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When does a manifold admit a metric

with positive scalar curvature? ∗

Egidio Barrera-Yañez 1 José Luis Cisneros-Molina 2

Abstract

The scalar curvature is the weakest geometric invariant in a Rie-
mannian manifold. M. Gromov, B. Lawson Jr. and J. Rosenberg
conjectured that a Riemannian manifold admits a metric with pos-
itive scalar curvature if and only if certain topological invariant
called Â-genus vanishes. This is known as the Gromov-Lawson-
Rosenberg conjecture. In this article we explain this conjecture
and give a brief survey of some results related to it.
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1 Introduction

Riemannian Geometry is devoted to the study of Riemannian manifolds
(Mn, g), that is, differentiable manifolds Mm endowed with a Rieman-
nian metric g. Since the manifold Mn is also a topological manifold, one
of the most important problems in Riemannian Geometry is to study
which constrains imposes the topology of Mn on the geometry given
by the Riemannian metric g. More specifically, one would like to study
the relation between some topological invariants of the underlying man-
ifold Mn with the curvature of the Riemannian manifold (Mn, g). In
the present paper we shall only consider closed manifolds, i.e., compact
manifolds without boundary.
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The curvature tensor can be viewed as a quadratic form Q in the
double exterior product of the tangent bundle of M ,

∧2 T (M), the
positive definiteness of Q is one of the strongest positivity conditions,
for example all compact symmetric spaces have Q ≥ 0 while Q > 0
distinguishes spheres and real projective spaces. The restriction of Q to
bivectors in

∧2 T (M) is the sectional curvature K and twice the sum of
the sectional curvatures over all two planes in a tangent space to a point
give us the scalar curvature s (see [2]) therefore, we have the following
implications:

Q > 0 ⇒ K > 0 ⇒ s > 0.

In a Riemannian manifold (Mn, g) the scalar curvature can be built
in a certain way out of the first and second derivatives of g, so we can
recover s from the metric g. Hence it is natural to ask:

• Given a Riemannian manifold M = (Mn, g). When does M admit
a metric with s > 0 or s = 0 or s < 0?

For the case s ≤ 0, this condition has no topological effect on M by
a theorem of Kasdan and Warner [12, 13] which claims the existence of
a metric s ≤ 0 on every manifold of dimension n ≥ 3 and a theorem
of Lohkamp [18] that states that the space R−(M) of negative scalar
curvature metrics on M is contractible for every closed manifold Mn of
dimension n ≥ 3.

Going back to the case s > 0, there are two obvious questions:

1. How can I construct a manifold with a metric with positive scalar
curvature?

2. How can I decide if a manifold admit a metric with positive scalar
curvature?

For the existence of a metric with positive scalar curvature, one can
prove that if a manifold M has a metric with positive scalar curvature
then M×N also has a metric with positive scalar curvature since we can
shrink the product metric by a positive factor at every point and then
using the fact that both manifolds are compact find a common factor,
there are also generalizations (for vector bundles) of this technique, see
[33] for details.

Concerning the other question, the way we decide if a metric has
positive scalar curvature is using obstructions:
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1. Index Obstructions. This method is based on the “Bochner-
Lichnerowicz-Weitzenbrock formula” which gives a relation be-
tween the scalar curvature and the “Dirac operator” (see 2.2) de-
fined by Atiyah-Singer on any Riemannian manifold with a spin
structure (see 1.1).

2. Minimal hypersurface method. Schoen and Yau proved that if
M is a manifold of dimension n with positive scalar curvature then
any stable minimal hypersurface N (i.e. N is a local minimum of
the area functional) also admits positive scalar curvature.

3. Seiberg-Witten invariants. This is an invariant for 4-dimensional
manifolds which vanishes if the manifold admits a metric with pos-
itive scalar curvature, see [34] for details.

In the present article we shall focus on the Index Obstruction method.
For further details on these methods we recommend the survey of Stolz
[33].

Let us start considering the dimension of the manifold n = 2, in this
case, the scalar curvature coincides with the Gaussian curvature and
the Gauss-Bonnet formula relates it to the Euler-Poincaré characteristic
χ(M), which is a topological invariant of the 2-manifold M :

χ(M) = (4π)−1
∫
M s(x)dvol(x).

