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Existence of Nash equilibria in some Markov

games with discounted payoff ∗

Carlos Gabriel Pacheco González

Abstract

This work considers N−person stochastic game models with a
discounted payoff criterion, under two different structures. First,
we consider games with finite state and action spaces, and infinite
horizon. Second, we consider games with Borel state space, com-
pact action sets, and finite horizon. For each of these games, we
give conditions that ensure the existence of a Nash equilibrium,
which is a stationary strategy in the former case, and a Markovian
strategy in the latter.
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1 Introduction

In this paper we study the existence of Nash equilibria for stochastic
games with a discounted payoff criterion. First we consider a game with
finite state and action spaces, and infinite horizon. In a more general
framework, we study games with a Borel state space, compact action
sets, and finite horizon. The purpose of this work is to present in a clear,
self-contained manner the proofs of these results. Our main source was
the paper by Dutta and Sundaram [7].

The first studies of games in the economics literature were the papers
by Cournot [6], Bertrand [3], and Edgeworth [8] on oligopoly pricing and
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production. The idea of a general theory of games was introduced by
John von Neumann and Oskar Morgenstern in their famous 1944 book
Theory of Games and Economic Behavior [25], which proposed that
most economic questions should be analyzed as games. Nash [15] intro-
duced what came to be known as ”Nash equilibrium” as a way of extend-
ing game-theoretic analyses to nonzero-sum games. Stochastic games
with discounted payoffs have been widely studied. This class includes
the two-person zero-sum stochastic games, for which Nash equilibria are
known to exist under a variety of assumptions; see, for instance, Filar
and Vrieze [10], Nowak [16] or Ramírez-Reyes [19].

In this work we study nonzero-sum games under two different sets
of hypotheses. The first result (for games with finite state spaces) was
proved by Rogers [21] and Sobel [24], with an extension to countable
state spaces by Parthasarathy [17]. The second result was proved by
Rieder [20] (as an approximation to what he calls an ε−equilibrium) un-
der some special assumptions on the structure of the game. The general
result (that is, games with Borel state and action spaces, and infinite
horizon) is an open problem, even with compact action sets. However, it
has been solved imposing an additive structure in the reward functions
and the transition law; see Hernández-Hernández [12] or Parthasarathy
and Sinha [17], for instance.

The remainder of this work is organized as follows. Section 2 presents
standard material on stochastic games, including the discounted opti-
mality criteria and the definition of a Nash equilibrium. Sections 3 and
4 are devoted to proving the two main results, Theorems 3.1 and 4.1
respectively, that is, the existence of Nash equilibria for the games men-
tioned in the first paragraph. An appendix is included with some useful
facts needed in the proofs of Theorems 3.1 and 4.1.

2 The stochastic game model

In this section we introduce the N −person stochastic game model. We
start with the following remark on terminology and notation (for further
details see Bertsekas and Shreve [4], chapter 7).

Remark 2.1 a) A Borel subset X of a complete and separable metric
space is called a Borel space, and its Borel σ−algebra is denoted by
B(X). A Borel subset of a Borel space is itself a Borel space.
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b) Let X and Y be Borel spaces. A stochastic kernel on X given Y ,
is a function P (· | ·) such that

b.1) P (· | y) is a probability measure on X for each fixed y ∈ Y , and

b.2) P (D | ·) is a measurable function on Y for each fixed D ∈ B(X).

c) The set of all stochastic kernels on X given Y is denoted by
P(X | Y ). Moreover, P(X) denotes the set of probability measures on
X.

Definition 2.2 A stochastic game model is described by

(1) GM := {N , S, (Ai,Φi, ri)i∈N , Q, T} ,

where:

(1) N = {1, ..., N} is the finite set of players.

(2) S is the state space, a Borel space.

(3) Each player i ∈ N is characterized by three objects (Ai,Φi, ri),
where:

(a) Ai, a Borel space, is the action space of player i. Let A =
A1 × ...×AN and denote by a a generic element of A.

(b) Φi, a multifunction from S to Ai, defines for each s ∈ S
the set Φi(s) of feasible actions for player i at state s. Let Φ(s) =
Φ1(s)× ...× ΦN (s) and K = {(s,a) : s ∈ S,a ∈ Φ(s)} .

(c) ri, a bounded measurable function from K to R, specifies (for
each state s and action a ∈ Φ(s) taken by the players at s) a reward
ri(s,a) for player i.

(4) Q, a stochastic kernel in P(S | K), specifies the game transition
law.

