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On information measures and prior distributions:

a synthesis

Francisco Venegas-Mart́ınez

Abstract

This paper suggests a new approach to reconciling, in a sys-
tematic way, all inferential methods that maximize a specific crite-
rion functional to produce non-informative and informative priors.
In particular, Good’s (1968) Minimax Evidence Priors (MEP),
Zellner’s (1971) Maximal Data Information Priors (MDIP) and
Bernardo’s (1979) Reference Priors (RP) are seen as special cases
of maximizing a more general criterion functional. In a unifying
approach Good-Bernardo-Zellner’s priors are introduced and ap-
plied to a number of Bayesian inference problems, including the
Kalman filter and Normal linear model. Moreover, the paper fo-
cuses, under plausible conditions, on the existence and uniqueness
of the solutions of the derived optimization problems.
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1 Introduction

The distinctive task in Bayesian inference of deriving priors, in such a
way that the inferential content of the data is minimally affected in the
posterior, has been of great interest for more than two centuries since
the early work of Bayes (1763). More current approaches to this prob-
lem, based on the maximization of a specific criterion functional, have
been suggested by Good (1968), Zellner (1971) and Bernardo (1979),
among others. It is also important to mention that recent literature
has included inference procedures to provide a posterior without having
a prior, like the Bayesian method of moments (BMOM) introduced by
Zellner (1996) and (1998).
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In Good’s (1968) principle of maximum invariantized negative cross-
entropy, the minimax evidence method of deriving priors was presented
for the first time. In this approach the initial density is taken as the
square root of Fisher’s information. Zellner’s (1971) book introduced
a method to obtain priors through the maximization of the total in-
formation about the parameters provided by independent replications
of an experiment (prior average information in the data minus the in-
formation in the prior). In Bernardo (1979) a procedure was proposed
to produce reference priors by maximizing the expected information
about the parameters provided by independent replications of an ex-
periment (average information in the posterior minus the information
in the prior). All of the above methods have comparative and absolute
advantages in several respects and have been applied to a large number
of inference problems:

(i) While Zellner’s method is based on an exact finite sample criterion
functional, Good’s approach uses a limiting criterion functional,
and Bernardo’s procedure lies in asymptotic results. In Bernardo’s
proposal a reference prior (posterior) is defined as the limit of a
sequence of priors (posteriors) that maximize finite-sample crite-
ria. In a pragmatic approach in which results are most important,
many reference prior algorithms have been developed. For in-
stance, Berger, Bernardo and Mendoza (1989), and Berger and
Bernardo (1989), (1992a), (1992b), Bernardo and Smith (1994 ,
ch. 5), and Bernardo and Ramón (1997).

(ii) The criterion functional used by Bernardo is a cross-entropy, which
satisfies a number of remarkable properties, in particular, invari-
ance with respect to one-to-one transformations of the parameters
(Lindley 1956). In contrast, the total information functional em-
ployed by Zellner is invariant only for the location-scale family
and under linear transformations of the parameters. To generate
invariance under other relevant transformations, not necessarily
one-to-one, side conditions could be needed, as suggested by Zell-
ner (1971).

(iii) These methods have been tested by seeing how well they per-
form in particular examples. The evaluation is often based on
contrasting the derived priors with Jeffreys’ (1961) priors, usu-
ally improper. Even though improper priors can be associated
with unbounded measures consistent with Renyi’s (1970) axioms
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on probability measures, some technical difficulties remain, see:
Box and Tiao (1973), p. 314; Akaike (1978), p. 58; and Berger
and Bernardo (1992a), p. 37. It is also important to mention that
Jeffreys’ priors can lead to singularities producing inadequate re-
sults at certain values of the parameters; see Jeffreys (1967, p.
359). Of course, if MEP, MDIP, and RP priors were to be used to
contrast the performance of other priors, the former priors could
also produce unsatisfactory results under certain circumstances.

In this paper, we attempt to reconcile all inferential methods that
maximize a criterion functional to produce non-informative and infor-
mative priors. In our general approach, Good’s Minimax Evidence Pri-
ors (1968 and 1969), Zellner’s Maximal Data Information Priors (1971,
1977, 1991, 1993, 1995, 1996a and 1996b) and Bernardo’s Reference Pri-
ors (1979 and 1997) are seen as special cases of maximizing a more gen-
eral indexed criterion functional. Thus, properties of the derived priors
will depend on the choice of indexes from a wide range of possibilities,
instead of on a few personal points of view with ad hoc modifications.
In the spirit of Akaike (1978) and Smith (1979), we can say that this
will look more like Mathematics than Psychology–without underesti-
mating the importance of the latter in the Bayesian framework. This
unified approach will enable us to explore a vast range of possibilities for
constructing priors. It is worthwhile to note that our general method
extends in a natural way Soofi’s (1994) pyramid by adding more ver-
tices and including their convex hull. In any event, a good choice will
depend on the specific characteristics of the problem we are concerned
with. Needless to say, the chosen method should also provide good
predictions.

