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Application of modularity to optimal resource

allocation with risk sensitivity

Guadalupe Avila-Godoy 1

Abstract

An optimal allocation problem with a risk-sensitive controller is
modelled by a controlled Markov chain with exponential total cost
criterion. Some general results recently obtained are applied to
show that the particular model studied here has a monotone opti-
mal policy and monotone optimal value function. Moreover, it is
shown that under certain conditions, the allocation problem with
both risk-neutral and risk-sensitive performance criteria has an
optimal policy of the threshold type.
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1 Introduction

In this paper we study a finite horizon controlled Markov chain (CMC)
modeling an optimal allocation problem with exponential total cost
(ETC) as performance risk-sensitive criterion. The CMC considered
has finite state space, compact action space and bounded cost function.
Models of dynamic systems that incorporate risk-sensitivity by means
of an exponential utility function have recently received considerable
attention in the literature, see for example [2, 3, 6, 7, 8, 9] and refer-
ences therein. However, in contrast with the risk-neutral literature (see

1This paper is part of the author’s doctoral research under the direction of Dr.
Emmanuel Fernández Gaucherand at the Department of Mathematics of the Univer-
sity of Arizona.
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[11, 13, 14, 15, 16, 17, 18, 19] and references therein), only a few (and re-
cent) contributions dealing with structural properties of the CMC have
been made in the risk-sensitive case; see [5, 9]. We are particularly con-
cerned with the contributions made by Avila-Godoy [4], which extend
some results in [13, 14] from the risk-neutral to the risk-sensitive case.
It is proved in [4] that appropiate structural conditions (like modularity
and/or monotonicity) of certain functions defined in terms of the cost
and the transition kernel, imply the monotonicity of the optimal expo-
nential value function and the existence of monotone optimal policies.
Herein, we apply some results in [4] to show that the CMC modeling the
optimal allocation problem has monotone optimal policies and mono-
tone optimal value function. See, e.g., [13, 14] for an analysis of this
problem with risk-neutral total cost.

The paper is organized as follows. Section 2 includes the description
of the model and collects the results in [4] needed for our study. In
Sections 3 and 4, the CMC model for the finite horizon optimal allo-
cation problem is given and the main results of the paper are proved.
First, it is shown that the optimal value function for this model, Jt(x),
is increasing in the state x and decreasing in t (Lemma 3.1.6), and then
the existence of a monotone optimal policy is established (Proposition
3.1.12), that is, we show that the decision function of the optimal policy
at the t-th stage is increasing (as a function of the state), for t = 0, 1, . . .,
and increasing in t, for each x ∈ X. Moreover, under additional condi-
tions, we prove that the allocation problem can be reduced to a problem
with two actions and that the optimal policy is of the threshold type
(Proposition 4.1.13). Finally, we apply those results to a particular ex-
ample with a linear final cost. For the purpose of comparing the results
obtained in Sections 3 and 4, we include an appendix on risk-neutral
resource allocation problems. The proof of the result relative to the
reduction of the risk-neutral allocation problem to a problem with two
actions and that the optimal policy is of the threshold type is also a
contribution of this paper’s author (Section 5.2).

2 Description of the model and basic results

Let us consider a CMC specified by the four-tuple (X,A,P,C), where:

• X = {1, 2, . . .} is the state space, a countable set.

• A, the action (or control) set, is a compact subset of R. The set
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K :=
{
(x, a) : x ∈ X, a ∈ A

}
is called the set of state-action pairs.

• P, the transition kernel, is a family of transition probabilities on X
given K:

P = {P (· | x, a) : (x, a) ∈ K}.

We will also denote pxx′(a) := P (x′ | x, a). Finally,

• C : K −→ R is the one-stage cost function. We will assume that C is
nonnegative and bounded: 0 ⩽ C(x, a) ⩽ K < ∞ for every (x, a) ∈ K,
and c : X −→ R is the final penalty cost.

The above defined CMC represents a stochastic dynamical system
observed at times t = 0, 1, · · · , n, whose evolution is as follows. Let Xt

and At respectively denote the state of the system and the action chosen
at time t. If X0 = x ∈ X, and A0 = a ∈ A, then (i) a cost C(x, a) is
incurred, and (ii) the system moves to a new state X1 according to the
probability distribution P (· | x, a). Once the transition into the new
state has occurred, a new action is chosen, and the process is repeated
for n times; see [1, 10, 13].

The strategy followed to choose the actions at each stage is called
a policy. The most general set Π of policies considered in the liter-
ature includes the admissible, history dependent, randomized policies;
see [1, 10, 13]. Herein, we will be concerned only with the subset of Π
consisting of the Markov deterministic policies, denoted by ΠMD. For
a policy π ∈ Π and initial state x ∈ X, Eπ

x will denote the expectation
operator with respect to the probability measure induced by π and x in
the space of trayectories of the chain.

Risk-sensitivity of the controller is modelled by grading the total cost
with the exponential (disutility) function Uγ(x) = (sgn γ)eγx, γ ̸= 0,
where the parameter γ turns out to be the (constant) risk-sensitivity
coefficient associated to Uγ , see [12, 20]. In this work, only the case
γ > 0, the risk-averse case, will be considered. Thus, the performance
criterion for a policy π when the initial state is x and we proceed for n
stages, is given by

(1) Jπ
n (x, γ) := Eπ

x

[
eγ(

∑n−1
t=0 C(Xt,At)+c(Xn))

]
.

The stochastic optimal control problem is to find a policy π∗ within
the class Π such that (1) is minimized, that is, such that

(2) Jπ∗
n (x, γ) = inf

π
{Jπ

n (x, γ)} =: Jn(x, γ).
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The optimal policy π∗ is called ETC-optimal and Jn(x, γ) is the op-
timal ETC. We can interpret Jn(x, γ) as the minimal ETC that can
be obtained starting at state x with risk-sensitivity coefficient γ and
proceeding for n stages.