(5) T ∈ {0, 1, 2, ...}∪ ∞ is the horizon of the game.

If T = 1, the game is static, and it is denoted by

{N , S, (Ai,Φi, ri)i∈N } .

The game is played as follows. At each time t = 0, 1, ..., each player
observes the current state s ∈ S of the system, and, independently of
the other players, chooses an action ai ∈ Φi(s). Then each player i ∈ N
obtains a reward ri(s,a), and the system moves to a new state according
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to the probability distribution Q(· | s,a). The objective of each player
is to win as much as possible.

Histories. A t-history of the game is a complete description of
the evolution of the game up to the beginning of period t. Thus, a
t-history specifies the state sr that occurred in each previous period
r ∈ {0, 1, ..., t− 1} , the actions ar = (a1,r, ..., aN,r) taken by the players
in those periods (ai,r denotes de action taken by player i at period
r), and the state st in the period t. Let Ht be the set of all possible
t−histories, with ht denoting a typical element of Ht, i.e.

(2) ht = (s0,a0, s1,a1, ..., st−1,at−1, st) with ar ∈ Φ(sr).

Note that H0 = S and Ht = K ×Ht−1 for t = 1, 2, ....

Strategies. A strategy πi for player i is a vector {πit}T−1
t=0 (or

sequence if T = ∞) of stochastic kernels πit ∈ P(Ai | Ht), where for each
t and each t−history ht up to t, πit specifies the action πit(ht) ∈ P(Ai)
such that

πit(Φi(st) | ht) = 1 ∀ht ∈ Ht, t = 0, 1, ....

A strategy is also called a mixed or randomized strategy, which means
that the player chooses an action in a random manner. The set of
mixed strategies includes the pure strategies, when the player chooses
the actions in a deterministic way.

Let Πi denote the set of all strategies for player i, and let Π: =
Π1 × ... × ΠN . A generic element of Π is denoted by π, and it is said
to be a multistrategy. A strategy πi = {πit}T−1

t=0 for player i is called
Markov if πit ∈ P(Ai | S) for each t = 0, 1, ..., T − 1, meaning that
each πit depends only on the current state st of the system. The set
of all Markov strategies of player i will be denoted ΠiM . A Markov
strategy πi = {πit}T−1

t=0 is said to be stationary if πit = πi0 for each
t = 0, 1, ..., T − 1, where πi0 ∈ P(Ai | S). We denote by ΠiS the set of
all stationary strategies of player i. We have

ΠiS ⊂ ΠiM ⊂ Πi.

In a similar manner

ΠS ⊂ ΠM ⊂ Π,
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where ΠS := Π1S × ... × ΠNS is the set of stationary multistrategies,
and ΠM := Π1M × ...×ΠNM is the set of Markov multistrategies.

Optimality criteria. Let δ be a fixed number in (0, 1), and define
the δ−discounted expected payoff function for player i as

(3) Ji,δ(s, π) := Eπ
s

[ ∞∑
t=0

δtri(st,at)

]
for each multistrategy π and each initial state s. It represents the ex-
pected present value of the rewards of player i under the multistrategy
π. The number δ is called a ”discount factor”.

Definition 2.3 For n = 1, 2, ..., we define the T -stage expected dis-
counted payoff function for player i as

Ji,δ,T (s, π) := Eπ
s

[
T−1∑
t=0

δtri(st,at)

]
,

where 0 < δ < 1 is a discount factor. If T = ∞, we write Ji,δ,T (s, π) as
Ji,δ(s, π); see (3).

Now we are in position to define a Nash equilibrium. As usual in
the literature, the vector (πi, π−i) will signify the multistrategy π with
its strategy πi replaced by πi.

Definition 2.4 A multistrategy π is a Nash Equilibrium of the T -
stage game GM if

Ji,δ,T (s, π) ≥ Ji,δ,T (s, (πi, π−i)) for all s ∈ S, πi ∈ Πi, i ∈ N .