This work is organized as follows. In section 2, we will introduce an
indexed family of information functionals. In section 3, on the basis of
asymptotic normality, we will state a relationship between Bernardo’s
(1979) criterion functional and some members of the indexed family. In
section 4, we will study a Bayesian inference problem associated with
convex combinations of relevant members of the proposed indexed fam-
ily. Here, we will introduce Good-Bernardo-Zellner’s priors as well as
their controlled versions as solutions of maximizing discounted entropy.
We will pay special attention to the existence and uniqueness of the so-
lution of the corresponding optimization problems. In section 5, we will
study Good-Bernardo-Zellner’s priors as Kalman Filtering priors. In
section 6, we examine the relationship between Good-Bernardo-Zellner’s
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priors and the Normal linear model. Finally, in section 7, we will draw
conclusions, acknowledge limitations, and make suggestions for further
research.

2 An indexed family of information functionals

In this section, we define an indexed family of information functionals
and study some distinguished members. For the sake of simplicity, we
will remain in the single parameter case. The extension to the multi-
dimensional parameter case will lead to conceptual complications. This
is not surprising when dealing with information measures and priors;
see Jeffreys (1961), Zellner (1971), Box and Tiao (1973), and Berger
and Bernardo (1992a).

Suppose that we wish to make inferences about an unknown param-
eter θ ∈ Θ ⊆ R of a distribution Pθ, from which there is available an
observation, say, X. Assume that Pθ has density f(x|θ) (Radon-Nikodym
derivative) with respect to some fixed dominating σ-finite measure λ on
R for all θ ∈ Θ ⊆ R, that is, dPθ/dλ = f(x|θ) for all θ ∈ Θ ⊆ R, thus
Pθ(A) =

∫
A f(x|θ)dλ(x) for all Borel sets A ⊂ R.

The Bayesian approach is to assume that there is a prior density,
π(θ), describing initial knowledge about the likelihood of the values of
the parameter, θ. We will assume that π(θ) is a density with respect
to some σ-finite measure µ on R. Once a prior distribution, π(θ), has
been prescribed, then the information provided by the data, x, about
the parameter is used to modify the initial knowledge, as expressed in
π(θ), via Bayes’ theorem to obtain a posterior distribution of θ, namely,
f(θ|x) ∝ f(x|θ)π(θ) for every x ∈ R (using f generically to represent
densities). The normalized posterior distribution is then used to make
inferences about θ. Let us define an infinite system of nested functionals:

Vγ,α,δ(π) =
1

1− γ

∫
π(θ)G(I(θ),F(θ), γ, α, δ)dµ(θ)(1)

where

G(I(θ),F(θ), γ, α, δ)

= log

{
exp{[F(θ)/I(θ)]1−δ[I(θ)]

1−γ
1+α − δ[I(θ)]1−α}

π(θ)1−γ

}
,



Information measures and prior distributions 31

0 ≤ γ < 1, α ∈ {0, 1}, δ ∈ {0, 1}, and

I(θ) =
∫ (

∂

∂θ
log f(x|θ)

)2

f(x|θ)dλ(x)(2)

is Fisher’s information about θ provided by an observation X with den-
sity f(x|θ), and

F(θ) =

∫
f(x|θ) log f(x|θ)dλ(x)(3)

is the negative Shannon’s information of f(x|θ), provided I(θ) and F(θ)
exist. In the case that n independent observations of X are drawn from
Pθ, say, (X1, X2, ..., Xn), then I(θ) and F(θ) will still stand for the
average Fisher’s information and the average negative Shannon’s infor-
mation of f(x|θ) respectively. It is not unsual to deal with indexed func-
tionals in inference problems about a distribution, as in Good (1968). It
is worthwhile pointing out that for each triad (γ, α, δ) taking values in
0 ≤ γ < 1, α ∈ {0, 1}, δ ∈ {0, 1}, then Vγ,α,δ(π) is a criterion functional
that can be used to derive a prior π(θ), θ ∈ Θ, belonging to a feasible
set C. Usually, C is defined by constraints in terms of potential values
of θ.

Note now that for the location parameter family f(x|θ) = f(x −
θ), θ ∈ R, with the properties∫

[f ′(x)]2/f(x) dλ(x) <∞

and ∫
f(x) log f(x) dλ(x) <∞,

where λ = µ stands for the Lebesgue measure, we have that both I(θ)
and F(θ) are constant. Observe also that the scale parameter family
f(x|θ) = (1/θ)f(x/θ), θ > 0, with the above properties, satisfies the
following relationship:

F(θ) = 1
2 log I(θ) + constant.(4)

The indexed family in which we will be concerned with is given by:

A = conv[ {Vγ,α,δ(π)} ]

=convex hull of the closure of the family{Vγ,α,δ(π)}.

We readily identify a number of distinguished members of A:
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(i) Criterion for Maximum Entropy Priors (MAXENTP):

V0,0,1(π) = −
∫
π(θ) log π(θ)dµ(θ),

which is just Shannon’s information measure of a density π(θ),
or Jaynes’ (1957) criterion functional to derive maximum entropy
priors. Notice also that (3) can be rewritten in a simpler way as
F(θ) = −V0,0,1(f(x|θ)).