Thus if a 2 dimensional manifold M admits a metric of positive
scalar curvature, then χ(M) > 0 and by the classification theorem of
2-manifolds, this implies that M = S2 or M = RP 2 and indeed, these
manifolds do admit metrics of positive scalar curvature. Thus χ(M) > 0
if and only if M admits a metric of positive scalar curvature.

The situation is very different in higher dimensions. In dimension
n = 3 work of Shoen and Yau [29] with the Thurston conjecture [35]
(perhaps soon established by Perelman [20, 19]) yields a complete clas-
sification of 3-manifolds with positive scalar curvature. For n = 4, see
comment about Seiberg–Witten invariants above.
We shall concentrate henceforth on the case n ≥ 5. If one deforms
(cut and paste) the manifold, one obtains a manifold that will have
a metric of positive scalar curvature, the two common methods are
“surgery” and “attaching handles” which are related. Let M be a man-
ifold with boundary ∂M , we recall that a “handle” is the product of
two discs Dk×Dn−k, the boundary of this “handle” consist of two parts



4 Barrera-Yañez and Cisneros-Molina

Sk−1×Dn−k and Dk×Sn−k−1, given an embedding of Sk−1×Dn−k into
the boundary ∂M of an n-dimensional manifold M , we can construct a
new manifold

M̃ = M
∪

Sk−1×Dn−k

Dk ×Dn−k

by taking the disjoint union of M and the “handle” Dk × Dn−k and
identifying the points in Sk−1 ×Dn−k with their image in ∂M . We say
that M̃ is obtained by attaching a k-handle to M , or M̃ is obtained by
surgery (i.e. by removing Sk×Dn−k and replacing it byDk+1×Sn−k−1).
It is natural to ask whether a metric of positive scalar curvature in M
can be extended to a metric of positive scalar curvature in M̃ , here the
metrics we have in mind are product metrics near the boundary (i.e. a
neighborhood of ∂M is isometric to the product of ∂M with an inter-
val). Gromov-Lawson [9] and Shoen-Yau [29] showed (independently)
that if M admits a metric of positive scalar curvature, and n − k (
the codimension of the surgery/handle) is greater than 2, then M̃ also
admits such a metric. It is worth giving some of the flavor involved.
Let Sk be an embedded k dimensional sphere in M with trivial normal
bundle ν. This means that a tubular neighborhood of Sk has the form
Sk×Dm−k and associated boundary Sk×Sm−k−1. Shrink the size of the
tubular neighborhood. It is possible to deform the original metric on
M to a metric which is greater than 0 in a neighborhood the boundary
Sk ×Sm−k−1 in such a way that the new metric still has positive scalar
curvature. It is at this point that the assumption that m−k ≥ 3 is cru-
cial to ensure that the standard metric of the fiber spheres Sm−k−1 has
positive scalar curvature and this dominates as the size of these spheres
is shrunk by taking an adiabatic limit. The surgery can be performed;
one cuts out the Sk × intDm−k and glues in a Dk+1 × Sm−k−1 and pre-
serves the positivity of the scalar curvature, later Gajer [5] extend the
result to

Theorem 1.1 Let M be a manifold with boundary and let g be a metric
of positive scalar curvature on M . Assume that M̃ is obtained from M
by attaching a handle of codimension ≥ 3. Then g extends to a metric
of positive scalar curvature in M̃

Gromov and Lawson [9] made the important observation that if a man-
ifold M belongs to certain class of manifolds, called spin manifolds,
whether it admits a metric of positive scalar curvature depends only on
the bordism class of M in a suitable bordism group called MSpinn(Bπ)
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with π be the fundamental group of the manifold M . Recall that two
manifolds M and N of dimension n are bordant if there exists a mani-
fold W of dimension n+ 1 such that ∂W is the disjoint union M

⊔
N .

For the group MSpinn(Bπ) the extra structure we need is called spin
structure which we explain in the next section.

1.1 Clifford Algebras and Spin Structures

Let Cliff ±(n) denote the real Clifford algebra on Rn. This is the univer-
sal unital algebra generated by Rn subject to the Clifford commutation
relations

v ∗ w + w ∗ v = ±(v, w)1.

Let Cliff c(n) := Cliff −(n)⊗R C be the complexification. Note that
Cliff −(n) ⊗R C and Cliff +(n) ⊗R C are isomorphic. Let Pin±(n) ⊂
Cliff ±(n) be the multiplicative subgroup generated by the unit sphere
of Rn; i.e.

