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Approximation on arcs and dendrites going to

infinity in Cn (Extended version) ∗

Paul M. Gauthier 1 E. S. Zeron 2

Abstract

The Stone-Weierstrass approximation theorem is extended to cer-
tain unbounded sets in Cn. In particular, on arcs which are of
locally finite length and are going to infinity, each continuous func-
tion can be approximated by entire functions.
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1 Introduction

This work is the original version of the paper: Approximation on arcs
and dendrites going to infinity in Cn [14]. This version could not be
published in its extended form because of size limitations. However, we
wish to publish it because it contains a sketch of the proof of Alexander-
Stolzenberg’s theorem, which we announced in [14], and several lemmas
on tangential approximation by polynomial and meromorphic functions
which could not be included on [14]. For example, we include a not-so-
well-known result of Arakelian in Proposition 3.1.

A famous theorem of Torsten Carleman [7] asserts that for each
continuous function f on the real line R and for each positive continuous
function ϵ on R, there exists an entire function g on C such that

|f(x)− g(x)| < ϵ(x), for all x ∈ R.
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Carleman’s theorem was extended to Cn by Herbert Alexander [3] who
replaced the line R by a piecewise smooth arc going to infinity in Cn

and by Stephen Scheinberg [20] who replaced the real line R by the real
part Rn of Cn = Rn + iRn. In the present work, we approximate on
closed subsets of area zero in Cn and extend Alexander’s theorem to
closed connected subsets Γ ⊂ Cn which are of locally finite length and
contain no closed curves.

It would be a quite difficult task to give a complete description of
all the results before the words of Carleman, Alexander and Scheinberg.
Nevertheless, we have added a special section (§4) at the end of this
paper, trying to compile the historic results which have drove us to the
theorems we are proving in this paper.

Let X be a subset of Cn. X is a continuum if it is a compact
connected set. The length and area of X are the Hausdorff 1-measure
and 2-measure of X respectively. The set X is said to be of finite length
at a point x ∈ X if this point has a neighbourhood in X of finite length,
and X is said to be of locally finite length if X is of finite length at each
of its points. Notice that if X is a set of locally finite length, then each
compact subset of X has finite length (though X itself need not be of
finite length). We denote the polynomial hull of a compact set X by X̂.
The algebra of continuous functions defined on X is denoted by C(X).
Finally, the definition and some properties of the first Čech cohomology
group with integer coefficients Ȟ1(X) are presented in [10] and [23].

2 The Alexander-Stolzenberg theorem

John Wermer laid the foundations of approximation on curves in Cn

and prepared the way for a fundamental result of Gabriel Stolzenberg
[21] concerning hulls and smooth curves (for history see [22]). In [2],
Alexander comments that Stolzenberg’s theorem can be improved to
consider continua of finite length instead of smooth curves. We shall
refer to the following version as the Alexander-Stolzenberg Theorem.

Theorem 2.1 (Alexander-Stolzenberg) Let X and Y be two com-
pact subsets of Cn, with X polynomially convex and Y \X of zero area.
Then,

A Every continuous function on X∪Y which is uniformly approximable
on X by polynomials is uniformly approximable on X ∪ Y by ra-
tional functions.
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Suppose, moreover, there exists a continuum Υ ⊂ Cn such that Υ \ X
has locally finite length and Y ⊂ (X ∪Υ). Then:

B X̂ ∪ Y \ (X ∪ Y ) is (if non-empty) a pure one-dimensional analytic
subset of Cn \ (X ∪ Y ).

C If the map Ȟ1(X ∪Y ) → Ȟ1(X) induced by X ⊂ X ∪Y is injective,
then X ∪ Y is polynomially convex.

Notice that in this Alexander-Stolzenberg Theorem, locally finite
length is required only for parts B and C. Moreover, the set Υ \X may
be of infinity length; we only need it to have locally finite length. On the
other hand, the main ideas in the proof of pointsA andC are essentially
contained in [22, pp. 187-188]). However, we need to introduce several
changes due to the new hypotheses.

