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control processes: a survey and extension of

results ∗
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Abstract

This paper considers constrained Markov control processes in Borel
spaces, with unbounded costs. The criterion to be minimized is the
expected total discounted cost and the constraints are imposed on
similar criteria. Conditions are given for the constrained problem
to be equivalent to a convex program. We present a saddle-point
theorem for the Lagrange function associated with the convex pro-
gram, which is used to obtain the existence of an optimal solution
to the constrained problem. In addition, we show that there exists
an optimal policy for the constrained problem which is also Pareto
optimal for a certain multiobjective Markov control processes.
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1 Introduction

This paper gives a unified, self–contained presentation of constrained
Markov control processes (MCPs) in Borel spaces with unbounded costs.
The criterion to be minimized is an expected discounted cost and the
constraints are imposed on similar discounted cost functionals. The pa-
per has two main objectives. First, it is a survey of several techniques to
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analyze constrained MCPs, with emphasis on the Lagrange approach.
Second, it extends to constrained MCPs in general (i.e. nondenumer-
able, noncompact) Borel spaces some results on the existence of optimal
policies and it also studies the relation between the Lagrange and the
Pareto approaches. In particular, we show the existence of an optimal
policy which is also Pareto optimal for a certain multiobjective MCP.

The constrained problem (CP) we are concerned with is of the fol-
lowing form: given performance criteria V0, V1, . . . , Vq and constants
k1, . . . , kq,

Minimize V0(π)

over the set of control policies π that satisfy the constraints

Vi(π) ≤ ki ∀ i = 1, . . . , q.

Control problems of this form appear in many areas — see, for in-
stance, [1–6, 8, 10–14, 19–25, 28–34]. The easiest way to analyze CP is
using the so–called direct method. In this method, which of course is
also applicable to unconstrained MCPs (e.g. [15], §5.7), the idea is to
use occupation measures to transform CP into a “static” optimization
problem, say CP’; see [13, 14] and §3 below. If one identifies the set of
occupation measures with a convex subset of a suitable linear space of
(signed) measures, then one can express CP’ in an obvious manner as
either a linear program or a convex program. The linear programming
formulation has been done for constrained MCPs in finite [8, 21, 22] or
countable [1–3,20] or even Borel [13,14] spaces. On the other hand, the
convex programming approach, which is the one we are interested in this
paper, was originally introduced by Beutler and Ross [4] for MCPs with
a countable state space and a single constraint, but it has been extended
in many directions, for instance, countable state spaces with compact
action sets [1, 3, 5, 6, 31, 32] and Borel state spaces [23, 25, 27, 28, 33].
(For the dynamic programming approach, which is not discussed in this
paper, see [29].)

As already mentioned above, in this paper we are mainly concerned
with the convex programming formulation of constrained MCPs with
general Borel state space and unbounded costs.

We begin in §2 by introducing some basic terminology and notation.
In §3 we define the associated discounted occupation measures and state
Lemma 3.3, which ensures that we can consider CP as a convex pro-
gramming problem. In §4 we study the convex problem. In particular,
we obtain a saddle-point theorem for the associated Lagrange function,
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which gives an optimal solution for CP. (A similar result for average cost
problems appears in [25].) In §5 we establish some connections between
the Lagrange approach and the Pareto optimality of a certain multiob-
jective MCP. Conditions are given under which an optimal policy for
CP is Pareto optimal for the multiobjective problem. To illustrate the
results in §4 and §5, in §6 we study the so–called stochastic stabilization
problem, from [9] and [27]. In particular, we show a saddle point for
the Lagrangean associated with this problem. In §7 and §8 we give the
proof of Theorems 4.4, 4.5, and 5.4, which require lengthy preliminaries.

2 Constrained MCPs

Constrained MCPs are rather standard and will be introduced only
briefly. (If necessary, see for instance [1, 13, 14, 28, 31, 32] for further
details.)

The constrained Markov control model is of the form

(2.1) (X,A, {A(x) |x ∈ X}, Q, c,d,k),

where X and A are the state space and the control space, respectively.
We shall assume that X and A are Borel spaces, endowed with the
corresponding Borel σ-algebras B(X), B(A). For each x ∈ X, the
nonempty set A(x) in B(A) consists of the feasible controls or actions
when the system is in state x ∈ X. We suppose that the set

(2.2) IK := {(x, a) |x ∈ X, a ∈ A(x)}

of feasible state-action pairs is a Borel subset of X × A. Moreover, Q
stands for the transition law, and c : IK → IR is a measurable function
that denotes the cost-per-stage . Finally, d = (d1, . . . , dq) : IK → IRq is
a given function and k = (k1, . . . , kq) is a given vector in IRq, which are
used to define the constrained problem (CP) in (2.5) and (2.6), below.

Let Π be the set of all (randomized, history-dependent) admisible
control policies. Let Φ be the set of all the stochastic kernels φ on A
given X such that φ(A(x)| x) = 1 for all x ∈ X, and let IF be the family
of measurable functions f : X → A for which f(x) ∈ A(x) for all x ∈ X
. As usual, we will identify Φ with the family of randomized stationary
policies, and IF with the subfamily of deterministic stationary policies.