Before proceeding we give some notation. First note that
∫
A means∫

A1
...
∫
AN

and that
∑

A means
∑

A1
...
∑

AN
. Let ν : K → R be a

measurable function, π0 ∈ P(Φ1(s))× ...×P(ΦN (s)) and πi0 ∈ P(Φi(s))
for some s ∈ S and some i ∈ N , then

ν(s, π0) :=

∫
A
ν(s,a)π0(da)

(4) =

∫
A
ν(s,a)π1,0(da1)...πi0(dai)...πN,0(daN )
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and

(5) ν(s, (πi0, π−i0)) :=

∫
A
ν(s,a)π1,0(da1)...πi0(dai)...πN,0(daN )

In particular

ri(s, π0) :=

∫
A
ri(s,a)π0(da)

=

∫
A
ri(s,a)π1,0(da1)...πi0(dai)...πN,0(daN ),

ri(s, (πi0, π−i0)) :=

∫
A
ri(s,a)π1,0(da1)...πi0(dai)...πN,0(daN ),

Q(· | s, π0) :=
∫
A
Q(· | s,a)π0(da)

=

∫
A
Q(· | s,a)π1,0(da1)...πi0(dai)...πN,0(daN )

and

Q(· | s, (πi0, π−i0)) :=

∫
A
Q(· | s,a)π1,0(da1)...πi0(dai)...πN,0(daN ).

Remark 2.5 If A1, ..., AN (and hence A) are finite or countable sets,
then the integrals are replaced with summations.

The next two sections are devoted to proving the existence of a Nash
equilibrium in games with

1) finite state and action spaces, and infinite horizon (Theorem 3.1);
and

2) games with Borel state space, compact action sets, and finite
horizon (Theorem 4.1).

The proofs are based on a standard procedure; see, for instance,
Dutta and Sundaram [7]. The procedure is to introduce a multifunction
which is a K−mapping (see Definition 5.5) on a nonempty compact con-
vex set. Then we use Kakutani´s or Glicksberg´s fixed-point theorem
to ensure the existence of a fixed point (Definition 5.6), which yields a
Nash equilibrium.
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3 The equilibrium existence in finite spaces

Theorem 3.1 Suppose S and Ai are finite spaces for each i, and T =
∞. Then the stochastic game model GM has a Nash equilibrium in
stationary strategies.

Proof: As was already mentioned, the idea is to prove the existence of
a fixed point of a certain multifunction; this fixed point is an equilibrium.
To prove the existence of a fixed point of the multifunction, we use
Kakutani´s theorem (Theorem 5.7).

The proof is organized as follows:
In Step 0 we define the multifunction. In Step 1 we prove that such

a multifunction is defined on a nonempty compact convex subset of Rn.
In Step 2 we prove that the multifunction maps points to a nonempty
convex set, and, finally, in Step 3, we prove that the multifunction is
u.s.c. (see Definition 5.5). The last two steps prove that the multifunc-
tion is a K−mapping (Definition 5.5). Since Steps 1, 2 and 3 verify the
hypotheses of Kakutani´s theorem, a fixed point exists.

Step 0: Definition of the multifunction BR.
Let π := (π1, ..., πn) ∈ ΠS , and letBRi(π) be the set of best responses

of player i to π, that is

BRi(π) :=

{
πi ∈ ΠiS : Ji,δ(s, (πi, π−i)) = sup

α∈ΠiS

Ji,δ(s, (α, π−i)) ∀s ∈ S

}
.

Let BR = BR1 × ....×BRN . Note that BR : ΠS ↠ ΠS .
Step1: The set ΠS is a nonempty compact convex subset of a

normed space.
Because Ai is a finite set, the set P(Ai) is simply the positive unit

simplex of dimension |Ai| − 1 (|·| means the cardinality). Note that
P(Ai) ⊂ R|Ai|−1. Since S is also a finite set, the |S| −fold P(Ai | S) =
P(Ai)

|S|, the Cartesian product of this simplex, is a compact convex
subset of a finite-dimensional Euclidean space. Now every stationary
strategy for player i can be associated in the obvious way with a unique
sequence of elements of

I |Φ(s1)|−1 × ...× I|Φ(s|S|)|−1,

where I := [0, 1] . Hence ΠiS is a nonempty compact convex subset of
Rn for some n, and so is ΠS = Π1S × ...×ΠNS .

Step 2: BR(π) is a nonempty convex subset of ΠS for each π ∈ ΠS .
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Given π ∈ ΠS , the best-response problem faced by player i (that is,
finding BRi(·)) is a discounted Markov decision problem

MDP :=
{
S,Ai,Φi, r

′
i, Q

′, T = ∞
}

where S is the state space and Ai is the action space. Furthermore, for
each s ∈ S, Φi(s) is the set of feasible actions in state s. The reward
function is

(6) r′i(s, ai) := ri(s, (ai, π−i))

Similarly, the transition law is

(7) Q′(s′ | s, ai) := Q(s′ | s, (ai, π−i))

By Remark 2.5, (6) and (7) represent finite sums. It is well known that
there exists a nonempty set BRi (π) of optimal stationary strategies in
response to π; see Filar and Vrieze [10], Theorem 2.3.1, for example.