2.1 Proof of part A of Theorem 2.1

We shall prove part A by considering two cases, depending on whether
Y is itself of zero area or not. We only need to cite Stolzenberg’s ideas
when Y has area zero (we obviously replace K by Y in the original
paper).

“By the theory of antisymmetric sets (see[15]) it suffices to prove
that if p ∈ Y \X then for each q ̸= p in Y ∪X there is a real-valued f ,
with f(q) ̸= f(p), which is uniformly approximable by rational functions
on Y ∪X.”

“Since X is polynomially convex there is a polynomial g such that
g(p) = 1 and ℜ(g) ≤ 0 on X ∪ {q}. Let c be a real-valued continuous
function on g(Y ∪ X) which is identically 0 for ℜ(ζ) ≤ 1

2 and with
c(1) = 1. The following argument of Wermer shows that c is a uniform
limit of rational functions on g(Y ∪X).”

“Namely, it suffices to prove that any measure µ on g(Y ∪X) which
annihilates all uniform limits of rational functions also annihilates c.
This will be done if we can show that any such µ is supported on {ℜ(ζ) ≤
1
2}. But Y has area zero and g is a polynomial, so g(Y ) has area
zero and, hence,

∫
(z − ζ)−1dµ(z) = 0 for almost all ζ with ℜ(ζ) > 1

2 .
Therefore, by Fubini’s Theorem, for almost all open disks ∆ ⊂ {ℜ(ζ) >
1
2}, if ∂=the boundary of ∆ then

0 =
−1

2πi

∫
∂
dζ

∫
dµ(z)

z − ζ
=
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=

∫
dµ(z)

2πi

∫
∂

dζ

ζ − z
=

∫
χ∆(z)dµ(z),

where χ∆ is the characteristic function of ∆. It follows that µ = 0 on
{ℜ(ζ) > 1

2}.”
“Hence c is a uniform limit of rational functions on g(Y ∪X) and,

hence, f = c ◦ g is a continuous real-valued function on Y ∪ X, with
f(q) ̸= f(p), which is uniform limit of rational functions.”

This settles part A when Y has area zero.

Now suppose we merely know that Y \ X has zero area. Let f be
a continuous function on X ∪ Y which is uniformly approximable on X
by polynomials and let ϵ > 0. There exists a polynomial p such that
|f−p| < ϵ/2 onX. SinceX is polynomially convex, it has a fundamental
system of neighbourhoods which are polynomial polyhedra [29, Lemma
7.4]. From the continuity of f − p, it follows that |f − p| < ϵ/2 on some
polynomial polyhedron X̃ containing X in its interior. Extend p|

X̃
to a

continuous function p̃ on Y \X̃ so that |f− p̃| < ϵ/2 on X̃∪Y . It is easy
to see that the closure K of Y \ X̃ has area zero because K ⊂ Y \X,
and so X̃ ∪ Y can be written as the union of X̃ with a compact set of
area zero K; it follows from the first part of this proof that there is a
rational function h such that |p̃ − h| < ϵ/2 on X̃ ∪ Y . By the triangle
inequality, |f − h| < ϵ on X ∪ Y which concludes the proof of A.

2.2 Deduction of part C from part B in Theorem 2.1

Here we also need to replace Lemma 1 of [22, p. 188]) by the following
proposition.

Proposition 2.2 Let X and Y be two compact subsets of Cn, with X
rationally convex and Y \ X of zero area. Then, X ∪ Y is rationally
convex. If, moreover, X is polynomially convex, then given a point p in
the complement of X ∪ Y , there is a polynomial f such that f(p) = 0,
0 ̸∈ f(X ∪ Y ) and ℜf(z) < −1 for z ∈ X.

Proof: The set X has a fundamental system of neighbourhoods which
are rational polyhedra [21, p. 283] or [23]. Given a point p in the
complement of X ∪ Y , choose a compact rational polyhedron X̃ which
contains X in its interior, but p ̸∈ X̃. Along with X̃, the closure K
of Y \ X̃ is also rationally convex because it has zero area (notice that
K ⊂ Y \ X and see [10, p. 71] recalling that projections preserve the



Approximation on arcs going to infinity 5

zero area condition), so there are two polynomials g and h such that
0 ̸∈ g(K), 0 ̸∈ h(X̃) and g(p) = h(p) = 0.