(ii) Criterion for Minimax Evidence Priors (MEP):

V1,1,1(π)
def
= lim

γ→1
Vγ,1,1(π) = −

∫
π(θ) log

π(θ)

p(θ)
dµ(θ)− logC,(5)

which is Good’s invariantized negative cross-entropy, taking as
initial density p(θ) = C[I(θ)]

1
2 with C = {

∫
[I(θ)]

1
2dµ(θ)}−1, pro-

vided that
∫
[I(θ)]

1
2dµ(θ) <∞. We can also write (5) as

V1,1,1(π)− V0,0,1(π) =

∫
π(θ) log[I(θ)]

1
2dµ(θ).(6)

(iii) Criterion for Maximal Data Information Priors (MDIP):

V0,0,0(π) =

∫ ∫
f(x)f(θ|x) log ℓ(θ|x)

π(θ)
dµ(θ)dλ(x),(7)

which is Zellner’s criterion functional in his MDIP approach. Here,
as usual,

f(θ|x) = f(x|θ)π(θ)
f(x)

, f(x) =

∫
f(x|θ)π(θ)dµ(θ),

and ℓ(θ|x) = f(x|θ) is the likelihood function. An alternative
formulation of (7), which is often useful, is given by

V0,0,0(π)− V0,0,1(π) =

∫
π(θ)F(θ)dµ(θ).(8)

Some members of A define new criterion functionals in which the
information provided by the sampling model, I(θ), plays a role:
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(iv) Criterion for Maximal Modified Data Information Priors
(MMDIP):

V0,1,0(π) =

∫ ∫
f(x)f(θ|x) log [ℓ(θ|x)][I(θ)]

1
2

π(θ)
dµ(θ)dλ(x),(9)

which is the prior average information in the data modified by
Fisher’s information minus the information in the prior. Note that
when I(θ) is constant, (9) reduces to Zellner’s criterion functional
(up to a constant factor).

(v) Criterion for Maximal Fisher Information Priors (MFIP):

V0,1,1(π) = −
∫
π(θ) log

π(θ)

exp{[I(θ)]
1
2 }
dµ(θ)− 1,(10)

which is the prior average Fisher’s information minus the infor-
mation in the prior.

3 Revisiting Bernardo’s reference priors

The maximization of Bernardo’s (1979) criterion is usually a difficult
problem to deal with. In order to get a simpler alternative procedure
under specific conditions, we will derive a useful asymptotic approxima-
tion between Bernardo’s criterion functional (or Lindley’s information
measure, 1956) and some members of the class A. As stated in Bernardo
(1979), the concept of reference prior is very general. However, in order
to keep the analysis tractable, we will restrict ourselves to the continu-
ous one-dimensional parameter case.

Suppose that there are available n independent observations, say,
(X1, X2, . . . , Xn), of a distribution Pθ, θ ∈ Θ ⊆ R. Accordingly, the
random vector (X1, X2, . . . , Xn) has density

dPθ/dν = f(ξ|θ) =
n∏
k=1

f(xk|θ),

for all ξ = (x1, x2, ..., xn) and all θ ∈ Θ ⊆ R, where

Pθ = Pθ ⊗ Pθ ⊗ · · · ⊗ Pθ︸ ︷︷ ︸
n

and ν = λ⊗ λ⊗ · · · ⊗ λ︸ ︷︷ ︸
n

.
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Following Lindley (1956), a measure of the expected information about
θ of a sampling model f(x|θ) provided by a random sample of size n
when the prior distribution of θ is π(θ), is defined to be

L(n)(π) =

∫
f(ξ)

∫
f(θ|ξ) log f(θ|ξ)

π(θ)
dµ(θ)dν(ξ).(11)

In order to obtain an asymptotic approximation of (11) in terms of
V1,1,1 and V0,0,1, we state a limit theorem which justifies the passage of
the limit under the integral signs in (11). The theorem rules out the
possibility that the essentials of the statistical model, f(ξ|θ), change
when samples grow in size. Let us rewrite (11) as:

L(n)(π) =Vγ,0,1(π) + log
√
n

−
∫ ∫

log

(∫
Tn(ω)Wn(ω)dµ(ω)

)
f(ξ|θ)π(θ)dν(ξ)dµ(θ),(12)

where

Tn(ω) =
f(X1, X2, ..., Xn|θ + ω√

n
)

f(X1, X2, ..., Xn|θ)
(13)

and

Wn(ω) =
π(θ + ω√

n
)

π(θ)
.(14)

Throughout the paper, both λ and µ will stand for the Lebesgue measure
on R. Also, we will assume that all densities involved are Lebesgue
measurable in both arguments, x and θ.

Theorem 3.1 Assume that the following conditions hold:

(I) Θ is an open interval in R;

(II) The function
√
f(x|θ) is absolutely continuous on θ, and

{x|f(x|θ) > 0}

is independent of θ;

(III) If θ, θ′ ∈ Θ, then θ ̸= θ′ implies λ{x|f(x|θ) ̸= f(x|θ′)} > 0;
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(IV) ∂
∂θ log f(x|θ) exists for all θ ∈ Θ and every x;

(V) I(θ) is a continuous and bounded function in Θ;

(VI) For all δ > 0, and all θ ∈ Θ∫
Bδ(

ω√
n
)

(√
f(x|θ + ω√

n
)−

√
f(x|θ)

)2
dλ(x) = o( 1n),

where

Bδ(
ω√
n
) = {x : |

√
f(x|θ + ω√

n
)−

√
f(x|θ) | > δ

√
f(x|θ) };

(VII) There exist c > 0 and τ > 0 such that∫ ∣∣π(θ + u)− π(θ)
∣∣dµ(θ) ≤ c|u|τ ;

(VIII) For all ρ > 0∫
|ω|>nρ

(
Tn(ω)Wn(ω)− Tn(ω)

)
dµ(ω)

P−→0;

(IX) The sequence of random variables {logUn}∞n=1 where

Un =

∫
Tn(ω)Wn(ω)dµ(ω)

satisfies

lim
ε→∞

sup
n≥1

∫
| logUn|≥ε

| logUn|dP = 0,

where

P{ξ ∈ A, θ ∈ B} =

∫
B
π(θ)

∫
A
f(ξ|θ)dν(ξ)dµ(θ),

for all A ∈ Rn and B ∈ Θ.