For ease of reference, we end the section by stating (without proofs)
some general results that will be needed in the next section; see [4] for
their proofs. The following known assumption will be made in the rest
of this section (see [10]).

Assumption 2.1

1) C(x, ·) is continuous for each x ∈ X; and
2) If v : X −→ R is bounded then the function

a 7−→
∑
y

pxy(a)v(y) is continuous,

for each x ∈ X.

First, we recall a typical forward dynamic programming recursion.

Theorem 2.1.1 (Dynamic Programming Algorithm) The optimal
ETC, Jn(x, γ), satisfies the following recursion:

J0(x, γ) = eγc(x),

...
...

Js+1(x, γ) = inf
a∈A

{
eγC(x,a)

∑
y

pxy(a)Js(y, γ)
}
,

(3)

for s = 0, 1, · · ·n− 1.
For s = 0, 1, 2, . . . n− 1, let fs : X −→ A be a decision rule defined by

eγC
(
x,fs(x)

)∑
y

pxy (fs(x)) Jn−s−1(y, γ) =

inf
a∈A

{
eγC(x,a)

∑
y

pxy(a)Jn−s−1(y, γ)
}
.

(4)

Then the Markov deterministic policy π∗ = (f0, f1, f2, . . . fn−1) is ETC-
optimal.

Next, a lemma that provides sufficient conditions for monotonicity
of the optimal value function is stated.



Optimal resource allocation 51

Lemma 2.1.2 Suppose that

i) C(x, a) is increasing (decreasing) in x for each a, and c(x) is increas-
ing (decreasing).

ii)

∞∑
y=z

pxy(a) is increasing in x for all z ∈ X and a ∈ A.

Then, the optimal value function Js(x, γ) is increasing (decreasing) in
x, for s = 0, 1, · · ·n.

Finally, some standard definitions and notation, and two key theo-
rems about structural properties of CMC’s are stated (see [4].)

Let (S,≼S) be a lattice, i.e., a partially ordered set such that if s, r ∈ S
then s ∨ r ∈ S and s ∧ r ∈ S, and let G : S −→ R. We say that

a) G(·) is subadditive (or submodular) on S if

G(s ∨ r) +G(s ∧ r) ⩽ G(s) +G(r)

for every s, r ∈ S;

b) G(·) is superadditive (or supermodular) on S if −G(·) is subaddi-
tive on S.

We will assume the state and action spaces to be subsets of R with
the usual order and we will consider the product order ≼ on R2, that
is, ≼ is defined by (y, z) ≼ (y′, z′) if y ⩽ y′ and z ⩽ z′.

A Markov deterministic policy π = (f0, f1, . . . , fn−1) is said to be
monotone (with respect to x) if all the decision rules ft are monotone
functions of the state x. In the particular case that the action space
contains only two actions, say a1 and a2, a monotone policy is called a
threshold policy. That is, a threshold policy is a deterministic Markov
policy π = (f0, f1, . . . , fn−1) such that, for t = 0, 1, . . . , n− 1, the deci-
sion rule ft is given by

(5) ft(x) =

{
a1 if x ⩾ x∗t
a2 if x < x∗t ,

where x∗t is the control limit or threshold.

It is clearly useful to know in advance when a monotone optimal pol-
icy exists, because the search for an optimal policy can then be restricted
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from the class of Markov deterministic policies to the much smaller sub-
class of monotone policies [11, 13]. The following theorem provides suf-
ficient conditions for the existence of optimal monotone (with respect
to x) policies for CMC’s with ETC criterion.

Notation. For t = 0, 1, 2, . . . , n− 1, let

(6) Ht(x, a, γ) := eγC(x,a)
∑
y

pxy(a)Jn−t−1(y, γ),

i.e., Ht denotes the function within brackets in (4).

Theorem 2.1.3 For t = 0, 1, 2, · · ·n− 1, set

A∗
t (x) =

{
a ∈ A : Ht(x, a, γ) = min

a′
{Ht(x, a

′, γ)}
}
,

and ft(x) := minA∗
t (x) (respectively ft(x) := maxA∗

t (x)). Suppose that

logHt(·, ·, γ) is subadditive (respectively superadditive) on (X × A,≼),
for fixed γ.

Then, (f0, f1, . . . fn−1) is an optimal policy with ft(x) increasing (re-
spectively decreasing) in x for each t.

Additionally, due to the fact that the optimal policy π = (f0, f1, . . .
fn−1) is in general non-stationary, it is natural to ask how the optimal
action ft(x) varies with respect to t for each fixed x. Thus, a Markov
deterministic policy π = (f0, f1, . . . , fn−1) is said to be monotone (with
respect to t) if for each fixed x, the sequence of actions ft(x) is mono-
tone in t. The following theorem provides sufficient conditions for the
existence of optimal monotone (with respect to t) policies for CMC’s
with ETC criterion.

Theorem 2.1.4 Let A∗
t (x) and ft(x) be as in Theorem 2.1.3. Assume

that for each x ∈ X, the function logH(·)(x, ·, γ) is superadditive (re-
spectively subadditive) on the lattice (A× {0, 1, 2, · · ·n− 1},≼). Then,
(f0, f1, . . . fn−1) is an optimal policy such that the sequence of actions
ft(x) is decreasing (respectively increasing) in t for each x.
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3 An Optimal Allocation Problem.

In this section we follow Ross [14] to model an optimal allocation prob-
lem by means of a finite horizon CMC. However, unlike the mentioned
reference, we introduce a risk-sensitive performance criterion. The gen-
eral results stated in Section 2 are applied to show that, under standard
conditions, the optimal value function is increasing in the state and de-
creasing in t (Lemma 3.1.6) and that the optimal policy is increasing
in x and increasing in t (Proposition 3.1.12). Moreover, under addi-
tional conditions, we prove that the allocation problem can be reduced
to a problem with two actions and that the optimal policy is of the
threshold-type (Proposition 4.1.13). Finally, we apply those results to
a particular example of a linear final cost; see [14] for an analysis of this
problem with risk-neutral total cost.

