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A survey on modular Hadamard matrices ∗

Shalom Eliahou Michel Kervaire

Abstract

We provide constructions of 32-modular Hadamard matrices
for every size n divisible by 4. They are based on the description
of several families of modular Golay pairs and quadruples. Higher
moduli are also considered, such as 48, 64, 128 and 192. Finally, we
exhibit infinite families of circulant modular Hadamard matrices
of various types for suitable moduli and sizes.
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1 Introduction

A square matrix H of size n, with all entries ±1, is a Hadamard matrix
if HHT = nI, where HT is the transpose of H and I the identity
matrix of size n.

It is easy to see that the order n of a Hadamard matrix must be
1, 2 or else a multiple of 4. There are two fundamental open problems
about these matrices:

• Hadamard’s conjecture, according to which there should exist a
Hadamard matrix of every size n divisible by 4. (See [9].)

• Ryser’s conjecture, stating that there probably exists no circulant
Hadamard matrix of size greater than 4. (See [13].)

Recall that a circulant matrix is a square matrix C = (ci,j)0≤i,j≤n−1

of size n, such that ci,j = c0,j−i for every i, j (with indices read mod n).
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There are many known constructions of Hadamard matrices. How-
ever, Hadamard’s conjecture is widely open. For example, the set of all
currently known Hadamard matrix sizes (as of 2004) contains no arith-
metic progression, and is in fact of density zero in the set of positive
multiples of 4. (See [17].) The cases below 1000 which are currently
open are 428, 668, 716, 764 and 892.

As for Ryser’s conjecture, a lot is known, but here again the conjec-
ture is widely open. For example, it is known that if n > 4 is the size
of a circulant Hadamard matrix, then n = 4 · r2 with r odd and not a
prime power. Actually further constraints on r are known, due to R.
Turyn and more recently B. Schmidt [14].

In 1972, Marrero and Butson introduced the weaker notion of a
modular Hadamard matrix. Like in the classical case, this is a square
matrix H, with all entries ±1, but satisfying the above orthogonality
condition only modulo some given integer m, i.e.

H ·HT ≡ nI mod m.

Of course, the classical Hadamard matrix conjecture has an m-
modular counterpart, namely: for every n divisible by 4, there should
exist an m-modular Hadamard matrix of size n. Even though this m-
modular analogue looks much weaker than the classical one, there is a
sort of converse, which rests on the following

Remark. If H is an m-modular Hadamard matrix of size n, with
n < m, then H is an ordinary Hadamard matrix.

The proof is simple enough: the entries of H · HT are at most n
in absolute value. Hence, if those outside the diagonal are assumed to
vanish mod m, then they must actually be zero.

With the above remark, we see that the classical Hadamard matrix
conjecture holds if and only if the modular Hadamard matrix conjecture
simultaneously holds for infinitely many distinct moduli m.

In this sense, the m-modular version of Hadamard’s conjecture can
be considered as an approximation to the classical one, of quality in-
creasing with m. Currently, the highest modulus m for which the m-
modular analogue of Hadamard’s conjecture has been completely settled
is m = 32. We summarize the relevant facts below.

In a series of papers, Marrero and Butson considered modular Hada-
mard matrices mainly with respect to moduli m which are either odd
or 2 times an odd number. With respect to such moduli, sizes n > 3
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not divisible by 4 are no longer excluded in general. For instance, they
show the existence of a 6-modular Hadamard matrix of size n for every
even n.

In this survey, we consider only modulim which are divisible by 4, as
this case resembles more the classical one. Indeed, if n > 3 is the size
of an m-modular Hadamard matrix, with m divisible by 4, then n itself
must be divisible by 4, as for ordinary Hadamard matrices. The proof
is analogous to the one in the classical case, by considering congruences
mod 4 rather than equalities.

As for Ryser’s conjecture, the situation is somewhat different. There
seems to be a very rich theory of circulant modular Hadamard matri-
ces, which ought to be developed for its own sake. Circulant modular
Hadamard matrices do exist for certain moduli and sizes greater than
4 and thus, the conjecture should rather be replaced in the modular
context by the following question.

Question: For which moduli m and sizes n do there exist m-modular
circulant Hadamard matrices H of size n ?

The question can be enriched by requiring that some entries of the
matrix H ·HT be actually zero, not only zero mod m. We will introduce
two such constraints, complementary in some sense, and refer to the
complying matrices as being of type 1, type 2 respectively.

Informally, H will be of type 1 if any two rows of H with indices at
distance n

2 are orthogonal in Zn, n being the order of H. On the other
hand, H will be of type 2 if any two rows of H with indices at distance
other than 0 and n

2 are orthogonal in Zn.

As we will see, there are nice infinite families of circulant modu-
lar Hadamard matrices of either type. These examples all come from
number-theoretic constructions.

The complementary nature of types 1 and 2 imply that, if H is a
circulant modular Hadamard matrix of both types simultaneously, then
H is actually a true circulant Hadamard matrix.

Hence, investigating the possible moduli and orders of circulant
modular Hadamard matrices of either type, besides being of indepen-
dent interest, might shed some light on Ryser’s conjecture itself.



20 Eliahou and Kervaire

2 Basic Definitions and Lemmas

We shall denote by H(n) the set of Hadamard matrices of size n, and by
Hm(n) the set of m-modular Hadamard matrices of size n. Of course,
H(n) ⊂ Hm(n). Hadamard’s conjecture reads H(n) ̸= ∅ for every n
divisible by 4. Among other results, we shall see that H32(n) ̸= ∅ for
every n divisible by 4.

There are many constructions for Hadamard matrices. See the
quoted surveys [4]. Here, we will mainly use three such constructions.
All three use sets of complementary binary sequences, specifically pairs
and quadruples. From such sets, Hadamard matrices are obtained by
placing the circulant matrices derived from each sequence into suitable
arrays. For convenience of the reader, this is recalled below.

2.1 The doubling lemma

We start with a very simple result.

Lemma 2.1.1 There is a map Hm(n) → H2m(2n). More specifically,
if H is an m-modular Hadamard matrix of size n, then the matrix

(1) H ′ = H
⊗(

1 1
−1 1

)
=

(
H H
−H H

)
is a 2m-modular Hadamard matrix of size 2n.

Observe that the modulus has also been doubled in the process.

Proof:

H ′ ·H ′T =

(
H H
−H H

)
·
(

HT −HT

HT HT

)
=

(
2H ·HT 0

0 2H ·HT

)
,

and H ·HT ≡ nI modulo m, i.e. H ·HT = nI +mX for some n× n
integer matrix X. It follows that

H ′ ·H ′T =

(
2H ·HT 0

0 2H ·HT

)
= 2n

(
I 0
0 I

)
+ 2m

(
X 0
0 X

)
.

Thus H ′ ·H ′T is congruent 2n times the identity matrix of size 2n
modulo 2m. □
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2.2 Complementary sequences

Let A = (a0, . . . , aℓ−1) be a binary sequence of length ℓ, that is a
sequence with all entries ai = ±1. The Hall polynomial of A, denoted
A(z), is defined as A(z) =

∑ℓ−1
i=0 aiz

i. The kth aperiodic correlation

coefficient ck(A) is defined as ck(A) =
∑ℓ−1−k

i=0 ai ai+k, for 0 ≤ k ≤
ℓ− 1. It is convenient to define ck(A) = 0 if k ≥ ℓ.