Denote the value function of the MDP as J∗
i (s). To prove that

BRi(π) is convex, let α, β ∈ BRi(π) and 0 ≤ λ ≤ 1; then we want to
prove that µ := λα+ (1− λ)β is in BRi(π).

Since α, β ∈ BRi(π), we have that the Bellman equations

(8) J∗
i (s) = r′i(s, α) + δ

∫
S
J∗
i (s

′)Q(ds′ | s, α)

and

(9) J∗
i (s) = r′i(s, β) + δ

∫
S
J∗
i (s

′)Q(ds′ | s, β)

hold. Therefore, by (8) and (9),

r′i(s, µ) + δ

∫
S
J∗
i (s

′)Q(ds′ | s, µ),

= λ

(
r′i(s, α) + δ

∫
S
J∗
i (s

′)Q(ds′ | s, α)
)

+(1− λ)

(
r′i(s, β) + δ

∫
S
J∗
i (s

′)Q(ds′ | s, β)
)

= λJ∗
i (s) + (1− λ)J∗

i (s) = J∗
i (s).

That is

r′i(s, µ) + δ

∫
S
J∗
i (s

′)Q(ds′ | s, µ) = J∗
i (s),
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and so µ is in BRi(π). This shows that BR (π) is a nonempty convex
set for each π ∈ ΠS .

Step 3: BR is an u.s.c. multifunction on ΠS , and BR (π) is compact
for each π ∈ ΠS .

This will be established if we show that it holds for each BRi. So
fix i. Suppose that

πn := (π1n, ..., πNn) → π := (π1, ..., πN ),

and αin ∈ BRi(πn) is such that αin → αi ∈ ΠiS . We are going to show
that αi ∈ BRi(π).

Let J∗
i,n(s) denote the value function of the player i in a best response

to πn. Since δ < 1, the sequence J∗
i,n(s) is uniformly bounded by

M = (1− δ)−1max {|ri(s,a)| : (s,a) ∈ S ×A} .

So, because J∗
i,n(s) ∈ [−M,M ] for each s ∈ S and for each n, J∗

i,n

converges pointwise (perhaps through a subsequence) to a limit J∗
i .

On the other hand, we know that J∗
i,n(s) satisfies the Bellman equa-

tion

(10) J∗
i,n(s) = ri(s, (αin, π−i)) + δ

∫
S
J∗
i,n(s

′)Q (dś | s, (αin, π−i)) ,

for each n and s. Moreover, for any β ∈ P(Φi(s)), we have

(11) J∗
i,n(s) ≥ ri(s, (β, π−i)) + δ

∫
S
J∗
i,n(s

′)Q (dś | s, (β, π−i)) .

Since the integrals are finite sums (recall our Remark 2.5), when
n → ∞ we have

ri(s, (αin, π−i)) → ri(s, (αi, π−i)),∫
S
J∗
i,n(s

′)Q (dś | s, (αin, π−i)) →
∫
S
J∗
i (s

′)Q (dś | s, (αi, π−i)) ,

and, similarly,∫
S
J∗
i,n(s

′)Q (dś | s, (β, π−i)) →
∫
S
J∗
i (s

′)Q (dś | s, (β, π−i)) .

Hence, letting n → ∞ in (10) and (11) we get

J∗
i (s) = ri(s, (αi, π−i, )) + δ

∫
S
J∗
i (s

′)Q (dś | s, (αi, π−i))
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and

J∗
i (s) ≥ ri(s, (β, π−i)) + δ

∫
S
J∗
i (s

′)Q (dś | s, (β, π−i)) ,

respectively. These expressions establish precisely that J∗
i (s) is the value

function in a best response of i to π, and that αi is a stationary best-
response, that is, αi ∈ BRi (π) . Thus, BRi is an u.s.c. multifunction
for each i, and so is BR.

Also note that the u.s.c. shows that BRi (π) is a closed set in ΠiS .
Thus, since ΠiS is compact, BRi (π) is also compact.

Summarizing, we have that for each π, BR (π) is a nonempty com-
pact convex subset, and thatBR(·) is u.s.c.; henceBR(·) is aK−mapping.
An appeal to Kakutani´s fixed-point theorem (Theorem 5.7) yields the
existence of π∗ ∈ ΠS such that π∗ ∈ BR (π∗) , completing the proof of
Theorem 3.1. □

4 The equilibrium existence in Borel spaces

Consider the stochastic game model GM in (1) with the following
assumptions.

