, we introduce assumptions that guarantee the solvability of
the GC problems. We shall distinguish two cases for the cost functions
cn, the bounded case and the unbounded case, which require slightly
different hypotheses. For the bounded case we suppose the following.

Assumption 4.1 (Bounded case) For each n ∈ IN:

(a) Fn is nonempty.

(b) The function gn(x, ·) is bounded above and upper semicontinuous
(u.s.c.) for each x ∈ X.

(c) The function cn is bounded and lower semicontinuous (l.s.c.). Fur-
ther cn is bounded away from zero, that is, there exist δn > 0 such
that cn(y) ≥ δn for all y ∈ Y .

In addition,

(d) The space Y is compact.

For the unbounded case, we replace parts (c) and (d) with an inf-
compactness hypothesis.

Assumption 4.2 (Unbounded case) Parts (a)-(c) are the same as in
Assumption 4.1. Moreover,
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(d) For each n ∈ IN, the function cn is inf-compact, which means that,
for each r ∈ IR, the set {y ∈ Y |cn(y) ≤ r} is compact. Further, cn
is bounded away from zero.

Observe that the inf-compactness condition implies that cn is l.s.c.

We next introduce the assumptions for our convergence and approxi-
mation results. As above, we require two sets of assumptions depending
on whether the cost functions cn are bounded or unbounded. (See Re-
mark 4.8 for alternative sets of assumptions.)

Assumption 4.3 (Bounded case)

(a) (Slater condition) There exist µ ∈ F∞ and η > 0 such that∫
Y
g∞(x, y) µ(dy) ≥ b(x) + η ∀ x ∈ X.

(b) gn → g∞ uniformly on X × Y .

(c) cn → c∞ uniformly on Y .

Assumption 4.4 (Unbounded case) Parts (a) and (b) are the same as
in Assumption 4.3. Moreover

(c) cn ↓ c∞ uniformly on Y .

Before stating our main result for the GC problem we recall some
facts on the weak convergence of measures (for further details see [9] or
chapter 12 in [16], for instance).

Definition 4.5 Let Y , M(Y ) and M+(Y ) be as at the beginning of
this section. A sequence {µn} in M+(Y ) is said to be bounded if there
exists a constant m such that µn ≤ m for all n. Let Cb(Y ) be the vector
space of continuous bounded functions on Y . We say that a sequence
{µn} in M(Y ) converges weakly to µ ∈ M(Y ) if µn → µ in the weak
topology σ(M(Y ), Cb(Y )), i.e.∫

Y
u dµn →

∫
Y
u dµ ∀u ∈ Cb(Y ).
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A subsetM0 ofM
+(Y ) is said to be relatively compact if for any sequence

{µn} in M0 there is a subsequence {µm} of {µn} and a measure µ in
M+(Y ) (but not necessarily in M0) such that µn → µ weakly. In the
latter case, we say that µ is a weak accumulation point of {µn}.

We now state our main result in this section.

Theorem 4.6 Suppose that either Assumptions 4.1 and 4.3, or 4.2 and
4.4 hold. Then

(a) GCn is solvable for every n ∈ IN.

(b) The optimal value of GCn converges to the optimal value of GC∞,
i.e.

(21) minGCn −→ minGC∞.

Furthermore, if µn ∈ M+(Y ) is an optimal solution for GCn for
each n ∈ IN, then the sequence {µn} is relatively compact, and
every weak accumulation point of {µn} is an optimal solution for
GC∞.

(c) If GC∞ has a unique optimal solution, say µ, then for any µn in
the set of optimal solutions for GCn, with n ∈ IN, the sequence
{µn} converges weakly to µ.

For a proof of Theorem 4.6 the reader is referred to [1].

We shall conclude this section with an example which satisfies our
hypotheses, Assumption 2.1, but the hypotheses used in [6, 10, 11, 19,
21, 22] do not hold.

Example 4.7 This example shows a particular GC problem in the un-
bounded case, in which our assumptions are satisfied, but the condi-
tions used in [6, 10, 11, 19, 21, 22] do not hold. Hence, this example
shows that our assumptions are strictly weaker than those considered in
[6, 10, 11, 19, 21, 22].

We first compare our hypotheses with those in [11, 19, 21, 22]. In
our notation, the latter conditions are as follows (see Remark 2.4).
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(i) For each sequence µn ∈ M+(Y ) such that µn → µ weakly we have

lim
n→∞

∫
Y
cn dµn =

∫
Y
c∞ dµ.

(ii) IL{Fn} = F∞.

Consider the spaces X = Y = [0, 2], and for each n ∈ IN let gn ≡ 1, and

cn(x) :=


1 if x = 0,
1
x if x ∈ (0, 1],
1 if x ∈ (1, 2].