The rational function (h/g) is smooth on K, and so (h/g)(K) has
zero area. Thus, we can find a complex number λ ̸∈ (h/g)(K) whose
absolute value |λ| is so small that the polynomial f = h − λg has no
zeros on X̃ ∪K. Since X ∪ Y ⊂ X̃ ∪K and f(p) = 0, it follows that
X ∪ Y is rationally convex.

If, in addition, X is polynomially convex, one has just to choose X̃
to be a compact polynomial polyhedron (see [21] or [29, Lemma 7.4])
and the polynomial h to satisfy ℜ(h) < −1 on X̃; and so, for sufficiently
small λ, ℜ(f) < −1 on X.

Now we can conclude the proof of point C by citing Stolzenberg’s
ideas.

“Consider any p ̸∈ Y ∪ X and choose an f as in Proposition 2.2.
Then f is a continuous invertible function on Y ∪X with a continuous
logarithm on X. But, for any T , Ȟ1(T ) is isomorphic to the group of
all continuous invertible complex-valued functions of T modulo those
with continuous logarithms. Therefore, since Ȟ1(Y ∪ X) → Ȟ1(X) is
injective, there is a continuous branch of log(f) on all of Y ∪X. However,

by part B, X̂ ∪ Y \(X∪Y ) is (if non-empty) a one-dimensional analytic
subset of Cn \ (Y ∪X); so by the argument principle (see, for instance

[21, p. 271]) f has no zeroes on X̂ ∪ Y \ (X ∪ Y ). Hence, any such p is

not in Ŷ ∪X, so Y ∪X is polynomially convex.”

2.3 Proof of part B of Theorem 2.1

This proof is implicitly contained in Alexander’s paper [2], but we need
to make several remarks.

Set Γ = X ∪ Y and suppose there is a point p ∈ Γ̂ \ Γ. From
Proposition 2.2, there is a polynomial f such that f(p) = 0, 0 ̸∈ f(Γ)
and ℜ(f) < −1 on X. Fix the compact set L = f(Γ), the closed
half-plane H = {ℜ(z) ≥ −1/2} and the open set Ω to be the connected
component of C\L which contains the origin. Alexander’s arguments [2]
can be slightly modified to show that Γ̂ ∩ f−1(Ω) is a one-dimensional
analytic subset of f−1(Ω). Notice that p ∈ f−1(Ω). Alexander uses
the hypothesis that the set L has finite length in the whole plane C.
However, his argument works even if we restrict the set L to have finite
length just in the half-plane H. Indeed, the intersection L ∩ H is the
polynomial image of the compact set Γ ∩ f−1(H) of finite length; recall
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that Γ ∩ f−1(H) = (Y \ X) ∩ f−1(H) has finite length because it is
compact and contained in the set Υ \ X of locally finite length. Now
we shall rewrite the preparatory lemmas of [2] with their respective
modifications.

Lemma 2.3 (Lemma 1 of [2]) Let X be a second-countable topologi-
cal space, Y a set, f : X → Y a function, σ a non-zero positive measure
on Y such that if V is open in X , then f(V ) is σ-measurable. Then for
σ-almost all y ∈ Y, the image under f of each neighbourhood in X of
each point of f−1(y) has positive σ-measure.

Lemma 2.4 (Lemma 2 of [2]) Let D be a closed Jordan domain in
C with boundary of finite length, K a compact subset of ∂D of positive
length, Q a polynomially convex set in Cn, f a polynomial in Cn, s a
positive integer. Assume that Q = (f−1(∂D) ∩ Q)∧ and that f |Q is at
most s-to-1 over points of K (i.e., if λ ∈ K then f−1(λ)∩Q has at most
s points). Then f−1(Do) ∩Q is a (possibly empty) pure 1-dimensional
analytic subset of f−1(Do). Here Do stands for the interior of D.