Then, as n→ ∞,

L(n)(π)− V1,1,1(π) = −V0,0,1(φ) + logC
√
n+ o(1),(15)

where φ(z) is the density of Z ∼ N (0, 1), and C is taken as in (4).
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Some comments are in order: (I)-(IV) are standard regularity con-
ditions, (V) states desirable properties for I(θ), (VI) is a bounded vari-
ance condition, (VII) is a smoothness condition, (VIII) is a convergence
condition, and (IX) says that the sequence {logUn}∞n=1 is uniformly
integrable with respect to P . It can be shown that (I)-(VI) lead to

Tn(ω)
L−→ exp

{
ω
√

I(θ)
[
Z − 1

2ω
√

I(θ)
]}
,(16)

where Z ∼ N (0, 1), and (16) along with (VII)-(IX) imply

logUn = log

∫
Tn(ω)Wn(ω)dµ(ω)

L−→ log
√

2π/I(θ) + 1
2Z

2,

from where the conclusion of the theorem follows. Notice that the right-
hand side of (3.5) is independent of π. Thus, if conditions (I)-(IX) are
fulfilled, instead of maximizing L(∞)(π), which is usually a difficult prob-
lem, we have as an alternative procedure maximizing V1,1,1(π), which is
independent of n. Notice that for maximization purposes the right-hand
side of (15) becomes a constant.

Finally, it is worthwhile to note that the location parameter fam-
ily f(x|θ) = f(x − θ), with

√
f(x) absolutely continuous on R, and∫

[f ′(x)]2/f(x) dλ(x) < ∞, fully satisfies the conditions of Theorem
3.1.

4 Good-Bernardo-Zellner priors

In this section we introduce Good-Bernardo-Zellner’s priors as solutions
of convex combination of relevant members of the class A. Very often,
there exist priors for which entropy becomes infinite, specially when
dealing with the non-informative case. In order to overcome this diffi-
culty, we suggest the concept of discounted entropy. We also introduce
Good-Bernardo-Zellner’s controlled priors as solutions of maximizing
discounted entropy. We emphasize the existence and uniqueness of the
solutions of the corresponding variational and optimal control problems.

Throughout this section, we will be studying a number of Bayesian
inferential problems related to convex combinations of distinctive ele-
ments of A. Let

Mϕ(π)
def
=ϕV1,1,1(π) + (1− ϕ)V0,0,0(π),

0 ≤ ϕ ≤ 1. Plainly, Mϕ(π) ∈ A. To see that Mϕ(π) is concave w.r.t.
π, it is enough to observe, as in Zellner (1991), that

V0,0,0(π(θ)) = L(1)(π(θ)) + V0,0,1(π(θ))− V0,0,1(f(x)),
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is a sum of concave functions w.r.t. π (up to the constant V0,0,1(f(x))).
Since V1,1,1(π) is concave w.r.t. π, Mϕ(π) is also concave w.r.t. π.
Zellner (1996b) provides a criterion functional that agrees with Mϕ(π)
given by

Gϕ[π(θ)]

=

∫ [
ϕF(θ) + (1− ϕ) log[I(θ)]

1
2

]
π(θ)dµ(θ)−

∫
π(θ) log π(θ)dµ(θ).

Indeed, from (5), (6) and (8), we get

Gϕ[π(θ)] =ϕ (V0,0,0 − V0,0,1) + (1− ϕ) (V1,1,1 − V0,0,1) + V0,0,1

=ϕV0,0,0 + (1− ϕ)V1,1,1 − V0,0,1 + V0,0,1

=Mϕ(π).

Usually, in the absence of data supplementary information, in terms
of expectations about the parameter, comes from additional knowledge
of the experiment, or from the experience of the experimenter, namely,∫

ak(θ)π(θ)dµ(θ) = ak, k = 1, 2, ..., s,(17)

where both the functions ak and the constants ak, k = 1, 2, ..., s, are
known. Hereafter, we will assume that (17) does not lead to any con-
tradiction about π(θ). We will now concern with maximizing Mϕ(π)
subject to supplementary information.

Proposition 4.1 Consider the Good-Bernardo-Zellner problem:

Maximize Mϕ(π) (with respect to π)

subject to C :

∫
ak(θ)π(θ)dµ(θ) = ak, k = 0, 1, 2, ..., s, a0 ≡ 1 = a0.