Throughout the following, we consider a fixed discount factor δ ∈
(0,1), and a fixed initial distribution γ0 ∈ IP(X), where IP(X) denotes
the set of probability measures on X. Given the functions c and d =
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(d1, . . . , dq) as in (2.1), for each policy π ∈ Π, consider the expected
δ-discounted cost functions

(2.3) V0(π, γ0) := (1− δ)Eπ
γ0

[ ∞∑
t=0

δtc(xt, at)

]
,

(2.4) Vi(π, γ0) := (1− δ)Eπ
γ0

[ ∞∑
t=0

δtdi(xt, at)

]
for i = 1, . . . , q.

Furthermore, letting k = (k1, . . . , kq) be the q-vector in (2.1), define a
subset ∆ of Π as

(2.5) ∆ := {π | V0(π, γ0) < ∞ and Vi(π, γ0) ≤ ki (i = 1, . . . , q)}.

With this notation, we may then define the constrained problem (CP)
we are concerned with as follows:

CP : Minimize V0(π, γ0)(2.6)

subject to π ∈ ∆.

If there exists a policy π∗ in ∆ that solves CP, that is,

(2.7) V0(π
∗, γ0) = inf{V0(π, γ0) |π ∈ ∆} =: V ∗(γ0),

then π∗ is said to be an optimal policy for CP, and V ∗(γ0) is called the
optimal value of CP.

3 CP as a “static” optimization problem

The following conditions are used, in particular, to express CP as
an optimization problem on a certain set of occupation measures —see
Lemma 3.3.

Assumption 3.1

(a) The set IK (defined in (2.2)) is closed.

(b) c(x, a) is nonnegative and inf-compact, which means that for each
r ∈ IR the set {(x, a) ∈ IK | c(x, a) ≤ r} is compact.
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(c) di(x, a) is nonnegative and lower semicontinuous (l.s.c.) for i =
1, . . . , q.

(d) The transition law Q is weakly continuous, that is (denoting by
Cb(S) the space of continuous bounded functions on a topological
spaces S), Q is such that

∫
X u(y)Q(dy|· ) belongs to Cb(IK) for

each function u in Cb(X).

(e) CP is consistent, that is, the set ∆ in (2.5) is nonempty.

Observe that Assumption 3.1(b) yields, in particular, that c is l.s.c.

Assumptions 3.1(b) and (c) can be replaced with the following: The
cost functions c and d1, . . . , dq are nonnegative and l.s.c., and at least
one of them is inf-compact. On the other hand, the “nonnegativity”
condition on c and di may be replaced with “boundedness from below”.

Occupation measures. For each policy π ∈ Π, we define the oc-
cupation measure µπ = µπ

γ0 as

(3.1) µπ(Γ) := (1− δ)
∞∑
t=0

δtP π
γ0 [(xt, at) ∈ Γ] ∀Γ ∈ B(X ×A).

Then µπ is a probability measure (p.m.) onX×A, which is concentrated
on IK, that is, µπ(IKc) = 0, where IKc stands for the complement of IK.
Moreover, using the notation

⟨µ, h⟩ :=
∫

hdµ,

we can write (2.3) and (2.4) as

(3.2) V0(π, γ0) = ⟨µπ, c⟩ and Vi(π, γ0) = ⟨µπ, di⟩ (i = 1, . . . , q),

respectively.
We shall denote by IP(IK) the set of p.m.’s on X × A that are con-

centrated on IK, and by IPOδ(IK) the subset of occupation measures.
Further, for a p.m. µ in IP(IK), we denote by µ̂ its marginal on X, that
is, µ̂(B) := µ(B ×A) for all B in B(X).

Remark 3.2 (See Remark 6.3.1 and Theorem 6.3.7 in [15].) For each
policy π ∈ Π, the occupation measure µπ ∈ IPOδ(IK) satisfies the follow-
ing:

(3.3) µ̂π(B) = (1− δ)γ0(B) + δ

∫
Q(B|x, a)µπ(d(x, a)) ∀B ∈ B(X).
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Conversely, if µ is a p.m. in IP(IK) that satisfies (3.3), i.e.,

(3.4) µ̂(B) = (1− δ)γ0(B) + δ

∫
Q(B|x, a)µ(d(x, a)) ∀B ∈ B(X),

then µ is in IPOδ(IK). In other words, there is a policy π for which µ is
the associated occupation measure, that is, µ = µπ. Therefore,

IPOδ(IK) = {µ ∈ IP(IK) | µ satisfies (3.4)}.

We define the following subsets of IPOδ(IK):
(3.5)

IPδ(IK) := {µ ∈ IPOδ(IK)|⟨µ, c⟩ < ∞, and ⟨µ, di⟩ < ∞, i = 1, . . . q},

and

(3.6) ∆δ := {µ ∈ IPδ(IK)| ⟨µ, di⟩ ≤ ki, i = 1, . . . q}.

With this notation we can then state the following key fact.

Lemma 3.3 CP is equivalent to the problem:

CP′ : Minimize ⟨µ, c⟩
subject to : µ ∈ ∆δ.

Proof: The lemma is a consequence of (3.2) and Remark 3.2. □

4 CP as a convex program

In Lemma 3.3 we already transformed CP into the “static” opti-
mization problem CP′. We next use CP′ to restate CP as a convex
program.