The hypotheses of the previous two lemmas need not be changed, so
we refer to their original proofs in Alexander’s paper [2, p. 66]. In the
following lemmas, the notation #(E) stands for the number (≤ ∞) of
elements of the set E.

Lemma 2.5 (Lemma 3 of [2]) Let Γ be a compact set in Cn and f
a polynomial in Cn such that Γ ∩ f−1(H) has finite length. For x ∈ R,
set N(x) = #{p ∈ Γ;ℜf(p) = x}. Then

∫∞
−1/2N(x)dx <∞.

For the proof that N is a Lebesgue measurable function, see [18,
p. 216].

Proof: By replacing Γ by its homeomorphic image in Cn+1 under the
mapping z 7→ (f(z), z), a Lipschitz mapping preserving the finiteness of
length, we may assume that f(z) = z1, the first coordinate projection.

Let ϵm ↓ 0. Then for each m there exists a finite collection Cm
of closed balls in Cn each of diameter less than ϵm such that Cm covers
Γ∩f−1(H) and if αm denotes the sum of the diameters of the members of
Cm, then αm ↑ length(Γ∩f−1(H)). Let Nm(x) = #{B;B ∈ Cm and x ∈
ℜz1(B)}. Then clearly

∫∞
−∞Nm(x)dx = αm. Also limNm(x) ≥ N(x)

whenever x ≥ −1/2; in fact, if N(x) ≥ k, and p1, p2, . . . pk are distinct
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points in Γ∩(ℜz1)−1(x), then Nm(x) ≥ k as soon as ϵm < min{∥pi−pj∥;
i ̸= j}. Thus, by Fatou’s lemma∫ ∞

−1/2
N(x)dx ≤ lim

∫ ∞

−1/2
Nm(x)dx ≤

≤ limαm = length(Γ ∩ f−1(H)) < ∞.

Lemma 2.6 (Lemma 4 of [2]) Let I = [0, 1] be the closed unit in-
terval of the real line and F ∈ C(I) be such that ℜF is of bounded
variation. Define for x ∈ R, N(x) = #{t ∈ I;ℜF (t) = x}. Then∫∞
−1/2N(x)dx <∞.

Proof: Let Γ ⊂ C1 be the set {(ℜF (t), t); t ∈ I} and take f(z) = z in
Lemma 2.5.

Definition. Let L be a closed subset of C. Let Ω1 and Ω2 be compo-
nents of C \ L. We shall say that the pair (Ω1,Ω2) is amply adjacent
provided the following holds: there exist real numbers b > a > −1/2
and c2 > c1, and a compact subset K1 ⊂ [a, b] of positive length such
that [a, b] × {cj} ⊂ Ωj for j = 1, 2 and K = (K1 × [c1, c2]) ∩ L is a
subset of ∂Ω1 ∩ ∂Ω2 such that the projection π1 maps K homeomor-
phically (and so 1-to-1) onto K1 (we are identifying C and R × R, so
π1(x, y) = x).

Lemma 2.7 (Lemma 5 of [2]) Let L ⊂ C be compact and such that∫∞
−1/2N(x)dx <∞ where N(x) = #{q ∈ L;ℜ(q) = x}. Then, for every

component Ω of C\L which meets the half-plane H, there exists a finite
sequence Ω0, Ω1, . . .Ωm of components of C \ L with Ω0 equal to the
unbounded component, Ωm = Ω and (Ωj−1,Ωj) amply adjacent through
rectangles Rj = [a, b]× [cj−1, cj ] contained in H for j = 1, 2, . . . ,m.