The optimal allocation problem can be described as follows. Suppose
we have N stages to construct sequentially I successful components . At
each stage we allocate a certain amount of money for the construction
of a component. If a is the amount allocated, then the component con-
structed will be a success with probability P (a), where P is a continuous
strictly increasing function such that P (0) = 0. After each component
is constructed, we are informed whether or not it is successful. If at the
end of N stages, we are x components short, then a final penalty cost
c(x) is incurred, where c(x) is increasing. The problem is to determine
how much money to allocate at each stage to minimize the expected
ETC. A CMC (X,A, P,C) which models the described allocation prob-
lem can be defined by taking the state space X = {0, 1, . . . I}, the action
space A = [0,M ], where M is a positive real number, the cost function
C(x, a) = a, and the transition probabilities

(7) pxy(a) =


P (a) if y = x− 1

1− P (a) if y = x

0 otherwise.

The state Xt is the number of successful components still needed at
time t and the action At is the amount of money allocated at time t.

We recall that Jt(x, γ) denotes the minimal cost starting at state x
with t stages to go, x ∈ X and t = 0, 1, . . . , N .

Remark 3.1.5 This model satisfies Assumption 2.1 since C(x, a) and∑
y

pxy(a)Jt(y, γ) = P (a)Jt(x− 1, γ) + (1− P (a))Jt(x, γ)
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are continuous functions in a, for each x ∈ X.

According to (3), J0(x, γ) = eγc(x) and for t = 0, 1, . . . N − 1,

Jt+1(x, γ)

= inf
a∈[0,M ]

{
eγa[P (a)Jt(x− 1, γ) + (1− P (a))Jt(x, γ)]

}
(8)

= inf
a∈[0,M ]

{eγa[Jt(x, γ)− P (a)(Jt(x, γ)− Jt(x− 1, γ)]}(9)

= inf
a∈[0,M ]

{eγa[Jt(x− 1, γ) + (1− P (a))(Jt(x, γ)− Jt(x− 1, γ)]} .
(10)

First, we will show that the optimal value function Jt(x, γ) is in-
creasing in the state x and decreasing in the number t of stages to go.

Lemma 3.1.6 The optimal value function Jt(x, γ) is increasing in x
and decreasing in t.

Proof: We will apply Lemma 2.1.2 to prove that Jt(x, γ) is increasing
in x. First, we see that this model satisfies (i) of the mentioned lemma
since C(x, a) is constant in x, and the terminal cost c(x) is increasing.
Finally, it follows from (7) that

(11)
I∑

y=k

pxy(a) =


1 if k ⩽ x− 1

1− P (a) if k = x

0 if k > x,

and hence, (ii) of Lemma 2.1.2 is valid for this model. Therefore, Jt(x, γ)
is increasing in x. Now, since a = 0 is an admissible action, it follows
from (8) that

Jt+1(x, γ) ⩽ eγ·0[P (0)Jt(x− 1, γ) + (1− P (0))Jt(x, γ)],

and hence,
Jt+1(x, γ) ⩽ Jt(x, γ).

Thus, Jt(x, γ) is decreasing in t for each x. 2

Our next goal is to show that the allocation problem has optimal
policies that are increasing in x and increasing in t. To this end, we will
prove that

(12) log {eγa[P (a)JN−t−1(x− 1, γ) + (1− P (a))JN−t−1(x, γ)]}
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is subadditive on X×A and subadditive on A× {0, 1, 2, . . . N − 1}, so
that the mentioned monotonicity properties will follow from Theorems
2.1.3 and 2.1.4 since in this model the function Ht defined in (6) is the
function within brackets in (12), i.e.,

Ht(x, a, γ) = eγa[P (a)JN−t−1(x− 1, γ) + (1− P (a))JN−t−1(x, γ)].

Set gt(x, a, γ) = P (a)Jt(x− 1, γ) + (1− P (a))Jt(x, γ) and

(13) Gt(x, a, γ) := eγagt(x, a, γ),

so that

(14) Ht(x, a, γ) = GN−t−1(x, a, γ).

First, it follows from (14) that each of the structural properties of
logHt(x, a, γ) we need is equivalent to a structural property of logGt(x,
a, γ).

Lemma 3.1.7 a) logHt(x, a, γ) is subadditive on X×A iff logGt(x, a,
γ) is subadditive on X × A. b) logHt(x, a, γ) is subadditive on A ×
{0, 1, . . . N − 1} iff logGt(x, a, γ) is superadditive on A× {0, 1, . . .
N − 1}.

Next, we will see that each of the structural properties of logGt(x, a,
γ) we need is equivalent to a structural property of log Jt(x, γ).

Lemma 3.1.8 a) logGt(x, a, γ) is subadditive on X×A iff log Jt(x, γ)
is convex in x. b) logGt(x, a, γ) is superadditive on A×{0, 1, . . . N−1}
iff log Jt(x, γ) is subadditive on X× {0, 1, . . . N − 1}.

Proof: a) Let a′ > a and denote by Dt(x) := Jt(x + 1, γ) − Jt(x, γ).
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Then

log Jt(x, γ) is convex in x

⇐⇒ log Jt(x+ 1, γ)− log Jt(x, γ) ⩾ log Jt(x, γ)− log Jt(x− 1, γ)

⇐⇒ Jt(x+ 1, γ)Jt(x− 1, γ) ⩾ J2
t (x, γ)

⇐⇒ Jt(x, γ)Dt(x) ⩾ Jt(x+ 1, γ)Dt(x− 1)

⇐⇒ (P (a′)− P (a))Jt(x, γ)Dt(x) ⩾ (P (a′)− P (a))Jt(x+ 1, γ)

Dt(x− 1)

⇐⇒ −P (a)Jt(x, γ)Dt(x)− P (a′)Jt(x+ 1, γ)Dt(x− 1) ⩾
− P (a′)Jt(x, γ)Dt(x)− P (a)Jt(x+ 1, γ)Dt(x− 1)

⇐⇒ [Jt(x+ 1, γ)− P (a)Dt(x)][Jt(x, γ)− P (a′)Dt(x− 1)] ⩾
[Jt(x+ 1, γ)− P (a′)Dt(x)][Jt(x, γ)− P (a)Dt(x− 1)]

⇐⇒ gt(x+ 1, a)

gt(x, a)
⩾ gt(x+ 1, a′)

gt(x, a′)

⇐⇒ log gt(x, a, γ) is subadditive on X×A

⇐⇒ logGt(x, a, γ) is subadditive on X×A.