Let f and G be the functions on IPδ(IK) defined as

f(µ) := ⟨µ, c⟩ and G(µ) := (G1(µ), . . . , Gq(µ)),

with Gi(µ) := ⟨µ, di⟩−ki for i = 1, . . . , q. Obviously, f and G are convex
functions. It is just as obvious that IPδ(IK) is a convex set. Thus, by
Lemma 3.3 we can represent CP as the convex problem

Minimize f(µ)(4.1)

subject to : µ ∈ IPδ(IK) and G(µ) ≤ θ,
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where θ is the vector zero in IRq, and G(µ) ≤ θ means that Gi(µ) ≤ 0
for all i = 1, . . . , q. Observe that the constraint in (4.1) can also be
written as µ ∈ ∆δ.

The Lagrangean L : IPδ(IK)×IRq
+ → IR associated with problem (4.1)

is given by

(4.2) L(µ,α) := f(µ) +G(µ) · α,

where α = (α1, . . . , αq) is in IRq
+, and “·” denotes the inner product in

IRq.

Remark 4.1 (a) ( See, for instance, [9, p. 88,89] or [18, p. 89]). If µ is
in IP(IK), then there exists φ ∈ Φ such that µ can be “disintegrated” as

(4.3) µ(B × C) =

∫
B
φ(C|x)µ̂(dx) ∀ B ∈ B(X), C ∈ B(A),

where µ̂ is the marginal of µ on X. In abbreviated form we write (4.3)
as µ = µ̂·φ.
(b) If µ = µ̂·φ is in IPOδ(IK), then it follows from (3.4) that µ is the
occupation measure of the policy φ ∈ Φ, that is, µ = µφ.

The following saddle-point result gives conditions for problem (4.1)
to have a solution.

Theorem 4.2 Suppose that there exists (µ∗,α∗) ∈ IPδ(IK) × IRq
+ such

that the Lagrangean L has a saddle point at (µ∗,α∗), i.e.,

(4.4) L(µ∗,α) ≤ L(µ∗,α∗) ≤ L(µ,α∗)

for all (µ,α) in IPδ(IK)× IRq
+. Then

(a) µ∗ solves problem (4.1), and
(b) the disintegration µ∗ = µ̂∗ · φ∗ of µ∗ satisfies that φ∗ is an optimal
policy for CP.

Proof: The proof of part (a) is similar to that of Theorem 2 in [26, p.
221], and, therefore, is omitted. Part (b) follows from (a), the Remark
4.1(b), and the equivalence of CP and problem (4.1). □

In view of Theorem 4.2, to prove that the problem (4.1) is solvable
it suffices to show the existence of a saddle point for L. This is true, in
particular, if the following condition holds.
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Assumption 4.3 (Slater condition) There exists µ1 ∈ IPδ(IK) such
that G(µ1) < θ, that is, Gi(µ1) < 0 for i = 1, . . . , q.

Theorem 4.4 Under Assumptions 3.1 and 4.3 , there exists a saddle
point (µ∗,α∗) for the Lagrangean L, and, therefore, CP is solvable.

Proof: See §7. □

To summarize, Theorem 4.4 gives the existence of a saddle point
(µ∗,α∗) for L, which, by Theorem 4.2 yields an optimal policy φ∗ for
CP. It turns out that the converse is also true, as shown in the following
result.

Theorem 4.5 Suppose that Assumptions 3.1 and 4.3 hold. If µ∗ =
µ̂∗ · φ∗ ∈ ∆δ is such that φ∗ is an optimal policy for CP, then the
Lagrangean L has a saddle point.

Proof: See §7. □

Remark 4.6 (See Remark 4.2.5, p. 51 in [7].) In our present con-
text, Assumption 4.3 is equivalent to the so-called Karlin condition (or
constraint qualification), according to which there is no nonzero vector
α ∈ IRq

+ for which G(µ) · α ≥ 0 for all µ ∈ IPδ(IK).

5 The Lagrange approach vs Pareto optimality

In this section we compare the Lagrange approach to CP with the
Pareto optimality of a certain multiobjective MCP. With this in mind,
we first briefly introduce multiobjective MCPs (for more information
see, for instance [17] or [28]).

Let V0(π, γ0) and Vi(π, γ0) be as in (2.3) and (2.4), and let V (π, γ0) ∈
IRq+1 be the cost vector

(5.1) V (π, γ0) := (V0(π, γ0), . . . , Vq(π, γ0)).

The multiobjective control problem we are concerned with is to find
a policy π∗ that “minimizes” V (·, γ0) in the sense of Pareto. To state
this in precise form, we first simplify the notation by writing V (π, γ0)
simply as V (π).
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Definition 5.1 Let Γ(Π) ⊂ IRq+1 be the set of cost vectors in (5.1),
i.e.,

Γ(Π) := {V (π) | π ∈ Π},

which is sometimes called the performance set of the multiobjective
MCP. Then a policy π∗ is said to be Pareto optimal (or a Pareto policy)
if there is no π ∈ Π such that V (π) ̸= V (π∗) and Vi(π) ≤ Vi(π

∗) for
all i = 0, . . . , q. The set of cost vectors in Γ(Π) corresponding to Pareto
policies is called the Pareto set of Γ(Π), and it is denoted by Par(Γ(Π)).

Let IRq+1
++ be set of vectors in IRq+1 with strictly positive components.

Let β ∈ IRq+1
++ , and consider the scalar (or real-valued) cost-per -stage

function

(5.2) Cβ(x, a) := β0c(x, a) +

q∑
i=1

βidi(x, a),

and the δ-discounted cost V β(π) = V β(π, γ0) with

(5.3) V β(π) := (1− δ)Eπ
γ0

[ ∞∑
t=0

δtCβ(xt, at)

]
.