The proof of this lemma is exactly the same as the original one
presented by Alexander in his paper [2, p. 69]; he chooses a line segment
[a, b]× c ⊂ Ω and uses the fact that

∫ a
b N(x) <∞. Thus, we shall have

exactly the same result by choosing a horizontal line segment [a, b]×c ⊂
Ω ∩H and following the original proof word for word.
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Lemma 2.8 (Lemma 6 of [2]) Let Γ be a compact subset of Cn and f
a polynomial in Cn. Set L = f(Γ) ⊂ C. Suppose that

∫∞
−1/2N(x)dx <∞

for N(x) = #{p ∈ Γ;ℜf(p) = x}, and that L ∩ H is contained in a
continuum L1 whose intersection L1∩H is of finite length. Let (Ω1,Ω2)
be a pair of components of C\(L∪L1) which are amply adjacent through
a rectangle R = [a, b]× [c1, c2] with b > a > −1/2. Suppose Γ̂∩ f−1(Ωi)
is a (possibly empty) pure 1-dimensional analytic subset of f−1(Ωi) for
i = 1. Then, the same is true for i = 2.

Again, the proof of this lemma follows word for word the original
one presented by Alexander in [2, p. 70], we only need to add the new
trivial condition b > a > −1/2. Alexander proves that Γ̂ ∩ f−1(Do) is
a pure 1-dimensional analytic subset of f−1(Do), where Do is an open
set contained in R ∩ Ω2. He deduces then that Γ̂ ∩ f−1(Ω2) is also a
pure 1-dimensional analytic set in f−1(Ω2) by using Lemma 11 of [22].
This lemma is quite amazing because the component Ω2 may not be
completely contained in H.

The following lemma needs no changes in its hypotheses, so we refer
its proof to the original paper [2, p. 71].

Lemma 2.9 (Lemma 7 of [2]) Let Γ ⊂ S be two compact sets in Cn

and suppose that Ŝ \S is a pure 1-dimensional analytic subset of Cn \S.
Then so is Γ̂ \ S (if non-empty).

We conclude the proof of part B of Theorem 2.1 following Alexan-
der’s arguments. If the equality X ∪ Υ = Γ = X ∪ Y holds, we let
L = f(Γ) and Ω be the connected component of C \ L which contains
the origin 0 = f(p). Apply Lemmas 2.5 and 2.7 to get a sequence Ω0,
Ω1, . . .Ωm = Ω. Notice that Υ∩f−1(H) = Y ∩f−1(H) has finite length
because it is compact and contained in the set Υ \ X of locally finite
length; so we can take the continuum L1 = f(Υ) in Lemma 2.8 because
L1∩H = L∩H has finite length. We conclude inductively that Γ̂∩f−1(Ω)
is either empty or a pure 1-dimensional analytic subset of f−1(Ω), for

L = L1 ∪ L and Γ̂ ∩ f−1(Ω0) = ∅. Hence X̂ ∪ Y \ (X ∪ Y ) is analytic

(empty or pure 1-dimensional) at an arbitrary point p ∈ X̂ ∪ Y \(X∪Y ).
Now suppose that X∪Y is strictly contained in X∪Υ. Let p ∈ Γ̂\Γ

as above. Modify Υ to obtain Υ0 such that p ̸∈ Υ0 but Υ0 is a continuum
with Y ⊂ X ∪Υ0 and Υ0 \X of finite length (say by radial projection to
the boundary inside a ball containing p in its interior, centered off Υ, and
disjoint from Γ). By the previous paragraph, X̂ ∪Υ0\(X∪Υ0) is a pure
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1-dimensional analytic subset of Cn\(X∪Υ0), and so is X̂ ∪ Y \(X∪Υ0)

because of Lemma 2.9. Therefore, the set X̂ ∪ Y \ (X ∪ Y ) is analytic
(pure 1-dimensional) at p.

An arc Υ is the homeomorphic image of a closed interval of the real
line. A direct consequence of the Alexander-Stolzenberg theorem is that
every compact arc Υ which is of locally finite length everywhere except
perhaps at finitely many of its points is polynomially convex and the
approximation condition C(Υ) = P (Υ) holds; notice that Υ may be of
infinity length.