Note that the number ck(A) arises as the coefficient of (zk + z−k) in
the product A(z)A(z−1) in the Laurent polynomial ring Z[z, z−1]:

A(z)A(z−1) = c0(A) +

ℓ−1∑
k=1

ck(A)(zk + z−k).

Here c0(A) = ℓ, the sum of the squares of the ai which are assumed
to be binary (i.e. ±1).

A set of r binary sequences A1, . . . , Ar is a set of complementary
sequences if for each k ≥ 1, the sum of the kth correlations of the
sequences vanishes, that is

∑r
j=1 ck(Aj) = 0 for all k ≥ 1. (Recall our

convention ck(A) = 0 if k is not smaller than the length of A.)
Equivalently, using Hall polynomials, it is clear that the binary se-

quences A1, . . . , Ar form a set of complementary sequences if and only
if A1(z)A1(z

−1) + · · ·+Ar(z)Ar(z
−1) equals a constant in the Laurent

polynomial ring Z[z, z−1]. In this case, the constant will simply be the
sum of the respective lengths of A1, . . . , Ar.

Pairs of complementary sequences of the same length are also known
as Golay pairs. Here, as in [6], we shall refer to quadruples of comple-
mentary sequences of the same length as Golay quadruples.

We shall denote by GP(n) the set of Golay pairs of length n, and
by GQ(n) the set of Golay quadruples of length n. Golay pairs and
quadruples may be used to construct Hadamard matrices of appropriate
size. We recall these classical constructions now.

Proposition 2.2.1 There is a map

GP(n) −→ H(2n)

obtained by the following construction. Let A,B be a Golay pair of
length n. Denote by A,B again the circulant matrices derived from
each sequence respectively. Let

(2) H = H(A,B) =

(
A B

−BT AT

)
.
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Then H is a Hadamard matrix of size 2n.

Proof: A straightforward computation shows that

H ·HT =

(
AAT +BBT −AB +BA

−BTAT +ATBT ATA+BTB

)
.

Now, since A,B are circulant matrices, they commute. Hence,

H ·HT = (A ·AT +B ·BT )
⊗(

I 0
0 I

)
. □

There is a classical construction, due to Goethals-Seidel, which asso-
ciates a Hadamard matrix of size 4n to every Golay quadruple of length
n.

First we recall what the Goethals-Seidel array is. If A,B,C and D
are matrices of size n, define

(3) GS(A,B,C,D) =


A −BR −CR −DR
BR A −DTR CTR
CR DTR A −BTR
DR −CTR BTR A

 ,

where R is the back-circulant matrix of size n defined by R = (Ri,j)
with Ri,j = δi+j,n+1 for 0 ≤ i, j ≤ n− 1.

Proposition 2.2.2 There is a map

GQ(n) −→ H(4n)

obtained by the following construction. Let A,B,C,D be a Golay quadru-
ple of length n. Denote by A,B,C,D again the circulant matrices de-
rived from each sequence respectively. Let H=GS(A,B,C,D). Then H
is a Hadamard matrix of size 4n.

The proof of the proposition uses the following properties of the
matrix R. Namely, R2 = I,RT = R, and if X, Y are any two circulant
matrices, then XRY T is a symmetric matrix, i.e. XRY T = Y RXT .

Besides the map from GP(n) to H(2n) recalled above, there are other
constructions associating a Hadamard matrix to a Golay pair, obtained
by associating first a Golay quadruple to a Golay pair, and then using
the Proposition above.
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For example, if (f, g) is a Golay pair of length n, then (f, f, g, g) is
a Golay quadruple of the same length n, yielding a Hadamard matrix
of size 4n. This yields a map GP(n) −→ H(4n), not as efficient as the
one above. There is a subtler classical construction, yielding this time
a map from GP(n) to H(8n+ 4). It is obtained as follows.

Notation. If f = (f1, . . . , fℓ), g = (g1, . . . , gn) are (binary) sequences,
we denote their concatenation by

[f ; g] = (f1, . . . , fℓ, g1, . . . , gn).

Note that the length of [f ; g] is the sum of the lengths of f and g.

Proposition 2.2.3 There are maps

GP(n) −→ GQ(2n+ 1) −→ H(8n+ 4).

The first map associates to the Golay pair (f, g) a Golay quadruple
(A,B,C,D), where

A = [f ; 1; g], B = [f ; 1;−g], C = [f ;−1; g], D = [f ;−1;−g].

Proof: Using the Hall polynomials of the respective sequences, it is
straightforward to check the formula

A(z)A(z−1) +B(z)B(z−1) + C(z)C(z−1) +D(z)D(z−1) =

4(1 + f(z)f(z−1) + g(z)g(z−1)).

Thus, if f(z)f(z−1) + g(z)g(z−1) is a constant, this being the defining
property of a Golay pair, then so will also be the expression A(z)A(z−1)
+ B(z)B(z−1) + C(z)C(z−1) + D(z)D(z−1). □

We now recall doubling constructions for Golay pairs and quadru-
ples, that is, maps GP(n) −→ GP(2n) and GQ(n) −→ GQ(2n). If (f, g)
is a Golay pair of length n, then ([f ; g], [f ;−g]) is a Golay pair of length
2n. If A,B,C,D is a Golay quadruple of length n, then

[A;B], [A;−B], [C;D], [C;−D]

is a Golay quadruple of length 2n. Both statements are easy to verify.

We shall close this Section with a few comments about the lengths
of Golay pairs and Golay quadruples.
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For Golay pairs, it is known that GP(2a10b26c) is not empty for
every exponents a, b, c ≥ 0. On the other hand, it is conjectured that
no lengths other than 2a10b26c may be realized as Golay pair lengths.
It is easy to see that GP(n) is empty if n is odd and greater than 1. A
theorem in [8] states that GP(n) is empty if n admits a divisor which
is congruent to 3 mod 4. Computer searches have revealed the absence
of Golay pairs of length 34, 50 and 68, and more recently of length 74
and 82 (see [2]). The smallest undecided cases now are n = 106 and
n = 116.

As for Golay quadruples, there is the following

Conjecture. (Turyn, [15]) There is a Golay quadruple of length n for
every positive integer n.

Because of the above-mentioned map GQ(n) → GQ(2n), the core of
the problem is the case where n is odd. Moreover, because of the map
GQ(n) −→ H(4n), the above conjecture implies Hadamard’s conjecture.

Obviously, every Golay pair A,B of length n yields a Golay quadru-
ple A,A,B,B of the same length, and a Golay quadruple of length 2n+1
by the map GP(n) −→ GQ(2n+ 1).

2.3 Modular complementary sequences

There are modular analogues of the above notions. Let m be a positive
integer. A set of r binary sequences {A1, . . . , Ar} is a set of m-modular
complementary sequences if for each k ≥ 1, the sum of the kth correla-
tions of the sequences vanishes mod m, that is

∑r
j=1 ck(Aj) ≡ 0 mod m

for all k ≥ 1. This is equivalent to the statement that

A1(z)A1(z
−1) + · · ·+Ar(z)Ar(z

−1)

equals a constant in the Laurent polynomial ring (Z/mZ)[z, z−1].