Using (5.1) and (5.2) we may write V β(π) as

(5.4) V β(π) = β · V (π) =

q∑
i=0

βiVi(π).

Let

(5.5) Λ := {β ∈ IRq+1
++ |

q∑
i=0

βi = 1}.

We may then obtain the existence of Pareto policies by the standard
“scalarization” approach, as follows.

Theorem 5.2 Choose an arbitrary vector β ∈ Λ. If π∗ ∈ Π is an
optimal policy for the scalar criterion (5.3), that is,

(5.6) V β(π∗) ≤ V β(π) ∀ π ∈ Π,

then π∗ is Pareto optimal.
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For a proof of Theorem 5.2 see, for instance, Theorem 3.2(a) in [17].
In general, the constrained problem CP in (2.6) can have optimal

policies that are not Pareto optimal. On the other hand, if CP has
a unique optimal policy π∗, then it is easily seen (directly from the
Definition 5.1) that π∗ is a Pareto policy. The following two theorems
give other cases in which an optimal policy for CP is in fact a Pareto
policy.

Theorem 5.3 Let (µ∗,α∗) ∈ IPδ(IK) × IRq
++ be a saddle point for the

Lagrangean L, and disintegrate µ∗ as µ̂∗ ·φ∗. Then φ∗ is Pareto optimal.

Proof: From the definition (4.4) of a saddle point, we have that

(5.7) L(µ∗,α∗) ≤ L(µ,α∗) ∀ µ ∈ IPδ(IK).

On the other hand, from (3.2) and the definition (4.2) of L it follows
that

(5.8) L(µ,α) = V0(π) +

q∑
i=1

αi(Vi(π)− ki),

where π is a policy associated to the occupation measure µ. Hence,
from (5.7) and (5.8) we have that

V0(φ
∗) +

q∑
i=1

α∗
i (Vi(φ

∗)− ki) ≤ V0(π) +

q∑
i=1

α∗
i (Vi(π)− ki) ∀ π ∈ Π.

Equivalently, defining β∗ := (1,α∗) ∈ IRq+1
++ , we have

β∗ · V (φ∗)− α∗ · k ≤ β∗ · V (π)− α∗ · k ∀ π ∈ Π,

and so

(5.9) β∗ · V (φ∗) ≤ β∗ · V (π) ∀ π ∈ Π.

Finally, let P = 1 +
∑q

i=1 α
∗
i . Then, multiplying both sides of (5.9) by

1/P , it follows from Theorem 5.2 that φ∗ is Pareto optimal. □

Now consider the following subset of Γ(Π)

(5.10) Γ∗(Π) := {V (π) | π an optimal policy for CP}.

Let Par(Γ∗(Π)) be the Pareto set of Γ∗(Π).
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Theorem 5.4 Under Assumption 3.1, the Pareto set Par (Γ∗(Π)) of
Γ∗(Π) is nonempty.

Proof: See §8. □
It turns out that the nonemptiness of Par (Γ∗(Π)) in Theorem 5.4

ensures the existence of a Pareto policy that is optimal for CP.

Theorem 5.5 Under Assumptions 3.1 and 4.3, there exists an optimal
policy π∗ for CP, which is also Pareto optimal.

Proof: From Theorem 5.4 there exists a policy π∗ such that V (π∗) is
in Par(Γ∗(Π)). By (5.10), π∗ is an optimal policy for CP. We now
claim that π∗ is Pareto optimal, that is, V (π∗) is in Par(Γ(Π)). Indeed,
if π∗ is not Pareto optimal, then there exists a policy π1 ∈ Π such
that V (π1) ̸= V (π∗) and Vi(π1) ≤ Vi(π

∗) for i = 0, . . . , q. Hence,
V (π1) ∈ Γ∗(Π), which contradicts our assumption on π∗. Therefore, π∗

is Pareto optimal. □

6 Example

To illustrate the results in Sections 4 and 5, we next consider the fol-
lowing problem, which is similar to the stochastic stabilization problem
in [9, 27]. First, we show that Assumptions 3.1 and 4.3 hold. Then, we
prove that this problem is solvable using the Lagrange approach, that
is, we shall obtain a saddle point for the Lagrange function. Finally, we
construct the corresponding Pareto set. For notational ease, we shall
write the δ-discounted costs in (2.3) and (2.4) without the factor (1−δ).

Consider the scalar linear system

(6.1) xt+1 = xt − at + ξt for t = 0, 1, . . . ,

with state and control spaces X = A = IR. The disturbances ξt are i.i.d.
random variables, independent of the initial state x0, and such that

(6.2) E(ξ0) = 0 and E(ξ20) =: σ2 < ∞.

Let c(x, a) and d(x, a) be the quadratic costs defined as

(6.3) c(x, a) = x2 + a2, d(x, a) = (x− a)2,
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and consider the following constrained problem in which k is a given
positive constant.

Minimize V0(π, γ0) := Eπ
γ0

[ ∞∑
t=0

δt(x2t + a2t )

]

subject to : V1(π, γ0) := Eπ
γ0

[ ∞∑
t=0

δt(xt − at)
2

]
≤ k.