Then a necessary condition for a maximum is

π∗ϕ(θ) ∝ [I(θ)]
ϕ
2 exp{(1− ϕ)F(θ) +

s∑
k=0

λkak(θ)},(18)

where λk, k = 0, 1, ..., s, are the Lagrange multipliers associated with
the constraints C (cf. Zellner 1995).
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Notice that when no supplementary information is available, π∗ϕ(θ)
is appropiate for an unprejudiced experimenter, otherwise it will be
suitable for an informed experimenter who is in favor of C. Observe
also that π∗1(θ) is Good-Bernardo’s prior, and π∗0(θ) is Zellner’s prior.
Consider the binomial distribution for a single observation, f(x|θ) =

θx(1 − θ)1−x, 0 ≤ θ ≤ 1. In such a case, π∗1(θ) ∝ θ−
1
2 (1 − θ)−

1
2 and

π∗0(θ) ∝ θθ(1−θ)1−θ for θ ∈ [0, 1], which are quite different. Notice that
π∗1(θ) becomes infinite at θ = 0 and θ = 1. On the other hand π∗0(θ)
rises monotonically to 1.6186 at θ = 0 and θ = 1. Yet, another view
in this regard (Geisser, 1993) states that when the sample size is fairly
large it does not matter which prior is employed, and the uniform prior
may as well be used for θ.

Corolary 4.1 Consider the location and scale parameter families,

f(x|θ) = f(x− θ), θ ∈ R,

and

f(x|θ) = (1/θ)f(x/θ), θ > 0,

respectively, both satisfying∫
[f ′(x)]2/f(x) dλ(x) <∞

and
∫
f(x) log f(x) dλ(x) < ∞. Then, Good-Bernardo’s and Zellner’s

priors agree regardless of the value of ϕ ∈ (0, 1).

The proof of the above corollary for the scale parameter case follows
from (4). It is important to point out that when there is no supplemen-
tary information, we require µ(Θ) <∞. Of course, the parameter space
Θ can have bounds as large as needed to consider where the likelihood
for θ is appreciable.

Notice that Proposition 4.1 can be used recursively when there is
more supplementary information to be added, say,∫

ak(θ)π(θ)dµ(θ) = ak, k = s+ 1, s+ 2, ..., t.(19)

In such a case, in a cross-entropy formulation (Kullback 1959), we take
(18) as the initial density, and (19) as the additional information. Hence,
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π∗ϕ(θ) ∝ [I(θ)]
ϕ
2 exp{(1− ϕ)F(θ) +

s∑
k=0

λkak(θ)} exp{
t∑

k=s+1

λkak(θ)}

= [I(θ)]
ϕ
2 exp{(1− ϕ)F(θ) +

t∑
k=0

λkak(θ)} .

To deal with the (local) uniqueness of the solution of the problem
stated in Proposition 4.1, we rewrite the constraints, C, as a function of
the multipliers in the form A(Λ) = [

∫
ak(θ)π

∗
ϕ(θ)dµ(θ)]

s
k=0 = Ā, where

ĀT = (a0, a1, ..., as), and ΛT = (λ0, λ1, ..., λs) (the superindex T denotes
the usual vector or matrix transposing operation).

Proposition 4.2 Let π∗ϕ(θ) be as in (4.2), and suppose that ak, k =

0, 1, ..., s, are linearly independent continuous functions in L2[Θ, π∗ϕdµ]
(the space of all π∗ϕdµ-measurable functions a(θ) defined on Θ such that

|a(θ)|2 is π∗ϕdµ-integrable). Suppose that A(Λ) is defined on an open set

∆ ⊂ Rs+1, and let Λo be a solution of A(Λ) = Ā for a fixed value of
Ā = Āo. Then, there exists a neighborhood of Λo, N(Λo), in which Λo
is the unique solution of A(Λ) = Āo in N(Λo).

The proof follows from the fact that A(Λ) is continuously differen-
tiable on ∆, with nonsingular derivative

A′(Λ) = [

∫
aȷ(θ)aℓ(θ)π

∗
ϕ(θ)dµ(θ)]0≤ȷ,ℓ≤s,

and from a straightforward application of inverse function theorem.
From (4.1) we may derive the following necessary condition, which

is useful in practical situations.

Proposition 4.3 The multipliers ΛT = (λ0, λ1, ..., λs) appearing in
(18) satisfy the following non-linear system of s+ 1 equations:

1 = λ0 + log

{∫
[I(θ)]

ϕ
2 e(1−ϕ)F(θ)

s∏
k=1

eλkak(θ)dµ(θ)

}
,

1 = λ0 − log āk + log

{∫
ak(θ)[I(θ)]

ϕ
2 e(1−ϕ)F(θ)

s∏
u=1

eλuau(θ)dµ(θ)

}
,

k = 1, 2, ..., s.

Moreover,
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(i) if the integral in the first equality has a closed-form solution, then
the rest of the multipliers can be found from the relations:

∂λ0
∂λk

= āk, k = 1, 2, ..., s,

(ii) the formula

ϕV1,1,1(π
∗
ϕ) + (1− ϕ)[V0,0,0(π

∗
ϕ)− 2V0,0,1(π

∗
ϕ)] = 1−

s∑
k=0

λkāk,

holds for all 0 ≤ ϕ ≤ 1.