In particular, we have the notion of modular Golay pairs and quadru-
ples. We will denote by GPm(n), GQm(n) the set of m-modular Golay
pairs, respectively m-modular Golay quadruples, of length n.

The above constructions, associating Hadamard matrices to suitable
sets of Golay sequences, work as well in the modular context.

Proposition 2.3.1 There are maps

GPm(n) −→ Hm(2n) and GQm(n) −→ Hm(4n).
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Note that, in these maps, the modulus remains unchanged. However,
for the third construction GP(n) −→ GQ(2n + 1) −→ H(8n + 4), we
have the happy circumstance that the modulus is multiplied by 4.

Proposition 2.3.2 There is a map GPm(n) −→ GQ4m(2n + 1), and
hence a map GPm(n) −→ H4m(8n+ 4).

The multiplication of the modulus m by 4 is apparent in the proof
of the last proposition of Section 2.2.

Finally, on the modular level, the doubling of Golay pairs also dou-
bles the modulus. That is, there is a map GPm(n) → GP2m(2n), given
by (f, g) 7→ ([f ; g], [f ;−g]). This is easily checked using the Hall polyno-
mials of the sequences: if A(z) = f(z)+zng(z) and B(z) = f(z)−zng(z),
then

A(z)A(z−1) +B(z)B(z−1) = 2(f(z)f(z−1) + g(z)g(z−1)).

3 Modular Hadamard matrices

3.1 The case m = 12

Marrero and Butson have produced 6-modular Hadamard matrices of
size n for every even positive integer n. (See [11] and [12].) Very simple
matrices suffice for this purpose. It turns out that their construction
yields in fact 12-modular Hadamard matrices of every size n divisible
by 4.

For any given size, let I denote the identity matrix, J the con-
stant all-one matrix, and K = −2I + J , the circulant with first row
(−1, 1, . . . , 1).

Proposition 3.1.1 A 12-modular Hadamard matrix of size n is given

by J , K or

(
K K
−K K

)
depending on whether n ≡ 0, 4 or 8 mod 12

respectively.

Proof: In size n, we have J · JT = nJ and K · KT = nI + (n −
4)(J − I). This takes care of the cases n ≡ 0, 4 mod 12. Assume now

n ≡ 8 mod 12, and let H =

(
K K
−K K

)
of size n. Then H · HT =



26 Eliahou and Kervaire

(
2KKT 0

0 2KKT

)
. Since K is of size n

2 here, we have KKT = n
2 I +

(n2 − 4)(J − I), and so 2K ·KT = nI + (n− 8)(J − I).

It follows that H ·HT ≡
(

nI 0
0 nI

)
mod 12. □

This solves the 12-modular version of Hadamard’s conjecture. Ob-
viously, more elaborate matrices will be needed for higher moduli. This
is plainly illustrated in the case m = 32.

3.2 The solution of the 32-modular Hadamard conjecture

We shall prove the existence of a 32-modular Hadamard matrix of size
4ℓ for every positive integer ℓ. By the Doubling Lemma, it is sufficient
to consider the case where ℓ is odd.

Our constructions depend on the class of ℓ mod 8, and, in contrast to
[6], are all based in this paper on modular Golay pairs and quadruples.

For ℓ ≡ 1, 3 or 7 mod 8, we shall exhibit 32-modular Golay quadru-
ples of length ℓ. These quadruples yield 32-modular Hadamard matri-
ces of size 4ℓ by the map GQm(n) −→ Hm(4n) of Section 2 derived
from the Goethals-Seidel array. For ℓ ≡ 3 or 7 mod 8, the description
of these quadruples is by direct construction, while for ℓ ≡ 1 mod 8,
they derive from 8-modular Golay pairs of length ℓ−1

2 , and the map

GPm(r) −→ GQ4m(2r + 1) of Section 2 (with r = ℓ−1
2 ).

In the remaining case ℓ ≡ 5 mod 8, and more specifically for ℓ ≡
13 mod 16, we are so far unable to produce 32-modular Golay quadru-
ples of length ℓ. Rather, we shall obtain 32-modular Hadamard matri-
ces of size 4ℓ from 32-modular Golay pairs of length 2ℓ and the map
GPm(2ℓ) −→ Hm(4ℓ) of Section 2. We observe that this construction,
which works for ℓ ≡ 5 mod 8, cannot work for ℓ ≡ 3 or 7 mod 8, as we
can prove that 32-modular Golay pairs do not exist in length congruent
to 6 or 14 mod 16, as well as in length congruent to 12 mod 16, see [6].
(The existence of 32-modular Golay pairs of length 2ℓ with ℓ ≡ 1 mod 8
remains in doubt.)

3.2.1 Modular Golay quadruples of length ℓ ≡ 1 mod 8

Let k = ℓ−1
8 . We shall construct a family of 8-modular Golay pairs

of length 4k with k free binary parameters, and then use the maps

GPm(r) −→ GQ4m(2r + 1) −→ H4m(4(2r + 1))



Modular Hadamard matrices 27

to produce the desired modular Golay quadruples and modular Hadamard
matrices.

Consider an arbitrary binary sequence h = (x0, . . . , xk−1) say, of
length k, with xi = ±1 for all i. Obviously, the pair (h, h) is a 2-modular
Golay pair of length k. By the doubling of Golay pairs, the pair (f, g)
with f = [h;h] and g = [h;−h] is a 4-modular Golay pair of length 2k,
and the pair (A,B) with A = [f ; g] and B = [f ;−g] is an 8-modular
Golay pair of length 4k with k free binary parameters, as desired.

In summary, with A = [h;h;h;−h] and B = [h;h;−h;h], the pair
(A,B) is a k-parameter family of 8-modular Golay pairs of length 4k =
ℓ−1
2 .

Corollary 3.2.1 For every ℓ ≡ 1 mod 8, there is a k-parameter family
of 32-modular Golay quadruples of length ℓ and 32-modular Hadamard
matrices of size 4ℓ, where k = ℓ−1

8 .

Proof: Send the above 8-modular Golay pair of length 4k = ℓ−1
2 to

GQ32(ℓ) and H32(4ℓ) with the maps

GPm(r) −→ GQ4m(2r + 1) −→ H4m(4(2r + 1))

at m = 8 and r = 4k = ℓ−1
2 . □

3.2.2 Modular Golay quadruples of length ℓ ≡ 3, 7 mod 8

Our objective here is to show that GQ32(ℓ) ̸= ∅ for ℓ ≡ 3 mod 4.
We shall need the following operation on binary sequences.

To the sequence F = (a0, . . . , ak), we associate the new sequence
F#, defined as

F# = ((−1)kak, . . . , (−1)iai, . . . , a0).

On the level of Hall polynomials, this transformation reads simply
as F#(z) = zkF (−z−1).

Let r = l−3
4 , and set ε = (−1)r−1. Thus, ε = −1 if r is even, that is

if ℓ ≡ 3 mod 8, while ε = +1 if ℓ ≡ 7 mod 8. Given two (±1)-sequences
H and K of size 2r + 1, we define a quadruple of binary sequences of
length ℓ = 4r + 3, Q(H,K) = (A,B,C,D), as follows:

A = [H; ε;−H#], B = [H; ε;−K#]
C = [K; ε;−H#], D = [K;−ε;−K#].
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For the binary sequencesH,K described below, the associated quadru-
ple Q(H,K) turns out to be a 32-modular Golay quadruple. It is con-
venient to separate the cases r even and r odd.