Pin±(n) = {x = v1 ∗ ... ∗ vk : |vi| = 1 for some k}.

Define the following groups and representations

• Let Pinc(n) := Pin−(n) ×Z2 S1 where we identify (g, λ) and
(−g,−λ),

• det : Pinc(n) → S1 by det(g, λ) = λ2,

• χ : Pin±(n) → Z2 by χ(v1 ∗ ... ∗ vk) = (−1)k, and

• Ψ : Pin±(n) → O(n) by Ψ(x) : w 7→ χ(x)x ∗ w ∗ x−1.

• Spin(n) = ker(χ) ∩ Pin−(n) ≈ ker(χ) ∩ Pin+(n), and

• Spinc(n) = Spin(n)×Z2 S
1.

Let n ≥ 3. Then Ψ defines a surjective group homomorphism from
Spin(n) to the orthogonal group SO(n). Since Spin(n) is connected
we have that π1(SO(n)) = Z2, and ker(Ψ) = {±1} ⊂ Spin(n), we have
Spin(n) is the universal covering group of SO(n).

Note that Ψ defines a surjective group homomorphism from Pin±(n)
to the orthogonal group O(n); this exhibits Pin±(n) as a universal
covering groups of O(n). Since O(n) is not connected, the universal
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cover is not uniquely defined as a group, one must decide how to multiply
the arc components and Pin±(n) are the two possible universal covering
groups. We extend χ and Ψ to Pinc(n) by defining

χ(x, λ) = χ(x) and Ψ(x, λ) = Ψ(x).

Let ξ be a real vector bundle of dimension k with an inner product.
We say that ξ admits a pin± or a pinc structure if we can lift the
transition functions of ξ from the orthogonal group O(k) to the group
Pin±(k) or Pinc(k). We say that ξ admits a spin or a spinc structure
if ξ is orientable and if we can lift the transition functions to Spin(k)
or Spinc(k). We say that a manifold M admits such a structure if the
tangent bundle T (M) admits this structure.

This condition can be expressed in terms of characteristic classes.
Let wi(ξ) for i = 1, 2 be the first two Stiefel-Whitney classes of ξ. We
refer to Giambalvo [6] for the proof of the following results. It shows
that we can stabilize; a bundle ξ admits a suitable structure if and only
if ξ ⊕ 1 admits this structure.

Lemma 1.2 Let ξ be as before.

• The bundle ξ admits a spin structure ⇐⇒ w1(ξ) = 0 and w2(ξ) =
0.

• The bundle ξ admits a spinc structure ⇐⇒ w1(ξ) = 0 and if
w2(ξ) lifts from H2(M ;Z2) to H2(M ;Z).

• The bundle ξ admits a pin− structure ⇐⇒ w2(ξ) = 0.

• The bundle ξ admits a pinc structure ⇐⇒ w2(ξ) lifts from
H2(M ;Z2) to H2(M ;Z).

For examples of manifolds with these structures, consider RP l, the real
projective manifold of dimension l, since T (RP l)⊕ 1 = (l + 1)L, where
L is the Hopf bundle, we have:

• RP 4l and (4l + 1)L admit pin+ structures.

• RP 4l+1 and (4l + 2)L admit spinc structures.

• RP 4l+2 and (4l + 3)L admit pin− structures.
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• RP 4l+3 and (4l + 4)L admit spin structures.

• Other examples of manifolds that admit spin structures are: Sn

for n ≥ 2, CPn for n odd.

Now with the notion of spin structure we can define the spin bordism
groups MSpinn(Bπ). Two spin manifolds M and N of dimension n are
spin bordant if there exist a spin manifold W of dimension n + 1 such
that its boundary is the disjoint union of M and N and the restriction
of the spin structure on W coincides with the spin structures on M and
N .

2 Non existence of metrics of positive scalar
curvature

We saw that the Euler-Poincaré characteristic is the invariant that
tell us when a 2-dimensional manifold admits a metric with positive
scalar curvature, so we are looking for a generalization of this invariant,
the pioneer of the solution for the non-existence of metrics of positive
scalar curvature was Lichnerowicz, see [17], his method is based on the
“Bochner-Lichnerowicz-Weitzenböck formula”. In order to state Lich-
nerowicz Theorem we need to explain the following concepts:

2.1 Spinor Bundle

Let M be a Riemannian manifold of dimension n = 2k, the spinor
bundle is a vector bundle S → M .