Note that the last step follows from the equality

logGt(x, a, γ) = γa+ log gt(x, a, γ).

b) Let a′ > a. Then

log Jt(x, γ) is subadditive on X× {0, 1, . . . N − 1}
⇐⇒ log Jt+1(x− 1)− log Jt+1(x) ⩾ log Jt(x− 1)− log Jt(x)

⇐⇒ Jt+1(x− 1)Jt(x) ⩾ Jt+1(x)Jt(x− 1)

⇐⇒ Jt(x)Dt+1(x− 1) ⩽ Jt+1(x)Dt(x− 1)

⇐⇒ (P (a′)− P (a))Jt(x)Dt+1(x− 1) ⩽ (P (a′)− P (a))Jt+1(x)

Dt(x− 1)

⇐⇒ −P (a)Jt(x)Dt+1(x− 1)− P (a′)Jt+1(x)Dt(x− 1) ⩽
− P (a′)Jt(x)Dt+1(x− 1)− P (a)Jt+1(x)Dt(x− 1)

⇐⇒ [Jt+1(x)− P (a)Dt+1(x− 1)][Jt(x)− P (a′)Dt(x− 1)] ⩽
[Jt+1(x)− P (a′)Dt+1(x− 1)][Jt(x)− P (a)Dt(x− 1)]

⇐⇒ gt+1(x, a, γ)

gt(x, a, γ)
⩽ gt+1(x, a

′, γ)

gt(x, a′, γ)

⇐⇒ log gt(x, a, γ) is superadditive on A× {0, 1, · · ·N − 1}
⇐⇒ logGt(x, a, γ) is superadditive on A× {0, 1, · · ·N − 1}. 2
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Now, we show that log Jt(x, γ) is indeed convex in x for each t, and
subadditive on X× {0, 1, . . . N − 1}. Throughout the rest of this paper
we will assume the following condition, which is reasonable for some
situations.

Assumption 3.1. The terminal cost c(x) is convex.

Lemma 3.1.9 Under Assumption 3.1, the following three statements
hold:
a) log Jt(x, γ) is convex in x for each t.
b) log Jt(x, γ) is convex in t for each x.
c) log Jt(x, γ) is subadditive on (X× {0, 1, . . . N − 1},≼).

Proof: First, note that (a), (b) and (c) are equivalent to

Ax,t :
Jt(x+ 2, γ)

Jt(x+ 1, γ)
⩾ Jt(x+ 1, γ)

Jt(x, γ)
(15)

Bx,t :
Jt+2(x, γ)

Jt+1(x, γ)
⩾ Jt+1(x, γ)

Jt(x, γ)
(16)

Cx,t :
Jt+1(x, γ)

Jt(x, γ)
⩾ Jt+1(x+ 1, γ)

Jt(x+ 1, γ)
(17)

respectively. We will show that those inequalities hold for t = 0, 1, . . .
N−2 and x = 0, 1, . . . I−2. The proof will be by induction on k = t+x.
We have that C0,0 is true since Jt is decreasing in t (Lemma 3.1.6). B0,0

is an obvious equality, and A0,0 follows from Assumption 3.1. Thus the
inequalities are true for k = 0. We assume that they are true whenever
t + x < k and let k = t + x. Let’s prove Cx,t. It follows from (9) that
for some a, say ā,

Jt+1(x, γ) = eγā[Jt(x, γ)− P (ā)(Jt(x, γ)− Jt(x− 1, γ))],

and hence

(18)
Jt+1(x, γ)

Jt(x, γ)
= eγā

[
1− P (ā)

Jt(x, γ)− Jt(x− 1, γ)

Jt(x, γ)

]
.

On the other hand, it follows from Ax−1,t that

Jt(x, γ)− Jt(x− 1, γ)

Jt(x, γ)
⩽ Jt(x+ 1, γ)− Jt(x, γ)

Jt(x+ 1, γ)
.
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Therefore, from (18) we obtain

Jt+1(x, γ)

Jt(x, γ)
≥ eγā

[
1− P (ā)

Jt(x+ 1, γ)− Jt(x, γ)

Jt(x+ 1, γ)

]
≥ Jt+1(x+ 1, γ)

Jt(x+ 1, γ)
,

and Cx,t follows. In a similar way, to prove Bx,t we have that it follows
from (9) that for some a, say a′,

Jt+2(x, γ) = eγa
′
[Jt+1(x, γ)− P (a′)(Jt+1(x, γ)− Jt+1(x− 1, γ))],

and hence

(19)
Jt+2(x, γ)

Jt+1(x, γ)
= eγa

′
[
1− P (a′)

Jt+1(x, γ)− Jt+1(x− 1, γ)

Jt+1(x, γ)

]
.

On the other hand, it follows from Cx−1,t that

Jt+1(x, γ)− Jt+1(x− 1, γ)

Jt+1(x, γ)
⩽ Jt(x, γ)− Jt(x− 1, γ)

Jt(x, γ)
.