It is natural to ask whether the connectivity can be dropped in these
considerations. In fact, Alexander [4] gave an example of a compact
disconnected set Y of finite length in C2 for which Ŷ \Y is not a pure one-
dimensional analytic subset of C2 \Y . Thus, the connectivity cannot be
dropped in the Alexander-Stolzenberg theorem. Moreover, the following
example shows that we cannot finesse Theorem 2.1 by enclosing Y in
a continuum of finite length, although it is known that one can always
construct a compact arc Υ which meets every component of Y (so Y ∪Υ
is connected) and Υ \ Y is of locally finite length.

Example 2.10 There exists a discrete bounded set in C\{0} such that
no continuum containing this sequence has finite length.

Consider the set E consisting of the complex numbers wj,k = k/j2+√
−1/j, for j = 1, 2, . . . and k = 0, 1, . . . , j. It is easy to see that E is

contained in the disjoint union of the closed balls Bj,k with respective
centers wj,k and radii 1

2(j+1)2
. Hence, each continuum which contains E

has to meet the center and the boundary of each ball Bj,k, so its length
has to be greater than

∑
j>1

j+1
2(j+1)2

= ∞.

3 Approximation on unbounded sets

Now we shall analyse approximation on closed subsets of Cn rather
than on compact sets. Let Γ be a closed subset of Cn and F be a
subclass of C(Γ). We say that a function f : Γ → C can be uniformly
(resp. tangentially) approximated by functions in F if for each positive
constant ϵ > 0 (resp. positive continuous function ϵ : Γ → R) there
is g ∈ F such that |f − g| < ϵ on Γ. We are mainly interested in two
subclasses F , that which is the restriction to Γ of the class O(Cn) of
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entire functions, and that which is the restriction to Γ of the class of
meromorphic functions on Cn whose singularities do not meet Γ.

Recall that any meromorphic function on Cn whose singularities do
not meet Γ can be expressed as a quotient p/q of two entire functions p
and q with q(z) ̸= 0 for all z ∈ Γ, for the second Cousin problem can be
solved in Cn. If Γ is compact, then of course, uniform and tangential
approximation are equivalent; and we may even replace the classes of
entire and meromorphic functions on Cn by the classes of polynomials
and rational functions respectively.

We say that Γ is a set of uniform (resp. tangential) approximation
by functions in the class F if each f ∈ C(Γ) can be uniformly (resp.
tangentially) approximated by functions in F . Of course, as we have
defined them, such sets Γ cannot have any interior. In the literature,
one also finds a more generous notion of sets of uniform or tangential
approximation, which allows some sets having interior.

Before going any further, we should point out that, sets of uniform
approximation and sets of tangential approximation by holomorphic
functions are in fact the same. This was proved by Norair Arakelian
in his doctoral dissertation [5] in C. His proof works verbatim in Cn.
Since this fact is not well known and the proof is short we include it.

Proposition 3.1 (Arakelian) Let Γ be a closed subset of Cn and let
F be either the class of functions holomorphic on Γ or the class of entire
functions. Then, Γ is a set of uniform approximation by functions in the
class F if and only if it is a set of tangential approximation by functions
in the same class.

Proof: Suppose Γ is a set of uniform approximation, f ∈ C(Γ) and
ϵ : Γ → R is a positive continuous function. Set ψ = ln ϵ. There exists
a function g1 ∈ F such that |ψ− g1| < 1 on Γ. Setting h = exp(g1 − 1),
consider the functions f/h ∈ C(Γ). There exists a function g2 ∈ F such
that |f/h − g2| < 1 on Γ. Then, |f − hg2| < |h| = exp(ℜ(g1) − 1) <
expψ = ϵ. This completes the proof. 2

The following is a non-compact version of the Stone-Weierstrass
Theorem.