Very often, experimenters are concerned with assigning weights āk,
k = 1, 2, ..., s, to regions Ak, k = 1, 2, ..., s, to express, according to
experience, how likely it is that θ belongs to each region. The following
result, based on Proposition 4.3, characterizes Good-Bernardo-Zellner’s
priors when such a supplementary information comes in the form of
quantiles, and both I(θ) and F(θ) are constant. Under such assump-
tions, the non-linear system of s+ 1 equations given in Proposition 4.3
is transformed into a homogeneous linear system of the same dimension
as shown below:

Proposition 4.4 Suppose that the sets Ak = (bk, bk+1], k = 1, 2, ..., s−
1 and As = (bs, bs+1) with b1 < b2 < · · · < bs+1, s ≥ 2, constitute a
partition of Θ, 0 < µ(Θ) < ∞. Suppose also that both I(θ) and F(θ)
are constant. Let ā1, ā2, ..., ās > 0 be such that

∑s
k=1 āk = 1, and∫

IAk
(θ)π(θ)dµ(θ) = āk, k = 1, 2, ..., s. If we define new multipliers:

ω0 = e1−λ0/D where D = [I(θ)]
ϕ
2 e(1−ϕ)F(θ), and ωk = eλk , k =

1, 2, ..., s. Then, Ω = (ω0, ω1, ..., ωs) can be found from the following
homogeneous linear system:

(20)


−1 u1 u2 . . . us
−1 v1 0 . . . 0
−1 0 v2 . . . 0
...

...
...

. . .
...

−1 0 0 . . . vs




ω0

ω1

ω2
...
ωs

 =


0
0
0
...
0

 ,

where uk = µ(Ak), and vk = ā−1
k uk, k = 1, 2, ..., s.
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Observe that the determinant, ∆, of the matrix in (20) is given by

∆ =

(∑s
k=1 āk − 1∏s
k=1 āk

)∏s
k=1 uk,

which guarantees that there exists a unique nontrivial solution since∑s
k=1 āk = 1. In this case, the solution is Ω∗T = (1, v−1

1 , v−1
2 , ..., v−1

s ),
and π∗ϕ =

∑s
k=1 v

−1
k IAk

.
The following proposition extends Good-Bernardo-Zellner’s priors

to a richer family by using the MMDIP and MFIP criteria:

Proposition 4.5 Let

Nϕ,ψ(π)
def
=ϕV1,1,1(π)+(1−ϕ)(1−ψ)V0,0,0(π)+(ψ(1−ϕ)/2)[V0,1,1+V0,1,0],

0 ≤ ϕ, ψ ≤ 1. Then

(i) Nϕ,ψ(π) ∈ A and is concave w.r.t. π.

(ii) A necessary condition for π to be a maximum of the problem

Maximize Nϕ,ψ(π)

subject to C :

∫
ak(θ)π(θ)dµ(θ) = ak, k = 0, 1, 2, ..., s,

where a0 ≡ 1 = a0, is given by

π∗ϕ,ψ(θ) ∝[I(θ)]
ϕ
2 exp

{
(1− ϕ)(1− ψ)F(θ)

+
ψ(1− ϕ)

2

[
[I(θ)]

1
2 +

F(θ)

[I(θ)]
1
2

]
+

s∑
k=0

λkak(θ)

}
,(21)

where λk, k = 0, 1, ..., s, are the Lagrange multipliers associated
with the constraints C.

The second term inside the exponential of (21) is the average be-
tween Fisher’s information and the negative relative Shannon-Fisher’s
information. Notice that π∗ϕ,0(θ) is just Good-Bernardo-Zellner’s prior.

In the following proposition, Good-Bernardo-Zellner type priors are
derived as MAXENTP solutions by treating (5) and (8) as constraints
(for the rationale of MAXENTP methods see Jaynes’ 1982 seminal pa-
per).
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Proposition 4.6 Consider the Jaynes–Good–Bernardo–Zellner prob-
lem:

Maximize V0,0,1(π)

subject to:


V1,1,1(π)− V0,0,1(π) = b̄1,

V0,0,0(π)− V0,0,1(π) = b̄2,∫
ak(θ)π(θ)dµ(θ) = ak, k = 0, 1, 2, ..., s, a0 ≡ 1 = a0.

Then a necessary condition for a maximum is

π∗(θ) ∝ [I(θ)]
ρ1
2 exp{ρ2F(θ) +

s∑
k=0

λkak(θ)},(22)

where ρj , j = 1, 2, and λk, k = 0, 1, ..., s, are the Lagrange multipliers
associated with the constraints.

Unlike the coefficients ϕ and 1−ϕ appearing in (4.6), the multipliers
ρj , j = 1, 2, do not necessarily add up to 1.

There typically exist priors for which Shannon-Jaynes entropy be-
comes infinite. One way to overcome this problem consists of discount-
ing entropy at a constant rate ν > 0. The following proposition intro-
duces Good-Bernardo-Zellner’s controlled priors as solutions of maxi-
mizing discounted entropy:

Proposition 4.7 Consider the discounted version of the problem stated
in the preceding proposition:

Maximize −
∫
e−νθπ(θ) log π(θ)dµ(θ),

subject to:

1
π(θ)

dh1(θ)
dµ(θ) = log[I(θ)]

1
2 , h1(−∞) = 0,

h1(∞) = V1,1,1(π)− V0,0,1(π) <∞,

1
π(θ)

dh2(θ)
dµ(θ) = F(θ), h2(−∞) = 0,

h2(∞) = V0,0,0(π)− V0,0,1(π) <∞,

1
π(θ)

dgk(θ)
dµ(θ) = ak(θ), gk(−∞) = 0, gk(∞) <∞, k = 0, 1, 2, ..., s
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where a0 ≡ 1 = a0. Then, a necessary condition for π∗(θ) to be an
optimal control is given by