Assumption 0 S and Ai are Borel spaces, and Ai is compact for
each i.

Assumption 1 For all i, Φi : S ↠ Ai is a compact–valued multi-
function on S.

Assumption 2 For all i, ri is bounded and jointly measurable in
(s,a), and it is continuous in a for each fixed s ∈ S.

Assumption 3 For each Borel subset B of S, Q(B | s,a) is jointly
measurable in (s,a), and setwise continuous in a for each fixed s; that
is, if an → a then Q(B | s,an) converges to Q(B | s,a).

Theorem 4.1 Suppose the assumptions 0,1,2,3 hold and T is finite.
Then the stochastic game model GM has a Nash equilibrium in Marko-
vian strategies (possibly nonstationary).

The result is an easy consequence of the following lemmata. The first
lemma essentially shows that the theorem is true for T = 1; the com-
bination of the lemmata, together with a selection theorem establishes
the result for general T < ∞ through an induction argument.
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Lemma 4.2 For some fixed s ∈ S, consider a N -player stochastic
game model in which the action sets are the compact metric spaces
Φ1(s) , ..., ΦN (s) and the reward functions are r1(s, ·), ..., rN (s, ·) de-
fined on Φ(s) = Φ1(s) × ... × ΦN (s). If ri(s, ·) is continuous on Φ(s)
for each i ∈ N , the stochastic game model {N , {s} , (Φi(s), ri)i∈N }
admits a Nash equilibrium. That is, there exist π∗ := (π∗

1, ..., π
∗
N ) ∈

P(Φ1(s))× ...× P(ΦN (s)) such that, for each i,

ri(s, π
∗) ≥ ri(s, (πi, π

∗
−i)) ∀πi ∈ P(Φi(s)).

In the following proof we consider

Π(s) := P(Φ1(s))× ...× P(ΦN (s)).

Proof: The idea is to prove the existence of a fixed point of a certain
multifunction; this fixed point is an equilibrium. To prove the existence
of such a fixed point, we use Glicksberg´s theorem (Theorem 5.8).

The proof is organized as follows: In Step 0 we define a multifunction
BR. In Step 1 we prove that BR is defined on a nonempty compact
convex subset of a locally convex Hausdorff space. In Step 2 and Step
3 we prove that BR is a K−mapping (Definition 5.5). By the Steps 1,
2 and 3 and Glicksberg’s theorem, a fixed point exists.

Step 0: We define the multifunction BR as in the Step 0 of the
proof of the Theorem 3.1.

For each π := (π1, ..., πN ) ∈ Π(s) , let BRi(π) be the set of best
responses of player i to π, that is

BRi(π) :=

{
πi ∈ P(Φi(s)) : ri(s, (πi, π−i)) = sup

µi∈P(Φi(s))
ri(s, (µi, π−i))

}
.

Let BR := BR1 × ....×BRN . Note that BR : Π(s) ↠ Π(s).
Step1: Π(s) is a nonempty compact convex space.
Convexity is obvious. Morever, by Theorem 5.4, P(Φi(s)) equipped

with the topology of weak convergence is a compact metric space; hence
so is Π(s).

Step 2: BR(π) is a nonempty convex set for each π ∈ Π(s).
Given π := (π1, ..., πN ) ∈ Π(s), the best-response problem faced by

player i is a discounted Markov decision problem MDP := {{s} ,Φi, r
′
i}

where {s} is the state space, Φi(s) is the action space, and

(12) r′i(s, ai) := ri(s, (ai, π−i)),
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which is continuous in ai. It is well known that the set BRi(π) is
nonempty (see Puterman [18], Theorem 6.2.10).

Let r∗i (s) be the value function of theMDP and let µ1, µ2 ∈ BRi(π),
0 ≤ λ ≤ 1 and µ = λµ1+(1−λ)µ2 (i.e. µ(B) = λµ1(B)+ (1−λ)µ2(B)
for each B ∈ B(Φi(s))). Then

(13) r
′
i(s, µ) = λr

′
i(s, µ1) + (1− λ)r

′
i(s, µ2).

Since µ1, µ2 ∈ BRi(π), the expression (13) is the same as

λr∗i (s) + (1− λ)r∗i (s) = r∗i (s),

i.e.
r
′
i(s, µ) = r∗i (s).