For r even, define H = [12r+1] and K = [−1r+1; 1r], where [12r+1]
denotes the constant all 1 sequence of length (2r + 1), and [−1r+1]
denotes a constant sequence of −1 repeated (r + 1) times.

For r odd, let f = [1r−1]. Define

H = [f ;−1, 1, 1; f#] and K = [−f ; 1,−1, 1; f#].

Since f# = [−1, 1](r−1)/2 in the present case, we have in fact

H = [1r−1;−1, 1, 1; [−1, 1](r−1)/2] and
K = [−1r−1; 1,−1, 1; [−1, 1](r−1)/2].

In [6], we established the following result.

Theorem 3.2.2 Let ℓ ≡ 3 mod 4, and let H,K be the above binary se-
quences of length ℓ−1

2 = 2r+1, that is H = [12r+1] and K = [−1r+1; 1r]

if r is even, H = [1r−1;−1, 1, 1; [−1, 1](r−1)/2] and
K = [−1r−1; 1,−1, 1; [−1, 1](r−1)/2] if r is odd. Then the quadruple of
binary sequences Q(H,K) = (A,B,C,D) as defined above, is a 32-
modular Golay quadruple of length ℓ. More precisely, we have the fol-
lowing formula in terms of the Hall polynomials of A,B,C,D :

A(z)A(z−1) +B(z)B(z−1) + C(z)C(z−1) +D(z)D(z−1) =

4ℓ+ 32

[r/2]∑
i=1

([r/2]− i)(z2i + z−2i).

Corollary 3.2.3 There is a 32-modular Hadamard matrix of size 4ℓ
for every positive integer ℓ ≡ 3 mod 4.

Proof: Send the above 32-modular Golay quadruple A,B,C,D of
length ℓ to H32(4ℓ) with the map GQm(ℓ) −→ Hm(4ℓ) of Section 2. □

Example 3.2.4 No true Hadamard matrix is known yet in size n =
428. But the above construction yields the following 32-modular Hadamard
matrix of this size n. Let

A = [153;−1; [−1, 1]26;−1],
B = [153;−1; [−1, 1]13; [1,−1]13; 1],
C = [−127; 126;−1; [−1, 1]26;−1],
D = [−127; 126; 1; [−1, 1]13; [1,−1]13; 1].
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This is a quadruple of binary sequences of length 107. For 1 ≤
k ≤ 106, let αk = ck(A) + ck(B) + ck(C) + ck(D) be the sum of the
kth aperiodic correlation coefficients of A,B,C and D respectively. We
then find αk = 0 for all k ∈ {1, 2, . . . , 106}\{2, 4, . . . , 24}, and α2k =
32 · (13 − k) for k in the interval 1 ≤ k ≤ 12. Thus, as claimed,
(A,B,C,D) is a 32-modular Golay quadruple of length 107.

The matrixH = GS(A,B,C,D) is therefore a 32-modular Hadamard
matrix of size 428 (see Figure 1). It is amusing to observe that among
the 91378 =

(
428
2

)
entries of the strict upper triangular part of H ·HT ,

there are 86242 entries which are strictly 0, while the remaining 5136
non-zero ones consist of 428 entries of the form 32k for each 1 ≤ k ≤ 12.

Actually, any row in H is orthogonal to exactly 403 other rows in H.
For example, the 25 rows not orthogonal to the first row are the rows in
position 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 84, 86, 88, 90, 92,
94, 96, 98, 100, 102, 104 and 106.

One last remark concerning the determinant of H. Recall the the-
orem of Hadamard [9] stating that the determinant of any real matrix
M of size n with entries from the interval [−1, 1] satisfies the inequality
|det(M)| ≤ nn/2. Moreover, the equality |det(M)| = nn/2 holds true if
and only if M is a Hadamard matrix. Here, in the above example H
of size n = 428, we have nαn < |det(H)| < nβn, with α = 0.347 and
β = 0.348.

3.2.3 The case ℓ ≡ 5 mod 8

We know only one way to obtain 32-modular Hadamard matrices of
size 4ℓ for ℓ ≡ 5 mod 8. Namely, from 32-modular Golay pairs of length
2ℓ ≡ 10 mod 16 and the map GPm(2ℓ) −→ Hm(4ℓ).

The relevant modular Golay pairs are somewhat involved, and are
best described through their Hall polynomials.

Let k = ℓ−5
8 . Define S(z) =

∑k−1
i=0 (−1)iz4i. Let x0, x1 be two binary

parameters, and define the pair of polynomials U(z), V (z) as follows:

U(z) = (x0 + x1z + x0z
2)S(z) + (−1)k(x0 − x1z − x0z

2)z4k

+(−1)k(x0 − x1z + x0z
2)S(z)z4(k+1),

V (z) =
∑2k

i=0(−1)iz4i + z8k+2.
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Figure 1: A 32-modular Hadamard matrix of size 428 (white pixels rep-
resent +1 and black pixels represent −1)

Finally, let x3 = ±1 be a third free binary parameter, and define
A(z), B(z) as follows:

A(z) = U(z) + x3z
3V (z) + z16k+9(U(z−1)− x3z

−3V (z−1)),

B(z) = U(z) + x3z
3V (z)− z16k+9(U(z−1)− x3z

−3V (z−1)).

In [6], we prove the following result.

Theorem 3.2.5 For every ℓ ≡ 5 mod 8, the above polynomials A(z), B(z)
are the respective Hall polynomials of a 3-parameter 32-modular Golay
pair A,B of length 2ℓ = 16k + 10.
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In this theorem, the total correlation A(z)A(z−1) + B(z)B(z−1),
which we abbreviate AA+BB, is given by the formula

(4) AA+BB = 32k + 20 + 32

k−1∑
i=1

(−1)i(k − i)(z4i + z−4i).

Example 3.2.6 We get true Golay pairs of length 10 for k = 0 and
true Golay pairs of length 26 for k = 1. Let now k = 2. There are
no Golay pairs of length 2ℓ = 16k + 10 = 42, because 42 has a divisor
congruent to 3 mod 4 (see [8]). However, setting x0 = x1 = x3 = 1 for
simplicity in the pair given by the above theorem, we get a 32-modular
Golay pair A,B of length 42, namely

A = ++++−−−−+−−++−+−−+−+−+−−+−
++−+−−−++−−−−+++,

B = ++++−−−−+−−++−+−−+−+++++−+

−−+−+++−−++++−−− .

Remarkably, this pair is almost a true Golay pair of length 42, as it
satisfies ci(A) + ci(B) = 0 for all 1 ≤ i ≤ 41 with the sole exception of
i = 4, for which c4(A) + c4(B) = −32.

More generally, the formula (4) shows that only (k− 1)/(16k+8) of
the correlations sums ci(A)+ci(B) are non-zero. On the other hand, we
know that a pair (A,B) with k ≥ 2 as in the above Theorem can never
be an actual Golay pair even with an arbitrary (binary) polynomial
S(z) =

∑k−1
i=0 uiz

4i. (See [8], Lemma 4.7 and the remark at the end of
Section 1.2 in [6].)

Corollary 3.2.7 There exist 32-modular Hadamard matrices of size 4ℓ
for every positive integer ℓ ≡ 5 mod 8.