π∗(θ) ∝ [I(θ)]
ρ1(θ)

2 exp{ρ2(θ)F(θ) +

s∑
k=0

λk(θ)ak(θ)},(23)

where ρj(θ) = ρj0e
νθ, j = 1, 2, and λk(θ) = λk0e

νθ, k = 0, 1, ..., s,
are the costate variables associated with the state variables hj(θ), j =
1, 2, and gk(θ), k = 0, 1, ..., s, respectively. Furthermore, the constants
ρj0, j = 1, 2, and λk0, k = 0, 1, ..., s, can be computed from the following
non-linear system of s+ 3 equations:

1 + log h1(∞) = log

{∫
log[I(θ)]

1
2m(ρ10, ρ20, λ00, λ10, ..., λs0; θ)dµ(θ)

}
,

1 + log h2(∞) = log

{∫
F(θ)m(ρ10, ρ20, λ00, λ10, ..., λs0; θ)dµ(θ)

}
,

1 + log gk(∞) = log

{∫
ak(θ)m(ρ10, ρ20, λ00, λ10, ..., λs0; θ)dµ(θ)

}
,

k = 0, 1, 2, ..., s

where
m(ρ10, ρ20, λ00, λ10, ..., λs0; θ)

=

(
[I(θ)]

ρ10
2 eρ20F(θ) eλ00

∏s
u=1 e

λu0au(θ)

)eνθ
.

5 Kalman filtering priors

In this section, we will study Good-Bernardo-Zellner’s priors as Kalman
Filtering priors (Kalman 1960, and Kalman and Bucy 1961). We will
continue to work with the single parameter case, and focus our attention
on both the location and scale parameter families.

Let Y1, Y2, ..., Yt be a set of indirect measurements, from a polling
system or a sample survey, of an unobserved state variable βt. The
objective is to make inferences about βt. The relationship between Yt
and βt is specified by the measurement equation, sometimes also called
the observation equation:

(24) Yt = Atβt + εt,

where At ̸= 0 is known, and εt is the observation error distributed as
N (0, σ2εt) with σ

2
εt known. Notice that the main difference between the
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measurement equation and the linear model is that, in the former, the
coefficient βt changes with time. Furthermore, we suppose that βt is
driven by a first order autoregressive process, that is,

(25) βt = Ztβt−1 + ηt−1,

where Zt ̸= 0 is known, and ηt ∼ N (0, σ2ηt) with σ2ηt known. In what
follows, we will assume that β0, εt, and ηt are independent random
variables. We might state nonlinear versions of (24) and (25), but this
would not make any essential differences in the subsequent analysis.

Suppose now, that at time t = 0, supplementary information is given
by β̂0 and σ̂20, the mean and variance of β0 respectively. That is,

(26) C :



∫ ∞

−∞
π(β0)dβ0 = 1,∫ ∞

−∞
β0π(β0)dβ0 = β̂0,∫ ∞

−∞
(β0 − β̂0)

2π(β0)dβ0 = σ̂20.

In this case, Good-Bernardo-Zellner’s prior is given by

(27) π∗ϕ(β0) ∝ [I(β0)]
ϕ
2 exp{(1− ϕ)F(β0) + λ0 + λ1β0 + λ2(β0 − β̂0)

2},

where λj , j = 0, 1, 2, are Lagrange multipliers.

Suppose that, at time t, we wish to make inferences about the condi-
tional state variable θt = βt|It, where It = {Y1, Y2, ..., Yt−1}. To obtain
a posterior distribution of θt, the information provided by the measure-
ment Yt, with density f(Yt|θt), is used to modify the initial knowledge
in π∗ϕ(θt) according to Bayes’ theorem:

(28) f(θt|Yt) ∝ f(Yt|θt)π∗ϕ(θt).

We are now in a position to state the Bayesian recursive updat-
ing procedure of the Kalman Filter (KF) for both the location and
scale parameter families f(Yt|θ) = f(Yt − θ), θ ∈ R, and f(Yt|θ) =
(1/θ)f(Yt/θ), θ > 0, respectively. To start off the KF procedure, we
substitute (27) in (26), obtaining that Good-Bernardo-Zellner’s prior
at time t = 0, is given by N (β̂0, σ̂

2
0), which is describing the initial

knowledge of the system. Proceeding inductively, at time t, β̂t−1 and
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σ̂2t−1 become supplementary information, and therefore Good-Bernardo-
Zellner’s prior at time t is represented by

(29) θt = βt|It ∼ N (Ztβ̂t−1,Mt),

where

(30) Mt = Z2
t σ̂

2
t−1 + σ2ηt−1

.

The sampling model (or likelihood function) is determined by

(31) Yt|θt ∼ N (Atβt, σ
2
εt).

The posterior distribution, at time t, is then obtained by substituting
both (29) and (30) in (28), so

f(θt|Yt) ∝ exp
{
−1

2 [(Atβt − Yt)
2σ−2
εt + (βt − Ztβ̂t−1)

2M−1
t ]

}
.