Therefore, µ ∈ BRi(π), and so BRi(π) is convex.
Step 3: BR is u.s.c. and BR(π) is compact for each π ∈ Π(s).
Let πn := (π1n, ..., πNn) ∈ BR(π) such that

(14) πn → π := (π1, ..., πN )

in the weak topology, and αin ∈ BRi(πn) with

(15) αin → αi ∈ P(Φi(s)).

We are going to show that αi ∈ BRi(π). With this in mind, note that
αin ∈ BRi(πn) gives

(16) ri(s, (αin, π−in)) ≥ ri(s, (β, π−in)) ∀β ∈ P(Φi(s)) and n.

Since ri(s,a) is continuous in a, by Corollary 5.3, as n → ∞ (14) and
(15) give

ri(s, (αin, π−in)) → ri(s, (αi, π−i))

and
ri(s, (β, π−in)) → ri(s, (β, π−i)) ∀β ∈ P(Φi(s)).

Then, as n → ∞, the inequality (16) yields

ri(s, (αi, π−i)) ≥ ri(s, (β, π−i)) ∀β ∈ P(Φi(s));

hence αi ∈ BRi(π), which shows that BRi is u.s.c.
The u.s.c. proves that BRi (π) is a closed set in P(Φi(s)). Thus,

since P(Φi(s)) is compact, BRi (π) is compact.
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We have that for each π, BR (π) is a compact convex nonempty set
and BR(·) is u.s.c., so BR(·) is a K−mapping. Finally, Glicksberg´s
fixed-point theorem implies the existence of π∗ ∈ Π(s) such that π∗ ∈
BR (π∗) , completing the proof of Lemma 4.2, because π∗ is a Nash
equilibrium. □

Lemma 4.3 For i = 1, ..., N, let vi : S → RN be a bounded measurable
function. For each s ∈ S, i ∈ N , a ∈ Φ1(s)× ...× ΦN (s), define

Hi(s,a) := ri(s,a) + δ

∫
S
vi(s

′)Q(ds′ | s,a).

Then the stochastic game model {N , S, (Ai,Φi(s),Hi(s, ·))i∈N} admits a
Nash equilibrium. That is, there exists π∗ := (π∗

1, ..., π
∗
N ) ∈ P(Φ1(s))×

...×P(ΦN (s)) such that, for each i ∈ N ,

Hi(s, π
∗) ≥ Hi(s, (πi, π

∗
−i)) ∀πi ∈ P(Φi(s)), s ∈ S.

In the following proof we consider

Π := P(A1)× ...× P(AN )

and
Π(s) := P(Φ1(s))× ...× P(ΦN (s)).

Proof: The idea is, using Lemma 4.2, to prove the existence of Nash
equilibria for each s ∈ S (Step 0), and then use a selection theorem to
get a Nash equilibrium (Step 1).

Step 0: It is easy to show that thet continuity condition in As-
sumption 3 is equivalent to the following: If an → a, then∫

S
f(s′)Q(ds′ | s,an) →

∫
S
f(s′)Q(ds′ | s,a)

for each bounded measurable function f . Then

Hi(s,an) → Hi(s,a)

if an → a. This gives that Hi(s,a) is continuous in a. By Lemma 4.2,
for each s ∈ S the stochastic game model

{N , {s} , (Φi(s),Hi(s, ·))i∈N }

has a Nash equilibrium.
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Since it is possible to find equilibria for each s ∈ S , consider the
multifunction Θ : S ↠ Π which assigns the set of equilibria points to
each s ∈ S, i.e.

(17) Θ(s) := {π∗ ∈ Π(s) : Hi(s, π
∗) ≥ Hi(s, (πi, π

∗
−i))

∀ πi ∈ P(Φi(s)), i = 1, ..., N}

or equivalently

(18) Θ(s) := {π∗ ∈ Π(s) : Hi(s, π
∗) = sup

πi∈P(Φi(s))
Hi(s, (πi, π

∗
−i)),

i = 1, ..., N}

Before proceeding with the next step, we make the following remark:
without loss of generality we may assume that

ri(s,a) = θ − 1 if a /∈ Φ(s) for each i ∈ N ,

where θ := infi,s,a ri(s,a). So, if π
∗ := (π∗

1, ..., π
∗
N ) ∈ Θ(s) then

(19) ri(s, π
∗) ≥ ri(s, (µi, π

∗
−i))∀µi ∈ P(Ai),

and, moreover, if θ = min(infi,s,a ri(s,a), infi,s vi(s)), then

(20) Hi(s, π
∗) ≥ Hi(s, (µi, π

∗
−i))∀µi ∈ P(Ai),

even if support(µi)∩Φi(s)
c ̸= ∅. So Hi(s, π) is well defined for every

π ∈ Π.