Proposition 3.2 A closed set Γ ⊂ Cn is a set of tangential approxi-
mation by entire functions if and only if one can approximate (in the
tangential sense) the real part projections ℜ(zm) for m = 1, . . . , n.
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Proof: The necessity is trivial. Moreover, if one can approximate the
real part ℜ(zm), one can approximate the imaginary part ℑ(zm) as well,
since ℑ(zm) = i(ℜ(zm) − zm). Let I be the natural diffeomorphism of
Cn onto the real part R2n of C2n. That is: I1(z) = ℜ(z1), I2(z) = ℑ(z1),
I3(z) = ℜ(z2), I4(z) = ℑ(z2), etc., for z ∈ Cn. Given two continuous
function f, ϵ ∈ C(Γ) with ϵ real positive, we may extend both of them
continuously to all of Cn while keeping ϵ positive. By the theorem of
Scheinberg (see introduction), there is an entire function F ∈ O(C2n)
such that |f(z)− F ◦ I(z)| < ϵ(z)/2 for z ∈ Cn.

Since F is uniformly continuous on compact subsets of C2n, and the
diffeomorphism I is proper, there is a positive continuous function δ on
Cn such that |F ◦ I(z) − F (w)| < ϵ(z)/2, for each z ∈ Cn and each
w ∈ C2n for which |I(z)− w| < δ(z).

By hypotheses, we can approximate each component of I on Γ by
entire functions and so there exists an entire mapping h : Cn → C2n

with |I − h| < δ on Γ. Thus, |F ◦ I −F ◦ h| < ϵ/2 on Γ. By the triangle
inequality, |f − F ◦ h| < ϵ on Γ. The function F ◦ h is entire because h
and F are holomorphic. 2

An interesting consequence of this result is that neither projection
ℜ(z) nor ℑ(z), in the complex plane z ∈ C, can be tangentially appro-
ximated on the classical examples where the tangential approximation
fails to hold, although uniform approximation may sometimes be possi-
ble.

Example 3.3 Let

Γ =
∞∪
j=0

Γj ,

where Γ0 = [0,+∞)× {0}, and for j = 1, 2, · · ·,

Γj =

(
[0, j]× { 1

2j
,

1

2j + 1
}
)
∪
(
{j} × [

1

2j
,

1

2j + 1
]

)
.

Then, both functions ℜ(z) and ℑ(z) can be approximated uniformly, but
not tangentially, by entire functions on Γ.

Proof: In his doctoral thesis, Arakelian [5] gave a complete character-
ization for sets of uniform approximation, from which it follows that Γ
is not a set of uniform approximation and a fortiori not a set of tangen-
tial approximation. Thus, by Proposition 3.2, the functions ℜ(z) and
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ℑ(z) cannot be approximated tangentially. We show that they can be
approximated uniformly.

Fix ϵ > 0 and set Zϵ = {z ∈ C : |ℑ(z)| ≤ ϵ} and Wϵ = Γ \ Zϵ. We
may assume Zϵ and Wϵ disjoint (by choosing an appropriate smaller ϵ
if necessary). Now, define the function

f(x) =

{
ϵ for x ∈ Zϵ,

ℑ(x) for x ∈Wϵ.

Invoking again Arakelian’s work (see [5], [13, p.245] or [9]), we de-
duce the existence of an entire function g such that |f − g| < ϵ on
Zϵ ∪Wϵ. Hence, |ℑ − g| < 2ϵ on Γ. So ℑ(z) and ℜ(z) = z − iℑ(z) can
both be approximated uniformly on Γ by entire functions. 2

It is interesting to compare Propositions 3.1 and 3.2 in the light of
the previous example.

We should also notice that Proposition 3.1 also holds if we consider
approximation by functions holomorphic in a neighbourhood of Γ in-
stead of approximation by entire functions. That is, we have that each
continuous function f ∈ C(Γ) can be approximated (in the tangential
sense) by functions holomorphic in a neighbourhood of Γ if and only if
every projection ℜ(zm) can. This result suggests the following:

Proposition 3.4 Every closed set Γ ⊂ Cn of area zero is a set of tan-
gential approximation by meromorphic functions in Cn. That is, every
continuous function F defined on Γ can be tangentially approximated by
meromorphic functions whose singularities do not meet Γ.