Therefore, from (19) we obtain

Jt+2(x, γ)

Jt+1(x, γ)
⩾ eγa

′
[
1− P (a′)

Jt(x, γ)− Jt(x− 1, γ)

Jt(x, γ)

]
⩾ Jt+1(x, γ)

Jt(x, γ)
,

and Bx,t follows.
Finally, to prove Ax,t, note that Bx+1,t−1 is just

Jt+1(x+ 1, γ)

Jt(x+ 1, γ)
⩾ Jt(x+ 1, γ)

Jt−1(x+ 1, γ)
,

or equivalently,

Jt+1(x+ 1, γ)Jt−1(x+ 1, γ) ⩾ J2
t (x+ 1, γ).

Thus to complete the proof of (15) we have to show that

(20) Jt(x+ 2, γ)Jt(x, γ) ⩾ Jt+1(x+ 1, γ)Jt−1(x+ 1, γ).

It follows from (10) that for some a, say ã,

Jt(x+ 2, γ) = eγã [Jt−1(x+ 1, γ) + (1− P (ã)) (Jt−1(x+ 2, γ)

−Jt−1(x+ 1, γ))] ,
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and hence

Jt(x+ 2, γ)

Jt−1(x+ 1, γ)
= eγã [1 + (1− P (ã))

Jt−1(x+ 2, γ)− Jt−1(x+ 1, γ)

Jt−1(x+ 1, γ)

]
.(21)

On the other hand, it follows from Ax,t−1 and Cx,t−1 that

Jt−1(x+ 2, γ)

Jt−1(x+ 1, γ)
⩾ Jt(x+ 1, γ)

Jt(x, γ)
,

and hence

Jt−1(x+ 2, γ)− Jt−1(x+ 1, γ)

Jt−1(x+ 1, γ)
⩾ Jt(x+ 1, γ)− Jt(x, γ)

Jt(x, γ)
.

Thus, from (21) we obtain

Jt(x+ 2, γ)

Jt−1(x+ 1, γ)
⩾ eγã

Jt(x, γ)
[Jt(x, γ) + (1− P (ã))(Jt(x+ 1, γ)− Jt(x, γ))]

≥ Jt+1(x+ 1, γ)

Jt(x, γ)
,

and (20) follows. Thus, the proof is complete. 2

Corollary 3.1.10 Under Assumption 3.1, Jt(x, γ) is convex in x for
each t.

Proof: Since Jt(x, γ) = exp(log Jt(x, γ)), the claim follows from
Lemma 3.1.9 (a). 2

Lemma 3.1.11 Under Assumption 3.1,

a) log[Gt(x, a, γ)] is subadditive on X×A.

b) log[Gt(x, a, γ)] is superadditive on A× {0, 1, . . . N − 1}.

Proof: The results in (a) and (b) follow from Lemmas 3.1.8 and 3.1.9.
2

We know that for the risk-neutral allocation problem there exists
an optimal policy π = (f0, . . . fN−1) such that ft(x) is increasing in x
for each t, and increasing in t for each x; see [14]. In the following
proposition we show an analogous result for the risk-sensitive case.
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Proposition 3.1.12 Under Assumption 3.1, there exists an optimal
policy π = (f∗

0 , . . . f
∗
N−1) for the allocation problem with exponential

total cost criterion such that f∗
t (x) is increasing in x, for each t, and

increasing in t, for each x.

Proof: It follows from Lemmas 3.1.7 and 3.1.11 that for t = 0, 1, . . .
N − 1, logHt(x, a, γ) is subadditive on X×A, and subadditive on
A×{0, 1, . . . N − 1}. The result follows from Theorems 2.1.3 and 2.1.4.
2

In the following section we analyze the allocation control problem
with ETC criterion for the case in which the probability function P (a)
is convex and the final cost c(x) is strictly increasing. We show that
under the mentioned conditions, the optimal policy obtained in Propo-
sition 3.1.12 has further structural properties. Moreover, we compare
those structured optimal policies with those corresponding to the risk-
neutral allocation problem (which are obtained in the appendix). Fi-
nally, we apply the obtained results to the particular case of a linear
terminal cost function, and again we compare the conclusions with those
corresponding to the risk-neutral problem.

4 Allocation Problem with P(a) Convex and
c(x) Strictly Increasing.

Throughout this section, π∗ = (f∗
0 , . . . , f

∗
t−1) will denote the monotone

optimal policy obtained in Proposition 3.1.12.

Proposition 4.1.13 Assume that P (a) is convex and twice differen-
tiable and c(x) strictly increasing. Then, under Assumption 3.1, the
optimal allocation problem can be reduced to a problem with the action
set {0,M}. Moreover, the optimal policy π∗ = (f∗

0 , f
∗
1 , . . . f

∗
N−1) is of

the threshold type, that is, there exist states x∗0, x
∗
1, . . . , x

∗
N−1 such that

(22) f∗
t (x) =

{
0 if x < x∗t
M if x ⩾ x∗t ,

t = 0, 1, . . . N−1. Furthermore, the sequence of thresholds is decreasing.

Proof: First, we will show by induction on t, that Jt(x, γ) is strictly
increasing in x. Since J0(x, γ) = eγc(x), the result holds for t = 0. Now
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assume that Jt(x, γ) is strictly increasing in x for some t ≥ 0. Then,
from Corollary 3.1.10 and by using the induction hypothesis we have
that

eγa[Jt(x, γ)+(1− P (a))(Jt(x+ 1, γ)− Jt(x, γ))]

> eγa[Jt(x− 1, γ) + (1− P (a))(Jt(x, γ)− Jt(x− 1, γ))]

and since eγa[Jt(x, γ)+ (1−P (a))(Jt(x+1, γ)−Jt(x, γ))] is continuous
in a,

inf
a∈[0,M ]

{eγa[Jt(x, γ) + (1− P (a))(Jt(x+ 1, γ)− Jt(x, γ))]}

> inf
a∈[0,M ]

{eγa[Jt(x− 1, γ) + (1− P (a))(Jt(x, γ)− Jt(x− 1, γ))]} .