It is clear that the Assumptions 3.1(a), (b), (c) are satisfied in this ex-
ample. Moreover, by the continuity of the right-hand side of (6.1) with
respect to xt and at for every ξt it follows that also Assumption 3.1(d)
holds. On the other hand, if we take π = f0 ∈ IF as the “identity”policy
f0(x) := x for all x ∈ X, we see that V1(f0, x) = 0, and, therefore, As-
sumptions 3.1(e) and 4.3 are both satisfied. Summarizing, Assumptions
3.1 and 4.3 hold for this problem.

Now, from (3.2) and (4.2) the corresponding Lagrange function is

(6.4) L(π, α) = V0(π, γ0) + (V1(π, γ0)− k) · α

with α ≥ 0. Let

(6.5) L1(α) := inf
π∈Π

L(π, α).

Note that defining the new cost per-stage function

Cα(x, a) := c(x, a) + α · d(x, a) = x2 + a2 + α(x− a)2

and denoting by V α(π, γ0) the corresponding δ-discounted cost, we may
express (6.4) as

L(π, α) = V α(π, γ0)− α · k.

Therefore, finding a policy that attains the minimun in (6.5) becomes a
linear-quadratic problem; see, for instance, p. 162 in [9], p. 70 in [15],
or p. 253 in [28]. From any of these references we have

inf
π∈Π

V α(π, x)− k · α = z(α)v(x)− k · α ∀ x ∈ X,

with v(x) := x2+(1− δ)−1δσ2, and z(α) is the maximal solution of the
quadratic equation

(6.6) δz2 + (1 + α− 2δ)z − 1− 2α = 0.
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Therefore, assuming that the initial distribution γ0 satisfies that

(6.7) γ̄0 :=

∫
v(x)γ0(dx) < ∞,

we can express (6.5) as

(6.8) L1(α) = z(α)γ̄0 − k · α.

Moreover, the deterministic stationary policy fα ∈ IF given by

(6.9) fα(x) =
α+ δz(α)

1 + α+ δz(α)
x

is optimal for V α(π, x) for all x ∈ IR, and so we also have L1(α) =
L(fα, α) for each α ≥ 0. Now, to obtain a saddle point for the La-
grangean in (6.4) we first prove the following, which can be seen as an
“explicit” form of Lemma 7.2, below.

Proposition 6.1 If the constraint constant k satisfies the inequality

(6.10) 0 < k < K,

where K := γ̄0(1 + 2δ −
√
1 + 4δ2)/2δ

√
1 + 4δ2, then there exists a unique

α∗ > 0 such that

L1(α
∗) = max

α≥0
L1(α).

Proof: We differentiate the function L1 in (6.8) with respect to α, to
get L′

1(α) = z′(α)γ̄0 − k.

Let us now show that L′
1(α) = 0 has a unique positive solution.

With this in mind, first note that the positive solution of (6.6) is

z(α) =
−(1 + α− 2δ) +

√
(1 + α− 2δ)2 + 4δ(1 + 2α)

2δ
.

Hence

z′(α) = − 1

2δ
+

1 + α+ 2δ

2δ
√
(1 + α− 2δ)2 + 4δ(1 + 2α)

,

and so

(6.11) L′
1(α) =

[
− 1

2δ
+

1 + α+ 2δ

2δ
√

(1 + α− 2δ)2 + 4δ(1 + 2α)

]
γ̄0 − k.
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According to (6.10) and (6.11) we have

L′
1(0) =

γ̄0(1 + 2δ −
√
1 + 4δ2)

2δ
√
1 + 4δ2

− k > 0.

On the other hand,
lim
α→∞

L′
1(α) = −k < 0.

Hence the equation L′
1(α) = 0 has a positive solution. Moreover, from

(6.11), L′
1(α) = 0 becomes

(1 + α+ 2δ)2 = 4δ2(k(γ̄0)
−1 + (2δ)−1)2((1 + α− 2δ)2 + 4δ(1 + 2α)).

As this equation is quadratic in α, it has a unique positive solution. □
Let α∗ be as in Proposition 6.1 and define z∗ = z(α∗) and f∗ := fα∗

as in (6.9), that is,

f∗(x) := fα∗(x) = (α∗ + δz∗)(1 + α∗ + δz∗)−1x.

Then (f∗, α∗) is a saddle point for L, and, therefore, from Theorem 4.2
it follows f∗ is an optimal policy for CP. Moreover, as α∗ is positive,
from Theorem 5.3 we have that f∗ is Pareto optimal.

Remark 6.2 If α = 0, then f∗
0 (x) = δz0x(1 + δz0)

−1 is optimal for V0,
that is,

V0(f
∗
0 , γ0) = inf

π∈Π
V0(π, γ0)

where z0 is the positive solution of the quadratic equation

(6.12) δz2 + (1− 2δ)z − 1 = 0.

On the other hand, we can see that the “identity” policy f0(x) = x is
optimal for V1, and obviously, V1(f0, γ0) = 0, that is,

inf
π∈Π

V1(π, γ0) = 0.

Proposition 6.3 Let f̂ be a constant, and f ∈ IF a stationary policy
given by f(x) := f̂x for all x ∈ X. Let θ := 1− f̂ . If |θ| < 1, then

(6.13) V0(f, γ0) =
1 + f̂

2

1− δθ2
γ̄0,

(6.14) V1(f, γ0) =
(1− f̂ )2

1− δθ2
γ̄0.
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In particular, for K and f∗
0 as in (6.10) and Remark 6.2,

(6.15) V1(f
∗
0 , γ0) = K.