Noting that π∗ϕ(θt) is a natural conjugate prior, we may complete the
squares to get

θt|Yt ∼ N
[
Ztβ̂t−1 +Kt(Yt −AtZtβ̂t−1),Mt −KtAtMt

]
,

where

(32) Kt =MtAt(σ
2
εt +A2

tMt)
−1.

This, of course, means that

(33)

{
β̂t = Ztβ̂t−1 +Kt(Yt −AtZtβ̂t−1),
σ̂2t =Mt −KtAtMt.

We then proceed with the next iteration. Equations (33), (30), and (32)
are known in the literature as the KF.

The above analysis can be summarized in the following proposition:

Proposition 5.1 Consider the state-space representation:
Yt = Atβt + εt,

βt = Ztβt−1 + ηt−1,

defined as in (24) and (25). Suppose that supplementary information
on the mean and variance of β0 is available. Let θt = βt|It, where
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It = {Y1, Y2, ..., Yt−1}, and consider the location and scale parameter
families f(Yt|θ) = f(Yt− θ), θ ∈ R, and f(Yt|θ) = (1/θ)f(Yt/θ), θ > 0,
respectively, along with the properties stated in Corollary 4.1. Then,
under Good-Bernardo-Zellner’s prior, π∗ϕ(θt), the posterior estimate of

βt, β̂t, is given by

β̂t = ωtZtβ̂t−1 + (1− ωt)(Yt/At),

where ωt = σ2εt(σ
2
εt +A2

tMt)
−1.

6 Revisiting the normal linear model

The results on Good-Bernardo-Zellner priors given so far can be eas-
ily extended to the multi-dimensional parameter case, namely, θ =
(θ1, θ2, ..., θm) ∈ Θ ⊆ Rm, m > 1. Consider a vector of independent and
identically distributed normal random variables (X1, X2, ..., Xn) with
common and known variance σ2 satisfying

(34) E(Xk) = ak1θ1 + ak2θ2 + · · ·+ akmθm, k = 1, 2, ..., n,

where A = (aij) is a matrix of known coefficients for which (ATA)−1

exists.

Let X and θ stand for the column vectors of variables Xk and pa-
rameters θj , respectively. Then (34) can be written in matrix notation
as, E(X) = Aθ. In this case, we have

(35) f(ξ|θ) = ( 1
2πσ2 )

n
2 exp{− 1

2σ2 ∥ξ −Aθ∥2},

where ξ = (x1, x2, ..., xn). Since σ2 has been assumed known, only the
location parameter is unknown. The analogue of (2) is now given by
the matrix:

In(θ) ≡
(∫ (

∂
∂θȷ

log f(x|θ)
)(

∂
∂θℓ

log f(x|θ)
)
f(x|θ)dλ(x)

)
1≤ȷ,ℓ≤m

=
1

σ2
ATA,

and so det[In(θ)] is constant, which implies that the Good-Bernardo-
Zellner prior distribution π∗ϕ(θ), describing a situation of vague infor-
mation on θ, must be a locally uniform prior distribution.
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Let θ̂ be the least squares estimate for θ, then it is known that
ATAθ̂ = ATX, E(θ̂ ) = θ, and Var(θ̂ ) = σ2(ATA)−1. Noting from
equation (35) that

f(ξ|θ) = ( 1
2πσ2 )

n
2 exp{− 1

2σ2 (∥ξ −Aθ̂ ∥2 + ⟨ATA(θ − θ̂ ), θ − θ̂ ⟩)},

and applying Bayes’ theorem, we get as the posterior distribution of θ

f(θ|ξ) = (2π)−
m
2 (det[ 1

σ2A
TA])

1
2 exp

{
−1

2

⟨
1
σ2A

TA(θ − θ̂ ), θ − θ̂
⟩}
.

If supplementary information in mean, c, and variance-covariance
matrix, D, is now incorporated, then the (informative) Good-Bernardo-
Zellner prior is given by

π∗ϕ(θ) = (2π)−
m
2 (det[D])−

1
2 exp

{
−1

2⟨D
−1(θ − c), θ − c⟩

}
.

The posterior distribution is now

f(θ|ξ) = (2π)−
m
2 (det[B])

1
2

× exp
{
−1

2⟨B[θ − ((DB)−1c+ 1
σ2B

−1ATAθ̂ )],

θ − ((DB)−1c+ 1
σ2B

−1ATAθ̂ )⟩
}
,

where B = D−1 + 1
σ2A

TA.

7 Summary and conclusions

We have presented, in a unified framework, a number of well-known
methods that maximize a criterion functional to obtain non-informative
and informative priors. Our general procedure is, by itself, capable of
dealing with a range of interesting issues in Bayesian analysis. However,
in this paper, we have limited our attention to Good-Bernardo-Zellner’s
priors as well as their application to some Bayesian inference problems,
including the Kalman filter and the Normal linear model.

There exist priors for which Shannon-Jaynes entropy becomes infi-
nite. In order to overcome this difficulty we proposed discounted en-
tropy. We introduced Good-Bernardo-Zellner’s controlled priors which
maximize discounted entropy at a constant rate. Throughout the paper,
we have emphasized the existence and uniqueness of the solutions of the
corresponding variational and optimal control problems. There are, of
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course, many other members of the class A that deserve much more at-
tention than that we have attempted here. Needless to say, more work
will be required in this direction. Results will be reported elsewhere.
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