Proof: Send the above 32-modular Golay pair A,B of length 2ℓ to
H32(4ℓ) with the map GPm(2ℓ) −→ Hm(4ℓ) of Section 2. □

Corollary 3.2.8 There exist 128-modular Hadamard matrices of size
16ℓ+ 4 for every positive integer ℓ ≡ 5 mod 8.
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Proof: Send the above 32-modular Golay pair A,B of length 2ℓ to
H128(16ℓ+4) with the maps GPm(2ℓ) −→ GQ4m(4ℓ+1) −→ H4m(16ℓ+
4) of Section 2. □

Example 3.2.9 Currently, no Hadamard matrices of size 4r are known
for r = 789, 853 and 917. These are the only undecided cases with r ≤
1000 and r ≡ 21 mod 32. However, there exist 128-modular Hadamard
matrices in size 4r for r = 789, 853 and 917. Indeed, let ℓ = r−1

4 .
Then ℓ ≡ 5 mod 8, and the conclusion follows from the second corollary
above.

In the next Section, we shall actually obtain a 192-modular Hadamard
matrix of size 4 · 917.

3.3 Other moduli

We shall exhibit a few more modular Hadamard matrices in sizes for
which, as above, no true Hadamard matrices are known yet.

The modulus m = 48

We start by constructing 48-modular Golay pairs of length 24k +
2 for every positive integer k. (See [6], Section 1.5.) Define S(z) =∑k−1

i=0 (−1)iz12i. Let x0, x1 be two binary parameters, and define the
pair of polynomials U(z), V (z) as follows :

U(z) = {x0(1 + z2 − z4 + z6 − z8 − z10) + x1(z + z5 + z9)}S(z),

V (z) = (1− z4 + z8)S(z) + z12k−2.

Finally, let x3 be a third free binary parameter, and define A(z), B(z)
as follows :

A(z) = U(z) + x3z
3V (z) + z24k+1(U(z−1)− x3z

−3V (z−1)),

B(z) = U(z) + x3z
3V (z)− z24k+1(U(z−1)− x3z

−3V (z−1)).

We prove the following result in [6].

Theorem 3.3.1 For every ℓ ≡ 1 mod 12, the above polynomials A(z), B(z)
are the respective Hall polynomials of a 3-parameter 48-modular Golay
pair A,B of length 2ℓ = 24k + 2.
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Example 3.3.2 For k = 1, this construction yields true Golay pairs
of length 26. Let now k = 2. There are no Golay pairs of length
2ℓ = 24k + 2 = 50, as revealed by an exhaustive computer search. (See
[1].) However, setting x0 = x1 = x3 = 1 in the pair given by the above
theorem, we get a 48-modular Golay pair A,B of length 50, namely

A = ++++−++−−+−+−−−−+−−++−+−+−
++−+−−−++−−−−−+−+++−−+++,

B = ++++−++−−+−+−−−−+−−++−+−−−
−−+−+++−−+++++−+−−−++−−−,

where + stands for +1 and − for −1. This pair satisfies ci(A)+ci(B) =
0 for all 1 ≤ i ≤ 49 with the sole exception of i = 12, for which
c12(A) + c12(B) = −48.

Corollary 3.3.3 There exist 48-modular Hadamard matrices of size
48k+4 and 192-modular Hadamard matrices of size 192k+20 for every
positive integer k.

Proof: Send the above 48-modular Golay pair A,B of length 2ℓ =
24k + 2 to H48(4ℓ) and to H192(16ℓ + 4) with the maps GPm(2ℓ) −→
Hm(4ℓ) and GPm(2ℓ) −→ GQ4m(4ℓ+1) −→ H4m(16ℓ+4) of Section 2,
respectively. □

Example 3.3.4 There exist 192-modular Hadamard matrices of size 4 ·
917. Indeed, take k = 19 in the above 192-modular construction. There
also exist 48-modular Hadamard matrices of size 4 ·721 and 4 ·853 (with
k = 60 and k = 71 in the above 48-modular construction, respectively.)
These three sizes, 4 · 721, 4 · 853 and 4 · 917, are all undecided cases for
true Hadamard matrices.

The moduli m = 2t

We have proved above that H32(n) ̸= ∅ for every positive integer n
divisible by 4. Using the map Hm(n) −→ H2m(2n), we see that H64(n) ̸=
∅ for every n divisible by 8, and more generally that H2t+3(n) ̸= ∅ for
every t ≥ 3 and every n divisible by 2t.
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However, with further constructions, we shall obtain 64-modular
and 128-modular Hadamard matrices of some (but unfortunately not
all) sizes n ≡ 4 mod 8.

Recall from Section 3.2.1 that, if h is an arbitrary binary sequence
of length k, then the pair (h, h) is a k-parameter 2-modular Golay pair
of length k. In other terms, GP2(k) ̸= ∅ for every positive integer k. By
the doubling of Golay pairs, that is, by the map GPm(n) −→ GP2m(2n),
which doubles both length and modulus, we readily obtain the following
statements.

Proposition 3.3.5 GP2t(2
t−1k) ̸= ∅ for every positive integers t and

k.

Corollary 3.3.6 There exist 2t+2-modular Hadamard matrices of size
n = 4 · (2tk + 1) for every positive integers t, k.

Proof: Use the maps GPm(n) −→ GQ4m(2n+1) −→ H4m(4 ·(2n+1))
of Section 2. □

Example 3.3.7 No Hadamard matrices of size 4 · 721 are known yet.
Now, 721 = 24 · 45 + 1. Thus, the above result, with t = 4, yields a 64-
modular Hadamard matrix of size 4·721. (We already had a 48-modular
Hadamard matrix of size 4 · 721. See the case m = 48 above.)

We recall one last construction of modular Golay pairs.

Proposition 3.3.8 ([6]) There are 16-modular Golay pairs of length
8k + 2 for every integer k ≥ 0.

Proof: For k = 0, the pair A(z) = 1+z,B(z) = 1−z will do. Assume
now k ≥ 1. Choose polynomials f(z) =

∑k−1
i=0 xiz

4i, g(z) =
∑k−1

i=0 yiz
4i

with arbitrary xi = ±1, yi = ±1 for i = 0, 1, . . . , k−1. Let also w = ±1
be chosen arbitrarily. Further, let F (z) = z−(4k−1)f(z) + z4k−1f(z−1)
and G(z) = z−(4k−1)g(z) − z4k−1g(z−1). A 16-modular Golay pair, of
length 8k + 2, is given by

A(z) = {(1 + z3)F (z) + (z + z2)G(z) + w(z − z2)}z4k−1

B(z) = {(1− z3)F (z) + (z − z2)G(z) + w(z + z2)}z4k−1.□
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Corollary 3.3.9 There exist 2t+6-modular Hadamard matrices of size
n = 4 · (2t+3k + 2t+1 + 1) for every integers t, k ≥ 0.