Proof: Replacing at in (6.1) with at = f(xt) = f̂xt, we obtain

xt = (1− f̂)xt−1 + ξt−1 = θxt−1 + ξt−1 ∀ t = 1, 2, . . . .

Hence, for all t = 1, 2, . . .

xt = θtx0 +

t−1∑
j=0

θjξt−1−j ,

and so

Ef
x (x

2
t ) = θ2tx2 +

σ2(1− θ2t)

1− θ2
.

This yields that

(6.16) Ef
x

( ∞∑
t=0

δtx2t

)
=

1

1− δθ2

(
x2 +

σ2δ

1− δ

)
=

v(x)

1− δθ2
.

Hence, from (6.7),

(6.17) Ef
γ0

( ∞∑
t=0

δtx2t

)
=

γ̄0
1− δθ2

.

Now note that using a = f(x) = f̂x in (6.3) we get

(6.18) c(x, a) = (1 + f̂
2
)x2 and d(x, a) = (1− f̂)2x2

for all x. Thus, inserting (6.17) and (6.18) in V0 and V1 we obtain (6.13)
and (6.14). Finally, from (6.14) and Remark 6.2 we have

(6.19) V1(f
∗
0 , γ0) =

γ̄0
(1 + δz0)2 − δ

.

On the other hand, from (6.12) we get

(6.20) z0 =
2δ − 1 +

√
1 + 4δ2

2δ
.

Hence, substituting (6.20) in (6.19) we obtain (6.15). □
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Remark 6.4 Suppose that instead of (6.10) we have

k ≥ K,

and let f∗
0 (x) = δz0x(1+δz0)

−1 be the optimal policy for V0 (see Remark
6.2). Then, from (6.15) it follows that

V1(f
∗
0 , γ0) = K ≤ k

and, therefore, f∗
0 is an optimal policy for the constrained problem.

Moreover, f∗
0 is the unique optimal policy for CP, and so it is Pareto

optimal, that is, (V0(f
∗
0 , γ0), V1(f

∗
0 , γ0)) belongs to the Pareto set. (See

Figure 6.1.)

The Pareto set. We next construct the Pareto set in an explicit form.
As seen above, f∗ is an optimal policy for CP which is also Pareto
optimal, that is, (V0(f

∗, γ0), V1(f
∗, γ0)) is in the Pareto set. When

the constraint constant k varies in the interval (0,K), with K as in
(6.10), then (V0(f

∗, γ0), V1(f
∗, γ0)) describes the Pareto set. Obviously,

V0(f
∗, γ0) is the optimal value for the constrained problem, that is,

V0(f
∗, γ0) = V ∗(γ0). Now, we wish to find the value of V1(f

∗, γ0).

Proposition 6.5 For each k as in (6.10),

V1(f
∗, γ0) := Ef∗

γ0

[ ∞∑
t=0

δt(xt − at)
2

]
= k

and so (V0(f
∗, γ0), V1(f

∗, γ0)) = (V ∗(γ0), k) belongs to the Pareto set.

Proof: Since (f∗,α∗) is a saddle point and f∗ is an optimal policy for
CP we have

V ∗(γ0) ≤ L(f∗,α∗) = V ∗(γ0) + (V1(f
∗, γ0)− k)α∗.

On the other hand, as (V1(f
∗, γ0)− k)α∗ ≤ 0, it follows that

V ∗(γ0) + (V1(f
∗, γ0)− k)α∗ ≤ V ∗(γ0)

and so we have (V1(f
∗, γ0) − k)α∗ = 0. This equality together with

Proposition 6.1 yields that V1(f
∗, γ0) = k. □

Proposition 6.5 ensures that (V ∗(γ0), k) belongs to the Pareto set
when k varies in (0,K). Furthermore, if α∗ is as in Proposition 6.1,
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it is clear then that V ∗(γ0) = L1(α
∗). Now, in connection with the

Figure 6.1, let us fix w = k and calculate y = L1(α
∗). First, we note

the following facts. Proposition 6.3 yields that

(6.21) V1(f
∗, γ0) =

γ̄0
(1 + α∗ + δz∗)2 − δ

.

Further, from (6.6) with α = α∗ we have

(6.22) α∗ =
δ(z∗)2 + (1− 2δ)z∗ − 1

2− z∗

and subtituting this value of α∗ in (6.21) it follows that

(6.23) V1(f
∗, γ0) =

(2− z∗)2γ̄0
1− δ(2− z∗)2

.

Hence, from Proposition 6.5 we get

(6.24)
(2− z∗)2γ̄0

1− δ(2− z∗)2
= k.

Now, substituting 6.22 in L(α∗) we obtain

y = z∗γ̄0 −
δ(z∗)2 + (1− 2δ)z∗ − 1

2− z∗
k

=
−(z∗)2(γ̄0 + δk) + 2z∗(γ̄0 + δk)− kz∗ + k

2− z∗
.(6.25)

From (6.24) we have that

(6.26) −(z∗)2(γ̄0 + δk) = 4(γ̄0 + δk)(1− z∗)− k.

The latter equality together with (6.25) gives

(6.27) y = 2(γ̄0 + δk)− z∗

2− z∗
k.

Now let

s :=
z∗

2− z∗
.

Solving this equation for z∗ and substituting the solution in (6.24) we
get

4γ̄0
(1 + s)2 − 4δ

= k,
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which yields

(6.28) w = k = γ̄0
4

(s+ 1)2 − 4δ

and so, from (6.25),

(6.29) y = 2(γ̄0 + kδ)− 4δγ̄0
(s+ 1)2 − 4δ

.