Thus, from (10), Jt+1(x + 1, γ) > Jt+1(x, γ). Next, we will show that
for ax ∈ (0,M),

∂Gt

∂a
(x, ax, γ) = 0 =⇒ ∂2Gt

∂2a
(x, ax, γ) < 0;

that is, that there are no minimal points in (0,M). Indeed, it follows
from (13) that

Gt(x, a, γ) = eγa[(Jt(x, γ)− Jt(x− 1, γ))(1− P (a)) + Jt(x− 1, γ)],

which yields by differentiating both sides two times with respect to a:

∂Gt

∂a
(x, a, γ) = −eγa[Jt(x, γ)− Jt(x− 1, γ)]P ′(a) + γGt(x, a, γ),

and

∂2Gt

∂2a
(x, a, γ) = −eγa[Jt(x, γ)− Jt(x− 1, γ)]P ′′(a)−

γeγa[Jt(x, γ)− Jt(x− 1, γ)]P ′(a) + γ
∂Gt

∂a
(x, a, γ)

= γ
∂Gt

∂a
(x, a, γ) + eγa[Jt(x− 1, γ)− Jt(x, γ)]

[γP ′(a) + P ′′(a)]

If ax ∈ (0,M) is such that ∂Gt
∂a (x, ax, γ) = 0, then ∂2Gt

∂2a
(x, a, γ) < 0 since

Jt(x− 1, γ)− Jt(x, γ) < 0 and γP ′(a) + P ′′(a) > 0.
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Since there are no minimal points in (0,M), then we must have
f∗
t (x) ∈ {0,M} ∀t, ∀x. Moreover, if we define

x∗t := min{x : f∗
t (x) = M},

t = 0, 1, . . . N−1, then (22) follows from the fact that f∗
t (x) is increasing

in x. Finally, the sequence {x∗t } is decreasing since f∗
t (x) is increasing

in t. 2

Now, to gain further insight of the consequences of Proposition
4.1.13, we apply this proposition to compute the optimal policy in a
particular example with linear final cost.

Example 4.1.14 Take c(x) = 2x, A = [0, 1], and P (a) convex. We start
by computing f∗

N−1(x). To do that, by Proposition 4.1.13, we need only
to compare the values of the function G0(x, a, γ) at the extreme actions
a = 0 and a = 1. We have that

G0(x, a, γ) = eγa[P (a)J0(x− 1, γ) + (1− P (a))J0(x, γ)], x ≥ 1

= eγa[P (a)eγ(2x−2) + (1− P (a))e2γx], x ≥ 1.

Thus,

(23) G0(x, 0, γ) = e2γx

and

(24) G0(x, 1, γ) = e2γx[P (1)e−γ + (1− P (1))eγ ].

On the other hand, assuming that P (1) ̸= 1, we obtain that

1 ≤ P (1)e−γ + (1− P (1))eγ ⇐⇒ eγ ≤ P (1) + e2γ(1− P (1))

⇐⇒ (1− P (1))

[
e2γ − 1

1− P (1)
eγ +

P (1)

1− P (1)

]
≥ 0

⇐⇒ e2γ − 1

1− P (1)
eγ +

P (1)

1− P (1)
≥ 0

⇐⇒
(
eγ − P (1)

1− P (1)

)(
eγ − 1

)
≥ 0

⇐⇒ γ ≥ log
P (1)

1− P (1)
.(25)

Thus, it follows from (23), (24) and (25) that
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a) if 1
2 < P (1) < 1 and 0 < γ ≤ log( P (1)

1−P (1)) then

G0(x, 1, γ) ≤ G0(x, 0, γ);

b) if 1
2 < P (1) < 1 and γ ≥ log( P (1)

1−P (1)) then

G0(x, 0, γ) ≤ G0(x, 1, γ);

c) if P (1) ≤ 1
2 and γ > 0 then

G0(x, 0, γ) < G0(x, 1, γ);

d) if P (1) = 1 and γ > 0 then

G0(x, 1, γ) < G0(x, 0, γ).

Therefore the optimal decision rule f∗
N−1 and the optimal value func-

tion J1 for the cases (a) and (d) are given by

(26) f∗
N−1(x) =

{
0 if x < 1

1 if x ⩾ 1,

and
(27)

J1(x, γ) =

{
1 if x = 0

eγ [P (1)J0(x− 1, γ) + (1− P (1))J0(x, γ)] if x ≥ 1,

and for (b) and (c) by

f∗
N−1(x) = 0, ∀x

and

(28) J1(x, γ) = e2γx, x ≥ 0.

Now, to compute the optimal decision rules f∗
t , t = 0, . . . , N−2, we will

first prove each one of the following statements by induction on t:

I) if 1
2 < P (1) < 1 and 0 < γ ≤ log( P (1)

1−P (1)) then, for t = 1, . . . N − 1,

Jt(x, γ) =

{
1 if x = 0

eγ [P (1)Jt−1(x− 1, γ) + (1− P (1))Jt(x, γ)] if x ≥ 1,
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II) if 1
2 < P (1) < 1 and γ ≥ log( P (1)

1−P (1)) then, for t = 1, . . . N − 1,

Jt(x, γ) = J0(x, γ), x ∈ X;

III) if P (1) ≤ 1
2 and γ > 0 then for t = 1, . . . N − 1,

Jt(x, γ) = J0(x, γ), x ∈ X;

IV) if P (1) = 1 and γ > 0 then for t = 1, . . . N − 1,

Jt(x, γ) =

{
1 if x = 0

eγ [P (1)Jt−1(x− 1, γ) + (1− P (1))Jt(x, γ)] if x ≥ 1,

First, let’s prove (I). The validity of assertion (I) for t = 1 follows
from (27). Next, by (8),

Jt+1(x, γ) = min{Gt(x, 0, γ), Gt(x, 1, γ)},

where

(29) Gt(x, a, γ) = eγa[P (a)Jt(x− 1, γ) + (1− P (a))Jt(x, γ)], x ≥ 1.