S = Spin(M)×Spin(n) ∆

where ∆ is a certain representation of Spin(n) called the spinor rep-
resentation, which is constructed as follows: identify Spin(n) with a
subgroup of units of the Clifford algebra Cliff (n), and ∆ is a certain
Cliff c(n)-module considered as a representation of Spin(n) in the units
of Cliff c(n) = Cliff c(2k) which is the algebra C(2k) = M2k×2k(C) of
2k × 2k matrices over C (see [16]).

Let ∆ be C2k with the C(2k)-module structure given by multiplying a
2k×2k-matrix by a 2k-vector. We consider ∆ as a module over Cliff c(2k)
and define a Z2 grading, ∆ := ∆+⊕∆− where ∆± are the ±1-eigenspace
of the involution given by the multiplication by the complex volume el-
ement ωC = ι2ke1 · · · e2k in Cliff c(n), the vectors {e1, . . . e2k} form an
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orthonormal basis of Tx(M) for x ∈ M . The main point here is that we
have a Clifford multiplication:

T (M)⊗ S → S.

It is induced by the module multiplication Rm⊗∆ ⊂ Cliff (n)⊗∆ →
∆, the Z2-grading in ∆ induces one in S = S+ ⊕ S−, in particular
Clifford multiplication by tangent vectors maps S+ to S− and viceversa.
The Levi–Civita connection on T (M) induces a principal connection on
the frame bundle S(M), which lifts to a connection on Spin(n), which
induces a connection on the associated bundle S → M , see [16] for
details.

2.2 The Dirac Operator

The Dirac operator (see [16]) is a first order elliptic differential operator
defined by the following diagram:

(1) C∞(S)

∇
��

D // C∞(S)

C∞(T ∗M ⊗ S) ≡ // C∞(TM ⊗ S)

·

OO

or in local coordinates by:

D(φ)(x) =

m∑
i=1

ei · ∇eiφ

Here {e1, . . . , em} is an orthonormal basis of the tangent space Tx(M),
∇eiφ is the covariant derivative in the direction of ei (∇eiφ ∈ Sx) and
ei· is Clifford multiplication by ei. Notice that if φ ∈ C∞(S+) then
∇eiφ ∈ S+

x and hence ei · ∇eiφ ∈ S−
x so Dφ ∈ C∞(S−), i.e.

D± : C∞(S±) → C∞(S∓).

The remarkable property of the Dirac operator is that if we look only
at D+ : C∞(S+) → C∞(S−), this is an elliptic operator (therefore is a
Fredholm operator, see [16]) so we can define its ”Index” as follows:

IndexD+ = dimkerD+ − dimkerD−.

The geometric meaning of the Dirac operator is that its square and
the scalar curvature are related via the connection Laplacian (“Bochner-
Lichnerowicz-Weitzenböck” formula).
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D2 = ∇∗∇+
1

4
s.

Where the connection Laplacian is the operator

∇∗∇ : C∞(E) → C∞(E) defined by ∇∗∇(φ) = −
m∑

i,j=1

∇ei∇ejφ.

One can use this formula to compute

|D2φ|2L2 = |∇φ|2L2 +
1

4

∫
M

s(φ,φ)dvol.

Therefore if the metric in question has positive scalar curvature, then
there are no elements in kerD (harmonic spinors).

2.3 Â-genus

We recall that for an oriented vector bundle E → M , Â(E) ∈ H∗(M,Q)
given by:

Â(E) = 1− 1

24
p1 +

1

27 · 32 · 5
(−4p2 + 7p21) + . . .

where pj = pj(E) ∈ H4j(M,Z) are the Pontryagin classes of E, see [16].
The famous Atiyah-Singer Index Theorem (see [16] for details) identifies
IndexD+ with the Â-genus.

If M is a manifold of dimension m = 4k the the Â-genus is:

Â(M) = ⟨Â(TM), [M ]⟩ ∈ Q.

Theorem 2.1 (Lichnerowicz) Let M be a closed spin manifold of
dimension M = 4k which admits a metric of positive scalar curvature,
then Â(M) = 0.