Let b ≡ 0. With these elements the set Fn of feasible solutions for each
problem GCn is given by

Fn := {µ ∈ M+([0, 2]) :

∫
gn dµ = µ([0, 2]) ≥ b,

∫
cn dµ < ∞}.

As the cost functions cn are unbounded, we consider the Assumptions
4.2 and 4.4, which are obviously true in the present case, and which in
turn imply Assumption 2.1 —see Lemma 3.11 in [1]. Next we show that
(i) and (ii) do not hold.

Let µ be the lebesgue measure on Y = [0, 2], and for each n ∈ IN let
µn be the restriction of µ to [1/n, 2], i.e. µn(B) := µ(B ∩ [1/n, 2]) for
all B ∈ B(Y ). Thus µn is in Fn for each n ≥ 2, and µn → µ weakly.
Therefore µ is in IL{Fn}, but µ is not in F∞ because

∫
c∞ dµ = ∞.

Hence (ii) does not hold.

Similarly, let µ′
n := (1/kn)µn with kn := 1+ ln(n). Then µ′

n is in Fn

for all n ≥ 2, and µ′
n → 0 =: µ′ weakly, but∫
cn dµ′

n = 1 −̸→
∫

c∞ dµ′ = 0.

Thus (i) is not satisfied.

Now we compare our assumptions with those in [6, 10]. This can be
done because, as M([0, 2]) is metrizable, the space X = M([0, 2]) is first
countable. See Remark 2.4.

We take X,Y, cn, gn and Fn as above, but now we take b = 1/2. As
in the former case, Assumption 2.1 holds. Now we slightly modify the
set of feasible solutions by

F̃n := {µ ∈ M+([0, 2]) :

∫
gn dµ = µ([0, 2]) ≥ 1

2
,

∫
cn dµ < 1}.
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Notice that F̃n ̸= ∅ and F̃n ⊂ Fn for all n ≥ 2. The sequence of mod-
ified GC problems, say {G̃Cn}, also satisfies Assumption 2.1. Indeed,
parts (a) and (b) of Assumption 2.1 hold because the minimum sets

have not changed (Mn = M̃n), and part (c) is true since it holds for
F∞, and F̃∞ ⊂ F∞. Next we show that condition (C3) in Remark 2.4
does not hold. For each n ∈ IN, let

Fn(µ) :=

{ ∫
cndµ if µ ∈ F̃n,

∞ if µ /∈ F̃n.

Moreover, for each n ∈ IN, let µ′′
n be the restriction of µ to [1 + 1/n, 2],

and let µ′′ be the restriction of µ to [1, 2]. Hence we have µ′′
n([0, 2]) =

(n− 1)/n ≥ 1/2 and
∫
cndµ

′′
n = (n− 1)/n < 1 for all n ≥ 2. Therefore,

µ′′
n is in F̃n for each n ≥ 2, and µ′′

n → µ′′ weakly. Thus µ′′ is in IL{F̃n},
but µ′′ is not in F̃∞ because

∫
c∞ dµ′′ = 1. Hence

lim inf
n→∞

Fn(µ
′′
n) = lim inf

n→∞

∫
cndµ

′′
n = 1 < ∞ = F∞(µ′′),

and so (C3) is not satisfied. It follows that the Fn do not Γ−converge
to F∞, that is, the assumptions in [6, 10] do not hold.

Remark 4.8 Suppose that cn → c∞ uniformly on Y . Then the follow-
ing holds.

• If c∞ is bounded away from zero, then so is cn for all n sufficiently
large. Hence, in part (b) of Theorem 4.6 it suffices to require (only)
that c∞ is bounded away from zero, for both cases, bounded and
unbounded.

• If the sequence {cn} is uniformly bounded away from zero (that
is, there exists δ > 0 such that, for each n ∈ IN, cn(y) ≥ δ for all
y ∈ Y ), then also c∞ is bounded away from zero.

On the other hand, if cn → c∞ uniformly and gn → g∞ uniformly, then
the following holds.

• If the Slater condition holds for GC∞ (see Assumption 4.3 (a)),
then GCn also satisfies the Slater condition for all n large enough.
It follows that, for each n ≥ N , GCn is consistent, i.e., Fn ̸= ∅.
Then Assumption 4.3 imply part (a) of Assumptions 4.1 and 4.2,
for each n ≥ N . Hence, in part (b) of Theorem 4.6, Assumptions
4.1(a) and 4.2(a) are not required.
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• If the Slater condition uniformly holds for the sequence {GCn}
(that is, for each n ∈ IN, there exist µn ∈ F∞ and η > 0 such that∫

Y
gn(x, y) µn(dy) ≥ b(x) + η ∀ x ∈ X),

then the Slater condition also holds for GC∞.
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