Thus,

Jt+1(x, γ) = min{Jt(x, γ), eγ [P (1)Jt(x− 1, γ) + (1− P (1))Jt(x, γ)]}
= min{eγ [P (1)Jt−1(x− 1, γ) + (1− P (1))Jt−1(x, γ)],

eγ [P (1)Jt(x− 1, γ) + (1− P (1))Jt(x, γ)]}(30)

= eγ [P (1)Jt(x− 1, γ) + (1− P (1))Jt(x, γ)],(31)

where (30) and (31) follow from the induction hypothesis and Lemma
3.1.6 respectively. Thus, the proof of (I) is complete.

Now, let’s prove (II). First, (28) implies that (II) holds for t = 1.
Next, similarly as above,

Jt+1(I, γ) = min{Gt(I, 0, γ), Gt(I, 1, γ)}
= min{Jt(I, γ), eγ [P (1)Jt(I − 1, γ) + (1− P (1))Jt(I, γ)]}(32)

= min{J0(I, γ), eγ [P (1)J0(I − 1, γ) + (1− P (1))J0(I, γ)]}(33)

= min{J0(I), J0(I)[e−γP (1) + eγ(1− P (1))],

= J0(I)(34)
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where (32), (33) and (34) follow from (29), the induction hypothesis and
(25) respectively. Thus f∗

N−t−1(I) = 0 and since f∗
N−t−1(x) is increasing

in x, we obtain that f∗
N−t−1(x) = 0, for all x. Therefore

Jt+1(x, γ) = min{Gt(x, 0, γ), Gt(x, 1, γ)}
= Gt(x, 0, γ)

= Jt(x, γ)

= J0(x, γ), ∀x ∈ X,

and the proof of (II) is complete.

The proof of (III) is similar to the proof of (II) but in this case (34)

follows from (25) since P (1) ≤ 1
2 =⇒ log P (1)

1−P (1) ≤ 0. The proof of (IV)

is similar to the proof of (I).

Finally, it follows from (I), (II), (III) and (IV) that f∗
t (x), t =

0, 1, . . . , N − 2, N − 1, are given by

(35) f∗
t (x) =

{
0 if x < 1

1 if x ⩾ 1

if 1
2 < P (1) < 1 and 0 < γ ≤ log

(
P (1)

1−P (1)

)
, or if P (1) = 1 and γ > 0;

and

f∗
t (x) = 0, ∀x

if 1
2 < P (1) < 1 and γ ≥ log

(
P (1)

1−P (1)

)
, or if P (1) ≤ 1

2 and γ > 0.

Remark 4.1.15 Note that

a) if 1
2 < P (1) < 1 and γ ≥ log( P (1)

1−P (1)) then the preferences of the
γ-decision maker differ from those of the risk-neutral decision maker:
the γ-decision maker prefers the action a = 0, whereas the risk-neutral
decision maker prefers the action a = 1; see the appendix;

b) if P (1) = 1
2 then the γ-decision maker prefers the action a = 0,

whereas the risk-neutral decision maker is indifferent between the ac-
tions a = 0 and a = 1; see the appendix.

5 Appendix

For the purpose of comparing the results obtained in Sections 3 and
4 about structured optimal policies for an optimal allocation problem
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(with ETC criterion), in this appendix we study the corresponding risk-
neutral allocation problem. Section 5.1 summarizes some results about
monotonicity and convexity properties of the optimal value function
and monotonicity properties of the policies. For the proof of those
results we refer the reader to Ross [14]. In Section 5.2 we derive further
structural properties of the optimal policies under the assumptions that
the probability function P (a) is convex and the final cost c(x) is strictly
increasing.

5.1 Monotone Optimal Policies

For t = 0, 1, . . . , N − 1, denote

(36) Ft(x, a) := a+ P (a)Jt(x− 1) + (1− P (a))Jt(x), x ≥ 1,

where Jt(x) is the risk-neutral optimal total cost when t stages remain
to go and the state at time N − t is x. Note that Ft(x, a) is the function
within brackets in the (risk-neutral) dynamic programming algorithm

J0(x) = c(x)(37)

...
...

Jt+1(x) = inf
a∈A(x)

{
C(x, a) +

∑
y

pxy(a)Jt(y)
}
.(38)

Let

Āt(x) := {a : Ft(x, a) = inf
a′
{Ft(x, a

′)}}

and

f̄t(x) := min Āt(x).

Lemma 5.1.1 The optimal value function Jt(x) is increasing in x and
decreasing in t. Moreover, under Assumption 3.1, Jt(x) is convex in x.

Proposition 5.1.2 Under Assumption 3.1, π̄ = (f̄0, . . . , f̄N−1) is an
optimal policy for the risk-neutral allocation problem such that for t =
0, . . . N − 1, ft(x) is increasing in x; and for fixed x, ft(x) is increasing
in t.
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5.2 Risk-neutral Allocation Problem with P(a) Strictly
Convex and c(x) Strictly Increasing.

Throughout this appendix, the policy π̄ = (f̄0, . . . , f̄N−1) will denote the
monotone optimal policy obtained in Proposition 5.1.2. In the following
proposition we will show that when the probability function P (a) is
strictly convex and the final cost c(x) is strictly increasing, the allocation
model is reduced to a problem with two actions: the extreme points of
the interval [0,M ]. Consequently, there exists an optimal threshold
policy.

Proposition 5.2.1 Assume that P (a) is strictly convex and twice dif-
ferentiable and c(x) is strictly increasing. Then, under Assumption 3.1,
the allocation optimal control problem (with total cost criterion) can be
reduced to a problem with two actions: the extreme points of the inter-
val [0,M ]. Moreover, the optimal policy π̄ = (f̄0, f̄1, . . . f̄N−1) is of the
threshold-type, that is, there exist states x̄0, x̄1, . . . , x̄N−1 such that

(39) f̄t(x) =

{
0 if x < x̄t

M if x ⩾ x̄t,

t = 0, 1, . . . N − 1. Moreover, the sequence of thresholds is decreasing.