Proof: Since GP16(8k + 2) ̸= ∅, it follows by successive doubling
that GP2t+4(2t+3k + 2t+1) ̸= ∅, for every t ≥ 0. Using again the maps
GPm(n) −→ GQ4m(2n+1) −→ H4m(4 · (2n+1)) of Section 2, it follows
that the sets GP2t+6(2t+4k+ 2t+2 + 1) and H2t+6(4 · (2t+4k+ 2t+2 + 1))
are both non-empty, for every t, k ≥ 0. □

Example 3.3.10 It is not known whether Hadamard matrices of size
4 · ℓ exist for ℓ = 789, 853, 917 and 933. These four values of ℓ are
congruent to 5 mod 16. The above corollary, with t = 0, therefore
yields 64-modular Hadamard matrices of size 4 · 789, 4 · 853, 4 · 917 and
4 · 933. Note that only the case 4 · 933 is really of interest here, as we
had already obtained 128-modular Hadamard matrices of size 4 · 789,
4 · 853 and 4 · 917 in Section 3.2.3.

4 Circulant modular Hadamard matrices

4.1 Introduction

According to Ryser’s conjecture, there probably exists no circulant Hadamard
matrix of size n > 4. In contrast, the modular level reveals interesting
families of examples [5]. These families are all based on the quadratic
and biquadratic characters of finite fields, and will be exhibited below.
Thus, it would seem appropriate to rephrase the problem as follows.

Question: For what moduli m and sizes n do there exist m-modular
circulant Hadamard matrices of size n ?

Definition 4.1.1 Let s = {x0, x1, . . . , xn−1} ∈ {±1}n be a binary
sequence of size n. The kth periodic correlation coefficient γk(s) of s,
for 0 ≤ k ≤ n− 1, is defined as γk(s) =

∑n−1
i=0 xixi+k, where the indices

are read modulo n.

Observe that γ0(s) = n, and that γn−k(s) = γk(s) for 1 ≤ k ≤ n−1.
Also, setting s(z) =

∑n−1
i=0 siz

i, we have the formula s(z)s(z−1) = n +∑n−1
k=1 γk(s)z

k in the quotient ring Z[z]/(zn−1). Finally, if H = circ(s)
is the circulant matrix with first row s, then obviously the matrix H ·HT

has γj−i(s) as entry with position i, j. Thus, H will be an m-modular
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circulant Hadamard matrix if and only if γk(s) ≡ 0 mod m for all 1 ≤
k ≤ n

2 .

The most obvious examples of circulant modular Hadamard matrices
with a large modulus are

J = circ(1, · · · , 1) and K = −2I + J = circ(−1, 1, · · · , 1)

of size n. We have J · JT = nJ and K · KT = nI + (n − 4)(J − I).
Thus, J is a circulant n-modular Hadamard matrix, and K is a circulant
(n− 4)-modular Hadamard matrix, both of size n.

More elaborate examples have the property that some of their pe-
riodic correlation coefficients are actually 0, not only 0 mod m. We
introduce the following definition.

Definition 4.1.2 Let s ∈ {±1}n be a binary sequence of size n, with
n even. We say that s is of type 1 if γn

2
(s) = 0. We say that s is of type

2if γ1(s) = . . . = γn
2
−1(s) = 0. This definition extends quite naturally

to circulant binary matrices. A circulant binary matrix H is of type i
(with i = 1 or 2) if its first row is of type i (equivalently, if any of its
rows is of type i).

Remark 4.1.3 Ryser’s conjecture is equivalent to saying that there are
no binary sequences of length greater than 4 which are simultaneously
of type 1 and of type 2.

Circulant modular Hadamard matrices of type 1 and type 2 were
introduced in [6]. After finding that “type 2” was equivalent with the
notion of “almost perfect sequence”, we thought of abandoning the term
“type 2”, and replacing the term “type 1” by “enhanced”. But we now
choose to restore the type 1 / type 2 terminology, essentially because
of the symmetry in the definition. We ask a little indulgence from the
reader for these terminological meanderings.

Example 4.1.4 Here is a binary sequence of length 8 and type 2. Let
s = (1, 1, 1,−1, 1,−1,−1, 1). Then γ1(s) = γ2(s) = γ3(s) = 0, showing
that s is indeed a sequence of type 2. Additionally, γ4(s) = −4. Taking
H to be the circulant matrix with first row s, we have:
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H =



1 1 1 −1 1 −1 −1 1
1 1 1 1 −1 1 −1 −1

−1 1 1 1 1 −1 1 −1
−1 −1 1 1 1 1 −1 1
1 −1 −1 1 1 1 1 −1

−1 1 −1 −1 1 1 1 1
1 −1 1 −1 −1 1 1 1
1 1 −1 1 −1 −1 1 1


,

and

H ·HT =



8 0 0 0 −4 0 0 0
0 8 0 0 0 −4 0 0
0 0 8 0 0 0 −4 0
0 0 0 8 0 0 0 −4

−4 0 0 0 8 0 0 0
0 −4 0 0 0 8 0 0
0 0 −4 0 0 0 8 0
0 0 0 −4 0 0 0 8


.

Another example of a binary sequence of length 8 and type 2 is
provided by t = (1, 1, 1,−1, 1, 1, 1,−1). In this case we have γ1(t) =
γ2(t) = γ3(t) = 0 and γ4(t) = 8.

For every odd prime p ≡ 1 mod 4, we will exhibit circulant (p− 1)-
modular Hadamard matrices of type 1 and length 4p. Then, turning our
attention to moduli which are powers of 2, we will exhibit 16-modular
Hadamard matrices of type 1 and length 4p for every odd prime p ≡
9 mod 16 for which 2 is a fourth power mod p. Finally, we will recall a
classical construction from Delsarte, Goethals and Seidel which implies
that there is a circulant (n−4)-modular Hadamard matrix of type 2 for
every size n of the form n = 2(pr + 1) where p is prime.

4.2 Circulant (p−1)-modular Hadamard matrices of type
1 and size 4p

As announced above, we shall construct a circulant (p − 1)-modular
Hadamard matrix of type 1 and size 4p, for every prime number p ≡
1 mod 4. It is convenient to do so by exhibiting the Hall polynomial of
its first row.
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Consider the set S = {1, . . . , p− 1} and its partition S = S0 ∪ S1,
where S0 is the subset of squares mod p, and S1 the subset of non-
squares mod p. Of course, we have |S0| = |S1| = p−1

2 . Let g0(z) denote
the generating function of S0. That is, g0(z) =

∑
i∈S0

zi.

Similarly, let g1(z) =
∑

i∈S1
zi be the generating function of S1.

Note that, since S = S0
⨿

S1, we have g0(z) + g1(z) =
∑p−1

i=1 zi.
Let x0, x1, x2, x3 ∈ {±1} be four free binary parameters, and con-

sider the polynomial

h(z) = x0(1 + z2p)(1 + g0(z
2)) + x1(1 + z2p)zpg0(z

2)+

x2(1− z2p)g1(−z2) + x3(1− z2p)zp(1 + g1(−z2)),

viewed as an element in the quotient ring Z[z]/(z4p − 1).
As it turns out, when expressing h(z) in the form

∑4p−1
i=0 aiz

i, we
have ai = ±1 for all 0 ≤ i ≤ 4p− 1.

In [5], we prove the following result.

Theorem 4.2.1 Let p ≡ 1 mod 4 be a prime number. Let h(z) ∈
Z[z]/(z4p − 1) be the above polynomial,

h(z) = x0(1 + z2p)(1 + g0(z
2)) + x1(1 + z2p)zpg0(z

2)+

x2(1− z2p)g1(−z2) + x3(1− z2p)zp(1 + g1(−z2)).