Notice that the assumption of spin is very important, consider the fol-
lowing example: CP 2 = S5/S1 is a manifold with positive scalar curva-
ture, since it is a Riemannian submersion, and

Â(CP 2) = −(
1

8
)sign(CP 2) ̸= 0

but CP 2 is not a spin manifold, see Lemma 1.2.
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3 Gromov-Lawson-Rosenberg Conjecture

If g is a Riemannian metric on M , let D(M, s, g) be the associated
Dirac operator defined by the spin structure s. We define the Â-genus
as follows:

1. Ifm ≡ 0 mod 4, decomposeD(M, s, g) = D+(M, s, g)+D−(M, s, g)
and let Â(M, s, g) := dimker(D+(M, s, g))−dimker(D−(M, s, g)) ∈
Z; the D± are the chiral spin operators.

2. If m ≡ 1 mod 8, let Â(M, s, g) = dimker(D(M, s, g)) ∈ Z2.

3. If m ≡ 2 mod 8, let Â(M, s, g) = 1
2 dimker(D(M, s, g)) ∈ Z2.

4. If m ̸≡ 0, 1, 2, 4 mod 8, let Â(M, s, g) = 0.

One can use the Atiyah-Singer index theorem to show that Â(M, s) =
Â(M, s, g) is independent of the metric g, also notice that in dimension 2
the invariant (Euler-Poincaré characteristic χ(M)) is independent of the
Riemannian metric and certain index invariant introduced by Hitchin
are independent of the Riemannian metric, see [10] for details.
If M is simply connected, the spin structure s is unique and we let
Â(M) = Â(M, s).

If M admits a metric of positive scalar curvature, the formula of
Lichnerowicz [17] shows there are no harmonic spinors; consequently
Â(M, s) = 0. In other words, if there exists a spin structure s on M so
that Â(M, s) ̸= 0, then M does not admit a metric of positive scalar
curvature. Gromov and Lawson conjectured that the Â-genus might
be the only obstruction to the existence of a metric of positive scalar
curvature if the dimension n was at least 5 and if M was a simply
connected spin manifold. Stolz used deep homotopy theory to identify
the kernel of Â(M, s), see [31] for details, he established this conjecture
by proving:

Theorem 3.1 If M is a simply connected, closed, spin manifold of
dimension n ≥ 5, then M admits a metric of positive scalar curvature
if and only if Â(M) = 0.

The situation in the non-simply connected setting is quite different.
Rosenberg has modified the original conjecture of Lawson and Gromov.
Fix a group π. Let M be a connected manifold of dimension n ≥ 5
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with fundamental group π and spin universal cover. Rosenberg conjec-
tured that M admits a metric of positive scalar curvature if and only
if a generalized equivariant index απ (see [10, 21]) of the Dirac opera-
tor vanishes. For the fundamental groups that we shall be considering,
απ can be expressed in terms of the Â-genus defined above. In gen-
eral Rosenberg’s Index απ lives in the K-theory of a certain C∗-algebra
associated to the fundamental groups of the manifold, but it is not in
general a number, see [21, 25, 22] for details.

What about the universal cover of M? Consider a manifold of di-
mension 9 which is homotopy equivalent to a sphere, call it Σ9 with
α(Σ9) ̸= 0),(see [10]) take the connected sum of RP 7 × S2 and Σ9, no-
tice that RP 7×S2 is spin and α(RP 7×S2) = 0, since RP 7×S2 is zero
bordant. Since the manifold M = (RP 7 × S2)#Σ9 is spin bordant to
the disjoint union of RP 7 × S2 and Σ9, we have that:

α(M) = α((RP 7 × S2)#Σ9) = α(RP 7 × S2) + α(Σ9) = α(Σ9) ̸= 0.

So M does not admit a metric with positive scalar curvature but
its universal cover M̃ = (S7 × S2)#Σ9#Σ9 which is diffeomerphic to
S7 × S2 does admit such a metric. So the question whether a spin
manifold with finite fundamental group π admits a metric with positive
scalar curvature cannot be reduced to the universal covering.

Kwasik and Schultz [14] showed that the Gromov-Lawson-Rosenberg
conjecture holds for a finite group π if and only if the conjecture holds
for all the Sylow subgroups of π. Thus one can work one prime at a
time. The Gromov-Lawson-Rosenberg conjecture has been established
in the following cases:

• If π is a spherical space form group and if M is spin (Botvinnik,
Gilkey and Stolz [4]).

• If π = Zp ⊕ Zp and if p is an odd prime (Schultz [28]).