We use this remark in the next step.

Step 1: There is a measurable selector for Θ, i.e. a measurable
function ξ : S → Π, such that ξ(s) ∈ Θ(s) for each s ∈ S.

We want to use Theorem 5.11to show the existence of a measurable
selection. To use such theorem, we need to prove that

(i) Π satisfies the property S (Remark 5.10),

(ii) Θ(s) is compact for each s ∈ S, and

(iii) Θ−1(F ) is a Borel set in S for every closed set F in Π.

Since Π is separable metric space (by Theorem 5.4), it is easy to see
(i) holds; it suffices to take a countable dense subset of Π and the family
of closed balls with radius a rational number and center an element of
the countable dense set.
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In order to prove (ii), let {π∗
n} ⊂ Θ(s) (where π∗

n := (π∗
1n, ..., π

∗
Nn))

be such that π∗
n → π∗. Since π∗

n ∈ Θ(s), for each n we have

(21) Hi(s, π
∗
n) ≥ Hi(s, (µi, π

∗
−in)) ∀µi ∈ P(Ai),

and, therefore, by Corollary 5.3, as n → ∞ we obtain

(22) Hi(s, π
∗) ≥ Hi(s, (µi, π

∗
−i)) ∀µi ∈ P(Ai).

It follows that π∗ ∈ Θ(s), and so Θ(s) is a closed subset of the compact
space Π(s). Hence Θ is a compact-valued multifunction.

To prove (iii), we use (18).

First note thatHi(·, ·) and supπi∈P(Φi(s))Hi(·, (πi, ·)) are jointly mea-
surable, then the function

(23) F : S ×Π → RN ,

defined by

F (s, π) :=

(
Hi(s, π)− sup

µi∈P(Φi(s))
Hi(s, (µi, π−i))

)
i=1,...,N

is jointly measurable.

Then, the set

F−1((0, ..., 0)), with (0, ..., 0) ∈ RN

is a Borel set. Finally, note that F−1((0, ..., 0)) = Gr(Θ); hence, by
Theorem 5.9, (iii) holds.

Since the assumptions of Theorem 5.11 hold, a measurable selector
for Θ exists. □

Proof: [Proof of Theorem 4.1] Consider T = 1. By assumption, ri(s, ·)
is continuous on Φ(s) for each s, and ri is measurable on S ×A. Thus,
by Lemma 4.3 , there exists a strategy π :=(π1, ..., πN ) ∈ Π such that
for each s ∈ S,

ri(s, π) ≥ ri(s, (β, π−i)) ∀β ∈ P(Φi(s)) and i ∈ N .

Denote π by π1, and let νi(s) = ri(s, π1) (i = 1, ..., N). Then π1 is
a Nash equilibrium of the one period game {N , S, (Ai,Φi, ri)}, with νi
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(i = 1, ..., N) the corresponding equilibrium payoffs. Now, let Hi(s,a)
as in Lemma 4.3, then the stochastic game

{N , S, (Ai,Φi(s),Hi(s, ·))i∈N }

has an equilibrium. Denote π2 the equilibrium of this game, then
(π1, π2) is the equilibrium of

{N , S, (Ai,Φi, ri)i∈N , Q, 2} .

We now proceed by induction. Suppose the existence of a Nash
equilibrium strategy (πT−1, ..., π1) of the stochastic game

{N , S, (Ai,Φi, ri)i∈N , Q, T − 1}

and let νi(s) be the corresponding discounted equilibrium payoff of
player i (i = 1, ..., N) and initial state s. By Lemma 4.3, the game

{N , S, (Ai,Φi(s),Hi(s, ·))i∈N }

admits an equilibrium πT ∈ Π. It follows that (πT , πT−1, ..., π1) specifies
an equilibrium of the stochastic game {N , S, (Ai,Φi, ri)i∈N , Q, T}, and
that the discounted equilibrium payoff is given by

νi(s, πT ) =

∫
A
Hi(s,a)πT (da | s), i = 1, ..., N.

Note that if π = (πT , πT−1, ..., π1), then

νi(s, πT ) = Ji,δ,T (s, π).

Also note that π ∈ ΠM . This completes the proof. □

5 Appendix

In this section we summarize some facts used in the proof of Theorems
3.1 and 4.1.