Proof: It follows from (36) that

(40) Ft(x, a) = a+ [Jt(x)− Jt(x− 1)](1− P (a)) + Jt(x− 1).

First, we will show by induction on t, that Jt(x) is strictly increasing
in x. Since J0(x) = c(x), the result holds for t = 0. Now assume that
Jt(x) < Jt(x+1). Then, from Lemma 5.1.1 and by using the induction
hypothesis we have that

a+ Jt(x)+(1− P (a))[Jt(x+ 1)− Jt(x)]

> a+ Jt(x− 1) + (1− P (a))[Jt(x)− Jt(x− 1)]

and since a+ Jt(x) + (1− P (a))[Jt(x+ 1)− Jt(x)] is continuous in a,

Jt+1(x+ 1) = inf
a∈[0,M ]

{a+ Jt(x) + (1− P (a))[Jt(x+ 1)− Jt(x)]}

> inf
a∈[0,M ]

{a+ Jt(x− 1) + (1− P (a))[Jt(x)− Jt(x− 1)]} = Jt+1(x).
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It follows from (40) that

∂Ft

∂a
(x, a) = 1− P ′(a)[Jt(x)− Jt(x− 1)]

and
∂2Ft

∂2a
(x, a) = −P ′′(a)[Jt(x)− Jt(x− 1)].

Thus, since P ′′(a) > 0 and Jt(x) is strictly increasing in x we obtain

that ∂2Ft
∂2a

(x, a) < 0, and therefore Ft(x, a) is concave in a. Consequently,

Āt(x) = {0,M},

and hence, f̄t(x) ∈ {0,M}. Moreover, if we define

x̄t := min{x : f̄t(x) = M},

then (39) follows from the fact that f̄t(x) is increasing in x. Finally, the
sequence {x̄t} is decreasing since f̄t(x) is increasing in t. 2

Now, we will apply Proposition 5.2.1 to compute the optimal policy
for the example considered in Section 4.

Example 5.2.2 (revisited.) Take the example considered in Section 4
with P (a) strictly convex. First we compute f̄N−1(x). To do that, by
Proposition 5.2.1, we need only to compare the values of the function
F0(x, a) at the extreme actions a = 0 and a = 1. It follows from (36)
that

F0(x, a) = a+ P (a)J0(x− 1) + (1− P (a))J0(x), x ≥ 1

= a+ P (a)(2x− 2) + (1− P (a))2x, x ≥ 1.

Thus,
F0(x, 0) = 2x, x ≥ 1, and

F0(x, 1) = 2x+ (1− 2P (1)), x ≥ 1.

Thus, we obtain

a) if P (1) > 1
2 then

F0(x, 1) < F0(x, 0), x ≥ 1

b) if P (1) < 1
2 then

F0(x, 0) < F0(x, 1), x ≥ 1, and



Optimal resource allocation 69

c) if P (1) = 1
2 then

F0(x, 1) = F0(x, 0), x ≥ 1.

Therefore the optimal decision rule f̄N−1 and the optimal value function
J1 for the case (a) are given by

(41) f̄N−1(x) =

{
0 if x < 1

1 if x ⩾ 1,

and

(42) J1(x) =

{
0 if x = 0

2x+ (1− 2P (1)) if x ≥ 1;

for the case (b) by
f̄N−1(x) = 0, ∀x,

and

(43) J1(x) = 2x, x ≥ 0;

and for the case (c) we obtain that both actions a = 0 and a = 1 are
optimal.

Now, to compute the optimal decision rules f̄t, t = 0, . . . , N − 2, we
will first prove each one of the following statements by induction on t :

I) If P (1) > 1
2 then for t = 1, . . . N − 1,

Jt(1) = 1 + (1− P (1))Jt−1(1);

II) If P (1) ≤ 1
2 then for t = 1, . . . N − 1,

Jt(x) = J0(x), x ∈ X.

First, let’s prove (I). The validity of assertion (I) for t = 1 follows from
(42). Next, by the dynamic programming algorithm

Jt+1(1) = min{Ft(1, 0), Ft(1, 1)}.

Thus,

Jt+1(1) = min{Jt(1), 1 + (1− P (1))Jt(1)}
= min{1 + (1− P (1))Jt−1(1), 1 + (1− P (1))Jt(1)}(44)

= 1 + (1− P (1))Jt(1),(45)



70 Avila-Godoy

where (44) and (45) follow from the induction hypothesis and Lemma
5.1.1 respectively. Thus the proof of (I) is complete.

Now, let’s prove (II). First, (43) implies that (II) holds for t = 1.
Next, similarly as above

Jt+1(I) = min{Ft(I, 0), Ft(I, 1)}
= min{Jt(I), 1 + P (1)Jt(I − 1) + (1− P (1))Jt(I)}(46)

= min{2I, 1 + P (1)2(I − 1) + (1− P (1))2I}(47)

= min{2I, 2I + (1− 2P (1))}
= 2I(48)

where (46), (47) and (48) follow from (36), the induction hypothesis and
the hypothesis P (1) < 1

2 respectively. Thus f̄N−t−1(I) = 0 and since
f̄N−t−1(x) is increasing in x we obtain that f̄N−t−1(x) = 0, for all x.
Therefore

Jt+1(x) = min{Ft(x, 0), Ft(x, 1)}
= Ft(x, 0)

= Jt(x)

= J0(x), ∀x ∈ X,

and the proof of (II) is complete.
Finally, it follows from (I), (II) and (c) that f̄t(x), t = 0, 1, . . . , N−1,

are given by

f̄t(x) =

{
0 if x < 1

1 if x ⩾ 1

if P (1) > 1
2 ;

f̄t(x) = 0, ∀x

if P (1) < 1
2 ; and if P (1) = 1

2 then there are I + 1 threshold optimal
policies:

fy
t (x) =

{
0 if x ≤ y

1 if x > y,

y = 0, 1, . . . I.
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