Then h(z) is the Hall polynomial of a 4-parameter binary sequence h
of length 4p, with the property that circ(h) is a circulant (p−1)-modular
Hadamard matrix of type 1 and size 4p.

The proof of the theorem in [5] is obtained by computing h(z)h(z−1)
explicitly in the ring Z[z]/(z4p − 1).

We find the following expression:

h(z)h(z−1) = 4p+ (p− 1)R(z),

where R(z) = 2
∑p−1

i=1 z4i + x0x1(
∑2p

i=1 z
2i−1 + zp + z3p).

Given that h(z)h(z−1) = 4p +
∑4p−1

j=1 γj(h)z
j , the above expression

shows that the gcd of the periodic correlation coefficients γi(h) of h for
i = 1, ..., 4p− 1, is equal to p− 1. Note also that γ2p = 0, showing that
h is a binary sequence of type 1. Thus, as stated, circ(h) is a circulant
(p− 1)-modular Hadamard matrix of type 1 and size 4p.
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Example 4.2.2 Let p = 5. The non-zero squares mod 5 are 1 and 4.
Therefore S0 = {1, 4}, g0(z) = z + z4 and g1(z) = z2 + z3. Finally,

h(z) ≡ x0(1 + z2 + z8 + z10 + z12 + z18) + x1(z
3 + z7 + z13 + z17)+

x2(z
4−z6−z14+z16)+x3(z+z5+z9−z11−z15−z19) mod (z20−1),

so h(z) is the Hall polynomial of the binary sequence

h = (x0, x3, x0, x1, x2, x3,−x2, x1, x0, x3, x0,−x3, x0,

x1,−x2,−x3, x2, x1, x0,−x3).

The periodic correlation coefficients γi = γi(h) for i = 1, ..., 10 are
the following: γ1 = γ3 = γ7 = γ9 = 4x0x1, γ2 = γ6 = γ10 = 0, γ4 = γ8 =
8, γ5 = 8x0x1.

4.3 Circulant 16-modular Hadamard matrices of type 1

Our objective is to construct circulant 16-modular Hadamard matrices
of type 1 and size 4p, where p is an odd prime. According to the Lemma
below, this is only possible for p ≡ 1 mod 8, that is p ≡ 1 or 9 mod 16.
When p ≡ 1 mod 16, the (p − 1)-modular construction of Section 4.2
already provides us with the desired sort of matrices, as p−1 is divisible
by 16.

In this Section we consider the remaining case p ≡ 9 mod 16. We
shall present a partial solution to our construction problem, which works
in the case where 2 is a fourth power mod p (for example p = 73 or 89).
For those primes p ≡ 9 mod 16 where 2 is not a fourth power mod p (for
example p = 41 or 137), we do not know how to construct 16-modular
circulant Hadamard matrices of type 1 and size 4p. Quite possibly, none
exists in this case.

We start with the promised result restricting the possible sizes of
circulant 16-modular Hadamard matrices of type 1.

Lemma 4.3.1 Let r ≥ 1 be a natural number, and assume there exists
a circulant 16-modular Hadamard matrix of type 1 and size 4r. Then
r ≡ 0, 1 or 4 mod 8.

Proof: Let h(z) be the Hall polynomial of the first row h of a circulant
16-modular Hadamard matrix of type 1 and size 4r. In the quotient
ring Z[z](z4r − 1), we have the general formula h(z)h(z−1) = 4r +∑2r−1

k=1 γk(z
k + z−k) + γ2rz

2r, where the γk are the periodic correlation
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coefficients of the sequence h. Setting z = 1 in the above formula,
we get h(1)2 = 4r + 2

∑2r−1
k=1 γk + γ2r. Now, γ2r = 0 by the type 1

hypothesis, and γk ≡ 0 mod 16 for all 1 ≤ k ≤ 2r − 1. It follows that
h(1)2 = 4r+32θ for some integer θ. Thus h(1) is even, and dividing by
4 we get r = (h(1)/2)2 +8θ. The conclusion follows as the only squares
mod 8 are 0, 1 and 4. As a side remark, note that the same argument
would still work under the weaker hypothesis γ2r ≡ 0 mod 32 instead
of γ2r = 0. □

Let p be a prime such that p ≡ 1 mod 8. As in Section 4.2, consider
the set S = {1, . . . , p − 1} and its partition S = S0 ∪ S1, where S0 is
the subset of squares mod p, and S1 the subset of non-squares mod p.
For our purposes here, we need to refine this partition as follows.

Let ρ : S → F∗
p denote the natural projection of S into the multi-

plicative group F∗
p of non-zero elements of the finite field Fp.

Let c ∈ F∗
p denote a generator of that group, that is an element of

multiplicative order p− 1.
Given that the squares in F∗

p consist of the subgroup ⟨c2⟩ generated
by c2, we have S0 = ρ−1(⟨c2⟩) and S1 = ρ−1(c⟨c2⟩), where c⟨c2⟩ is the
other coset of ⟨c2⟩ in F∗

p.
Consider now the subgroup Γ = ⟨c4⟩ ⊂ F∗

p. Thus, Γ is the only
subgroup of order (p − 1)/4 in F∗

p. The four cosets of Γ in F∗
p are

Γ, cΓ, c2Γ and c3Γ, and of course they partition F∗
p into four pieces of

equal size (p − 1)/4. This partition refines the earlier one into squares
and non-squares, as Γ ∪ c2Γ = ⟨c2⟩.

Transporting back the above partition to S by ρ−1, we shall denote
S00 = ρ−1(Γ), S10 = ρ−1(cΓ), S01 = ρ−1(c2Γ) and S11 = ρ−1(c3Γ).

In this way, we obtain the promised refinement of the partition S =
S0 ∪S1, as S0 = S00 ∪S01 and S1 = S10 ∪S11. The four subsets Su,v all
have cardinality (p− 1)/4.

For u, v = 0, 1, we shall denote by gu,v(z) the generating function of
Su,v, that is gu,v(z) =

∑
i∈Su,v

zi. Note that g00(z) + g01(z) + g10(z) +

g11(z) =
∑p−1

i=1 zi.
Note also that g0(z) = g00(z) + g01(z) and g1(z) = g10(z) + g11(z),

where g0(z) and g1(z) are the generating functions defined and used in
Section 4.2.

Let x0, x1, x2, x3 ∈ {±1} be four free binary parameters, and con-
sider the polynomial

h(z) = x0(1+z2p)(1−g00(z
2)−g01(z

2))+x1(1+z2p)zp(g00(z
2)−g01(z

2))+

x2(1−z2p)(g10(−z2)−g11(−z2))+x3(1−z2p)zp(1−g10(−z2)−g11(−z2)),
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viewed as an element in the quotient ring Z[z]/(z4p − 1). As for the
corresponding polynomial in Section 4.2, when expressing h(z) in the
form

∑4p−1
i=0 aiz

i, we have ai = ±1 for all 0 ≤ i ≤ 4p− 1.

In [7], we prove the following result.

Theorem 4.3.2 Let p ≡ 1 mod 8 be a prime number. Furthermore, let
h(z) ∈ Z[z]/(z4p − 1) be the above polynomial

h(z) = x0(1+z2p)(1−g00(z
2)−g01(z

2))+x1(1+z2p)zp(g00(z
2)−g01(z

2))+

x2(1−z2p)(g10(−z2)−g11(−z2))+x3(1−z2p)zp(1−g10(−z2)−g11(−z2)).