The topology of weak convergence

Definition 5.1 Let P(X) be the set of all probability measures on
(X,B(X)) where X is a general metric space. The topology of weak
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convergence is the topology in the space P(X) which has the following
basic neighborhoods of any element µ ∈ P(X),

Uϵ(µ, {f1, ..., fk}) :=
{
λ ∈ P(X) :

∣∣∣∣∫
S
fidλ−

∫
S
fidµ

∣∣∣∣ < ϵ, i = 1, ..., k

}
where ε is positive and f1, ..., fk are elements of C(X) (the space of
continuous bounded functions on X).

The following are some useful results.

Lemma 5.2 Let (X, d) be a metric space. Let {µn} ⊂ P(X) and µ ∈
P(X). Then µn → µ in the topology of weak convergence if and only if∫
fdµn →

∫
fdµ for all f ∈ C(X).

For a proof of Lemma 10 see, for instance, Proposition 7.21 in Bert-
sekas and Shreve [10].

Corollary 5.3 Let X1, ..., XN be metric spaces. Let {µin} be a sequence
in P(Xi) and µi ∈ P(Xi) for i = 1, ..., N. Each P(Xi) has the topology
of weak convergence. If

µin → µi for i = 1, ..., N,

then ∫
fdµ1n...dµNn →

∫
fdµ1...dµN ∀f ∈ C(X1 × ...×XN ).

Next, we have a result used in sections 3 and 4; for a proof see
Proposition 7.22 in Bertsekas and Shreve [4].

Theorem 5.4 If (X, d) is a compact separable metric space, then the
topology of weak convergence in P(X) is compact, separable and metriz-
able.

Kakutani´s Theorem

If each point x of a space X is mapped into a nonempty set T (x)
of a space Y , we call T a set-valued mapping, also known as a multi-
function or correspondence. We write T : X ↠ Y to specify that it is a
multifunction.
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Definition 5.5 Let T be a multifunction from a topological space X
to a topological space Y. We say that T is a K−mapping of X into Y if

i) for each x in X, T (x) ⊂ Y is a compact convex set; and
ii) the graph of T, which defined as

Gr(T ) = {(x, y) : y ∈ T (x)} ,

is closed in X × Y.
If i) holds, then the condition ii) is equivalent to the upper semicon-

tinuity (u.s.c.) condition, i.e. if xn → x in X, yn ∈ T (xn) and yn → y,
then y ∈ T (x).

Definition 5.6 A fixed point for a multifunction T : X ↠ X is a point
x such that x ∈ T (x).

Theorem 5.7 (Kakutani theorem) If T : X ↠ X is a K−mapping,
where X is a nonempty compact convex subset of Rm, then T has a fixed
point.

See Smart [23], Chap. 9 for further details. Kakutani´s theorem
was extended to Banach spaces by Bohnenblust and Karlin [5], and to
locally convex spaces by Ky Fan [9] and Glicksberg [11].

Theorem 5.8 (Glicksberg theorem) Let T : X ↠ X be a K-mapping
where X is a nonempty compact convex subset of a locally convex Haus-
dorff space. Then T has a fixed point.

The proof is in Corollary 16.51 in Aliprantis and Border [1].
Correspondence with measurable graph
Let T : X ↠ Y be a multifunction and A ⊂ Y , then the lower

inverse T−1 is defined by

T−1(A) := {x ∈ X : T (x) ∩A ̸= ∅} .

Theorem 5.9 Let X and Y be nonempty Borel spaces. Let T : X ↠ Y
be a compact-valued multifunction, then the following statements are
equivalent:

a) Gr(T ) is a Borel subset of X × Y ;
b) T−1(F ) is a Borel subset of X for every closed set F ⊂ Y.

The proof is in Aliprantis and Border [1] Theorem 14.84 (see Propo-
sition D.4 in Hernandez-Lerma and Lasserre [13] for reference).
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A selection theorem

Remark 5.10 A topological space X is said to satisfy condition S if
there is a countable family {Fn} of closed sets which separates the points
of X, that is, if x and y are any distinct points of X, there is a set Fn

which contains one of them but not both.

Condition S is trivially satisfied when X is a Borel space.

Theorem 5.11 (Selection theorem) Let (S,A) be a measurable space,
and X be a topological space which satisfies condition S. If Θ : S ↠ X
is a multifunction such that Θ(s) is a nonempty compact set of X and
Θ−1(F ) ∈ A for every closed set F in X, then there is a measur-
able selector ξ for Θ (that is, a measurable function from S to X with
ξ(s) ∈ Θ(s) for each s ∈ S).

See Leese [14] for the proof. For further details see Wagner [26].
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