In (6.28) and (6.29) s is the parameter which varies as k is in (0,K).
The graph of (6.28)-(4.29) is the Pareto set, which is represented in
Figure 6.1.

V0
(f

0
, γ

0 )
V( γ

0 )*

( f
0
,γ

0 )V1

y

w

0
Par Γ( (Π))

*

k

Γ ( Π)

γ2 0

Figure 6.1
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7 Proof of Theorems 4.4 and 4.5

The proof of Theorems 4.4 and 4.5 is based on the following prelim-
inary facts. Consider the functions

(7.1) L1(α) := inf
µ∈IPδ(IK)

L(µ,α),

(7.2) L2(µ) := sup
α≥θ

L(µ,α),

and let V ∗(γ0) be as in (2.7). Note that, by Lemma 3.3,

V ∗(γ0) = inf{⟨µ, c⟩ | µ ∈ ∆δ}.

Remark 7.1 As ∆δ ⊂ IPδ(IK), for each α ∈ IRq
+ we have

L1(α) ≤ inf
µ∈∆δ

L(µ,α) ≤ inf
µ∈∆δ

⟨µ, c⟩ = V ∗(γ0),

that is, L1(α) ≤ V ∗(γ0) for all α ∈ IRq
+. Similarly, V ∗(γ0) ≤ L2(µ) for

all µ ∈ ∆δ. Hence

(7.3) sup
α≥θ

L1(α) ≤ V ∗(γ0) ≤ inf
µ∈IPδ(IK)

L2(µ).

The following lemmas show that equality holds throughout (7.3).

Lemma 7.2 Under Assumptions 3.1 and 4.3, there exists α∗ in IRq
+

such that
L1(α

∗) = sup
α≥θ

L1(α) = V ∗(γ0).

Proof: In the space IR× IRq define the sets

B1 := {(r,α)| r ≥ f(µ),α ≥ G(µ) for some µ ∈ IPδ(IK) },
B2 := {(r,α)| r ≤ V ∗(γ0),α ≤ θ }.

The set B2 is obviously convex, and so is B1 because f and G are convex.
By definition of V ∗(γ0), the set B1 contains no interior points of B2.
On the other hand, it is clear that B2 contains an interior point. Thus,
by the Separating Hyperplane Theorem (see, for example, [26], p. 133,
Theorem 3), there is a vector (r∗,α∗) ∈ IR× IRq such that

r∗r1 + α1 · α∗ ≥ r∗r2 + α2 · α∗
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for all (r1,α1) ∈ B1 and all (r2,α2) ∈ B2. By the definition of B2 it
follows that r∗ ≥ 0,α∗ ≥ θ. We next show that in fact r∗ > 0. Indeed,
as the vector (V ∗(γ0), θ) is in B2, we have

(7.4) r∗r + α · α∗ ≥ r∗V ∗(γ0)

for all (r,α) ∈ B1. Thus, if r∗ = 0, then α · α∗ ≥ 0 for all α ∈ IRq

such that (r,α) ∈ B1. In particular, taking α = G(µ1) with µ1 as in
Assumption 4.3, we obtain G(µ1)·α∗ ≥ 0, which implies that Gi(µ1) ≥ 0
for some i = 1, . . . , q. As this contradicts Assumption 4.3, it follows that
r∗ > 0 and, without loss of generality, we may assume r∗ = 1.

Now, since the point (V ∗(γ0), θ) is in the closure of both B1 and B2,
we have (with r∗ = 1 in (7.4))

V ∗(γ0) = inf
(r,α)∈B1

[r + α · α∗] ≤ inf
µ∈IPδ(IK)

[f(µ) +G(µ) · α∗]

= inf
µ∈IPδ(IK)

L(µ,α∗) ≤ inf
µ∈∆δ

f(u) = V ∗(γ0).

Hence, recalling (7.3) the lemma is proved. □

By (7.1) and (7.2) the following lemma is a “minimax” result.

Lemma 7.3 Under Assumptions 3.1 and 4.3, we have

(7.5) max
α≥θ

L1(α) = inf
µ∈IPδ(IK)

L2(µ) = V ∗(γ0).

Proof: Since G(µ) · α ≤ θ for all µ ∈ ∆δ and α ≥ 0, we see that

L2(µ) = sup
α≥θ

L(µ,α) = ⟨µ, c⟩ for all µ ∈ ∆δ.

Hence
inf

µ∈∆δ

L2(µ) = V ∗(γ0).

It follows that
inf

µ∈IPδ(IK)
L2(µ) ≤ V ∗(γ0),

and so, by ( 7.3) and Lemma 7.2, the equality (7.5) holds. □

Lemma 7.4 Under Assumption 3.1, there exists a p.m. µ∗ in IPδ(IK)
such that

L2(µ
∗) = inf

µ∈IPδ(IK)
L2(µ) = V ∗(γ0).



Constrained Markov control processes 21

Proof: If µ is in IPδ(IK) but not in ∆δ, then there exists i0 in {1, . . . , q}
such that Gi0(µ) > 0, which implies that L2(µ) = +∞. Therefore,

(7.6) inf
µ∈IPδ(IK)

L2(µ) = inf
µ∈∆δ

L2(µ) = V ∗(γ0).