• If π belongs to a short list of infinite fundamental groups includ-
ing free groups, free abelian groups and fundamental groups of
orientable surfaces (Rosenberg & Stolz [23]).

For more information about results concerning the Gromov-Lawson-
Rosenberg conjecture, see the article of Joachim and Shick [11].
Note that Schick [26, 27] has shown that this conjecture fails in some
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instances so it is crucial to investigate the precise conditions under which
the Â-genus carries the full set of obstructions.

The spin bordism groups are too big, so it is useful to reformulate
the Gromov-Lawson-Rosenberg conjecture in terms of more manageable
groups, which are the connective K-theory groups.

3.1 Connective K-theory

Let KO be the periodic real K-theory spectrum and ko the connective
cover of KO. The generalized homology theory associated with ko is
called the real connective K-theory. We are interested on the connective
K-theory of the classifying space of a group π, kon(Bπ).

Let HP 2 be the quaternion projective space with the usual homo-
geneous metric of positive scalar curvature. Let HP 2 → E → B be a
fiber bundle where the transition functions are the group of isometries
PSp3 of HP 2. Since HP2 is simply connected, the projection p : E → B
induces an isomorphism on the fundamental group. Let Tn(Bπ) be the
subgroup of MSpinn(Bπ) generated by the total space of geometric fi-
brations with fiber HP 2. Using some work of Jung and deep homotopy
theory, Stolz [31] has given the following geometrical characterization
of the real connective K-theory groups localized at the special prime 2:

kon(Bπ)(2) = {MSpinn(Bπ)/Tn(Bπ)}(2).

Let MSpin+
n (Bπ) be the classes in MSpinn(Bπ) which can be rep-

resented by manifolds which admit metrics of positive scalar curvature.
The invariant απ extends to the bordism groups MSpinn(Bπ); the
formula of Lichnerowicz [17] show that it vanishes on MSpin+

n (Bπ).
One therefore has the following equivalent formulation of the Gromov-
Lawson-Rosenberg conjecture, see [31] for details:

Theorem 3.2 Let π be a finite group, if n ≥ 5, then the following
assertions are equivalent:

• Let M be any closed connected spin manifold of dimension n with
fundamental group π. Then M admits a metric of positive scalar
curvature if and only if απ(M) = 0.

• MSpin+
n (Bπ) = ker(απ) ∩MSpinn(Bπ).

Let ko+n (Bπ) be the image ofMSpin+
n (Bπ) in kon(Bπ). The Gromov-

Lawson-Rosenberg conjecture has the following reformulation in terms
of connective K theory:
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Theorem 3.3 Let π be an Abelian 2 group, if n ≥ 5, then the following
assertions are equivalent:

• Let M be any closed connected spin manifold of dimension n with
fundamental group π. Then M admits a metric of positive scalar
curvature if and only if απ(M) = 0.

• ko+n (Bπ) = ker(απ) ∩ kon(Bπ).

Algebraic topology (spectral sequences) give upper bounds of con-
nective K-theory and using Spectral invariants of the Dirac operator
(eta invariant) give geometric generators and lower bounds of connec-
tive K-theory, using this approach the conjecture is valid for certain
non-orientable manifolds with fundamental group an Abelian 2 group,
see [1, 7] for details.
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[1] Barrera-Yañez, E., The eta invariant of twisted products of even
dimensional manifolds whose fundamental group is a cyclic 2 group,
Differential Geometry and its Applications, 11 (1999), 221–235.

[2] Besse A. L., Einstein manifolds, Springer Verlag, Berlin and New
York, 1986.

[3] Botvinnik B.; Gilkey P., The Gromov-Lawson-Rosenberg conjec-
ture: the twisted case, Houston Math. J., 23 (1997), 143–160.
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16 Barrera-Yañez and Cisneros-Molina

[31] Stolz S.,Simply connected manifolds of positive scalar curvature,
Ann. of Math., 136, (1992), 511–540.

[32] Stolz S.,Splitting certain MSpin-module spectra, Topology, 33,
(1994), 159–180.

[33] Stolz S.,Manifolds of positve scalar curvature, ICTP Lect. Notes, 9
(2002), 661–709.

[34] Taubes C. H., The Seiberg-Witten invariants and symplectic forms,
Math. Res. Let. 1, (1994), 809–822.

[35] Thurston W. P., Three-Dimensional Geometry and Topology, Vol
1, Princeton University Press.