Then h(z) is the Hall polynomial of a 4-parameter binary sequence
h of length 4p, with the property that circ(h) is a circulant 8-modular
Hadamard matrix of type 1 and size 4p. Moreover, the matrix circ(h)
is a circulant 16-modular Hadamard matrix if and only if p ≡ 9 mod 16
and 2 is a fourth power mod p.

The periodic correlations γk in h(z)h(z−1) = 4p+
∑2p−1

k=1 γk(z
k+z−k)

are explicitly determined in [7], using Jacobi sums. They depend on the
decomposition p = a2+b2 with b even, a odd and the sign of a normalized
by the requirement a ≡ 1 mod 4.

With this normalization, the correlations γk, are all equal to±(p−9),
±2(a+ 3), or ±2b for k = 1, . . . , 2p− 1. Furthermore, γ2p = 0 showing
that h is of type 1.

By a theorem of Gauss, a prime p ≡ 1 mod 8 is of the form p = a2+b2

with b divisible by 8 if and only if 2 is a fourth power modulo p. If follows
that if p ≡ 9 mod 16 and 2 is a fourth power modulo p, then necessarily
a ≡ −3 mod 8 and b ≡ 0 mod 8. Thus, in this case, all the periodic
correlations γk(h) for k = 1, . . . , 2p− 1 are divisible by 16, and circ(h)
is a circulant 16-modular Hadamard matrix of type 1 and size 4p.

Example 4.3.3 The smallest prime p ≡ 9 mod 16 for which 2 is a
fourth power mod p is p = 73 = (−3)2 + 82. Setting x0 = x1 =
x2 = x3 = 1 in the above formula for h(z), we get the following binary
sequence h, for which circ(h) is a 16-modular Hadamard matrix of type
1 and size 292 :

+ + − − − − − + − + − + − − − + − − − − + − + − − − + −
+ − + + − − − − − + − + + + + + − − − + − − − + − − − +
+ + + + − − + + − + − − + + − + − + − + − + − − + + − +
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− − + + − + − + − − + + − − − + − − + + − + − + − + − −
+ − − + − − − − − − − − − − − − − − − + + − − + + + − +
− − − − − + + + − − − + − − − + + − − + + − − + − − − +
− − − − − − − + − − − + + − − + − − − + − − + + − − − −
− − + + − + − + − − + − − − − + + − − + − + − − − + − +
+ − − + − − + − − − + + + + − + − − − − − − − + − − + +
+ − − + − − − + − − + + + − + − − − + + + − − + − − − +
− − − + − − − + − − − +.

4.4 Circulant modular Hadamard matrices of type 2

We are seeking binary sequences s of even length n with the property
that γ1(s) = . . . = γn

2
−1(s) = 0. In this way, circ(s) will be a circulant

m-modular Hadamard matrix of type 2, with m = γn
2
(s).

These sequences were first introduced by J.Wolfmann [16] in 1992,
and are called almost perfect sequences. See also Langevin [10]. (Recall
that a sequence s of length n ≡ 0 mod 4 is perfect if it satisfies γi(s) = 0
for all 1 ≤ i ≤ n/2. This is equivalent to circ(s) being a circulant
Hadamard matrix. Hence, Ryser’s conjecture amounts to saying that
there is no perfect sequence of length n ≡ 0 mod 4 with n > 4.)

Almost perfect sequences are known in all lengths n of the form
n = 2(q + 1) where q is an odd prime power, and are believed not to
exist in other lengths. This follows from a theorem by Delsarte, Goethals
and Seidel, establishing the existence of a negacyclic conference matrix
of order q + 1 for every odd prime power q. For convenience of the
reader, this is recalled below.

Definition 4.4.1 A conference matrix C is a square matrix of size n,
with entries 0 on the diagonal and ±1 elsewhere, satisfying the condition
C · CT=(n− 1)I.

Definition 4.4.2 A negacyclic matrix N is a square matrix of the form

N = NC(u0, u1, . . . , ur) =


u0 u1 . . . . . . ur
−ur u0 u1 . . . ur−1

−ur−1 −ur u0 . . . ur−2
...

...
...

. . .
...

−u1 −u2 . . . −ur u0

 .
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Example 4.4.3 As an illustration of both concepts simultaneously,
here is a negacyclic conference matrix of size 6:

C =



0 1 1 1 −1 1
−1 0 1 1 1 −1
1 −1 0 1 1 1

−1 1 −1 0 1 1
−1 −1 1 −1 0 1
−1 −1 −1 1 −1 0

 .

Theorem 4.4.4 (Delsarte-Goethals-Seidel, [3]) Let q be an odd prime
power. Then there exists a negacyclic conference matrix of size q + 1.

Proof: (Sketch) Let g be a primitive element of the finite field Fq2 ,
that is, a generator of the group F∗

q2 of non-zero elements.

Let A =

(
0 −gq+1

1 g + gq

)
, with entries in the subfield Fq as g · gq and

g + gq are the norm and trace of g, respectively.
Let

v =

(
1
0

)
.

The q+1 vectors Ai ·v, 0 ≤ i ≤ q, are pairwise independent over Fq.
Define the matrix C of size q + 1 by

Ci,j = χ(det(Ai · v,Aj · v))

for 0 ≤ i, j ≤ q, where χ : Fq → {0,±1} is the quadratic character of
F∗
q , extended by χ(0) = 0.
Then C has entries 0 on the diagonal, and ±1 elsewhere. Moreover,

C is a conference matrix, that is C · CT = qI. Finally, let Γ be the
alternating diagonal matrix Γ = diag(1,−1, . . . , 1,−1) of size q + 1.
As it turns out, the product Γ · C is a negacyclic conference matrix of
size q + 1, as desired. See [3] for more details. □

Theorem 4.4.5 Let q be an odd prime power, and let n = 2(q + 1).
There exists a binary sequence s of length n and of type 2, i.e. satisfying
γ1(s) = . . . = γn

2
−1(s) = 0. Moreover, γn

2
(s) = 4− n.

Proof: Given a binary sequence s′ = (x1, x2, . . . , xq) of length q,
define the sequence s = [1; s′; 1;−s′] of length n = 2q + 2. An easy
calculation shows that γn/2(s) = 4 − n, and that γk(s) = 2(ck(s

′) −
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cq+1−k(s
′)) for all 1 ≤ k ≤ q, where ck(s

′) =
∑q−k

j=1 xjxj+k denote

the kth aperiodic correlation coefficient of the sequence s′. Thus, the
sequence s will be of type 2 if and only if ck(s

′) = cq+1−k(s
′) for all

1 ≤ k ≤ q.

Now, the latter condition on s′ is equivalent to the negacyclic matrix
N = NC(0, x1, x2, . . . , xq) being a conference matrix, as the dot product
of the ith row and the (i+k)th row ofN is equal to ck(s

′)−cq+1−k(s
′). By

the result of Delsarte, Goethals and Seidel, there exists a negacyclic con-
ference matrix C = NC(0, y1, . . . , yq) of size q+1. Let s′ = (y1, . . . , yq),
and s = [1; s′; 1;−s′]. From the above discussion, it follows that s is a
binary sequence of type 2 and length n, as desired. □
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