On the other hand, for all µ ∈ ∆δ and α ≥ θ, we have G(µ) · α ≤ 0,
and so it follows that

(7.7) L2(µ) = sup
α≥θ

L(µ,α) = ⟨µ, c⟩ ∀ µ ∈ ∆δ.

Therefore, from the (7.6), (7.7), together with Lemma 3.3 and Theorem
3.2 in [13], the desired conclusion follows. □

We are now ready for the proof of Theorems 4.4 and 4.5.
Proof of Theorem 4.4. Let α∗ and µ∗ be as in Lemma 7.2 and Lemma
7.4, respectively. From lemma 7.3 we have that

L(µ∗,α∗) = V ∗(γ0).

Now, by the latter equality together with Lemmas 7.2, 7.4 and the
definition of L1 and L2 it follows that

L(µ∗,α∗) = L1(α
∗) ≤ L(µ,α∗) for all µ ∈ IPδ(IK),

and, similarly,

L(µ∗,α∗) = L2(µ
∗) ≥ L(µ∗,α) for all α ≥ θ.

Therefore, the pair (µ∗,α∗) is a saddle point. □

Proof of Theorem 4.5. Let α∗ be as in Lemma 7.2. As G(µ∗) ≤ 0
and f(µ∗) = V ∗(γ0), it follows that

L(µ∗,α∗) ≤ L(µ,α∗) for all µ ∈ IPδ(IK),

which gives the second inequality in (4.4). On other hand, since

V ∗(γ0) ≤ f(µ∗) +G(µ∗) · α∗ ≤ f(µ∗) = V ∗(γ0),

we have G(µ∗) · α∗ = 0. Therefore,

L(µ∗,α)− L(µ∗,α∗) = G(µ∗) · α−G(µ∗) · α∗ = G(µ∗) · α ≤ 0,

and the first inequality in (4.4) follows. □



22 R. R. López–Mart́ınez and O. Hernández–Lerma

8 Proof of Theorem 5.4

For completeness, we first state some well-known results that are
needed to prove Theorem 5.4.

Lemma 8.1 Let Y be a metric space and M a family of probability
measures on Y. If there exists a nonnegative and inf-compact function
v on Y such that

sup{⟨µ, v⟩, µ ∈ M} < ∞,

then M is relatively compact, that is, for each sequence {µn} in M there
is a probability measure µ on Y and a subsequence {µm} of {µn} such
that µm converges weakly to µ in the sense that

(8.1) ⟨µm, v⟩ → ⟨µ, v⟩ ∀v ∈ Cb(Y ).

To prove Lemma 8.1, one first shows that the hypothesis implies
that M is tight, and then the relative compactness of M follows from
Prohorov’s Theorem (see [16]).

Lemma 8.2 Let Y a metric space, and v : Y → IR lower semicontin-
uous and bounded below. If {µn} and µ are probability measures on Y
and µn converges weakly to µ (that is, as in (8.1)), then

lim inf
n→∞

⟨µn, v⟩ ≥ ⟨µ, v⟩.

Lemma 8.2 is well known (and easy to prove): see, for instance,
statement (12.3.37) in [16, p. 243]

Lemma 8.3 The set IPδ(IK) is closed with respect to the topology of
weak convergence.

For a proof of Lemma 8.3 see Lemma 5.5 in [17], for instance.

Let

∆′
δ := {µ ∈ ∆δ | µ is an optimal solution for (4.1)}.

Lemma 8.4 Let V β(π) and Γ∗(Π) be as in (5.3) and (5.10), respec-
tively. Let Π∗ be set of policies π such that V (π) in Γ∗(Π). Then there
exists a policy π∗ such that

(8.2) V β(π∗) = min
π∈Π∗

V β(π).
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Proof: It is clear that minimizing V β(·) on Γ∗(Π) is equivalent to min-

imizing ⟨·, Cβ⟩ on ∆′
δ, with Cβ as in (5.2). Let ρ∗ := inf{⟨µ,Cβ⟩ | µ ∈

∆′
δ} and take a sequence {µn} in ∆′

δ such that

⟨µn, C
β⟩ ↓ ρ∗.

Therefore, given ϵ > 0, there exists an integer N such that

(8.3) ρ∗ ≤ ⟨µn, C
β⟩ ≤ ρ∗ + ϵ ∀n ≥ N.

On the other hand, by definition of ∆′
δ, it follows that

(8.4) ⟨µn, c⟩ = V ∗(γ0) for all n ≥ 0

with V ∗(γ0) as in (2.7), which implies that

sup
n
⟨µn, c⟩ = V ∗(γ0).

Since c is inf-compact (Assumption 3.1(b)), from Lemma 8.1 it follows
that {µn} is relatively compact, that is, there exists a probability mea-
sure µ∗ on IK and a subsequence {µm} of {µn} that converges weakly to
µ∗. The latter convergence, together with (8.3) and Lemma 8.2, yields

that ⟨µ∗, Cβ⟩ = ρ∗. Finally, from Lemma 8.3 we conclude that µ∗ is
indeed a p.m. in ∆′

δ, and so the disintegration µ∗ = µ̂∗ ·φ∗ of µ∗ is such
that π∗ := φ∗ satisfies (8.2). □

Proof of Theorem 5.4 From Lemma 8.4 and Theorem 5.2, it follows
that Par(Γ∗(Π)) ̸= ∅. □
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