Proof: Let f, ϵ ∈ C(Γ) be two continuous functions with ϵ real and pos-
itive. We must construct a meromorphic function F such that |F (z)−
f(z)| < ϵ(z) on Γ. Let B0 be the empty set and Bk closed balls of radius
k and center in the origin.

Lemma 3.5 Each continuous function h ∈ C(Bk ∪ Γ) which can be
uniformly approximated by polynomials in Bk can be uniformly approxi-
mated on D = Bk ∪ (Γ∩Bk+1) by rational functions whose singularities
do not meet Γ.

Proof: From Theorem 2.1.A, and for each δ > 0, there exists a rational
function (a/b)(z) such that |(a/b)(z)− h(z)| < δ for z ∈ D and 0 ̸∈
b(D). Notice that b(Γ) has zero area, so we may choose a complex
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number λ ̸∈ b(Γ) with absolute value so small such that λ ̸∈ b(D) and∣∣∣ a(z)
b(z)−λ − h(z)

∣∣∣ < δ for z ∈ D. 2

The proof of Proposition 3.4 now follows a classical inductive pro-
cess. There exists a rational function F1 whose singularities do not meet
Γ and such that |F1(z) − f(z)| < (23 − 2−1)ϵ(z) for z ∈ Γ ∩ B1 by the
previous Lemma 3.5. Proceeding by induction, we shall construct a se-
quence of rational functions Fk which converges uniformly on compact
sets to a meromorphic function with the desired properties.

Given a rational function Fk whose singularities do not meet Γ and
such that |Fk(z)−f(z)| < (23−2−k)ϵ(z) in Γ∩Bk, let hk be a continuous
function identically equal to zero on Bk and such that |hk(z) +Fk(z)−
f(z)| < (23 − 2−k)ϵ(z) for z ∈ Γ ∩ Bk+1 as well. Fix a real number
0 < λk < 1 strictly less than ϵ(z) for every z ∈ Γ ∩Bk+1.

Applying Lemma 3.5, there exists a rational function Rk whose sin-
gularities do not meet Bk ∪ Γ and such that |Rk(z)− hk(z)| < 2−1−kλk
for z ∈ Bk ∪ (Γ ∩ Bk+1). Thus, the singularities of the rational func-
tion Fk+1(z) = Fk(z) + Rk(z) do not meet Γ and |Fk+1(z) − f(z)| <
(23 − 2−1−k)ϵ(z) for z ∈ Γ ∩Bk+1 by the triangle inequality.

Notice that Fk+1(z)−Fk(z) is holomorphic and its absolute value is
less than 2−1−k inside Bk, so the sequence Fk converges to a meromor-
phic function with the desired properties. 2

Similar inductive processes were originally employed to prove Car-
leman’s theorem, stated in the introduction, which asserts that the real
line R in C is a set of tangential approximation by entire functions.
Alexander [3] extended Carleman’s theorem to piecewise smooth arcs Γ
going to infinity in Cn. That is, Γ is the the image of the real axis under
a proper continuous embedding (a curve without self-intersections, going
to infinity in both directions). We should mention that this problem had
been considered independently by Bernard Aupetit and Lee Stout (see
Aupetit’s book [1]). As a consequence of the Alexander-Stolzenberg
Theorem, we also have the following further extension of Carleman’s
theorem, which was conjectured by Aupetit in [1] and announced by
Alexander in [3].

Proposition 3.6 Let Γ be an arc which is of finite length at each one
of its points, except perhaps in a discrete subset, and going to infinity
in Cn. Besides, let ϵ be a strictly positive continuous function on Γ.
Then, for each f ∈ C(Γ), there exists an entire function g on Cn such
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that |f(z)− g(z)| < ϵ(z) for all z ∈ Γ. That is, Γ is a set of tangential
approximation by entire functions.

Alexander’s proof (see also [1]), for the case that Γ is smooth, relies
ingeniously on the topology of arcs and the original Stolzenberg Theo-
rem for smooth curves. It also works when the arc Γ is of locally finite
length everywhere except perhaps in a finite subset. One only needs to
rewrite Lemma 1 of [3], using the following corollary of Theorem 2.1.

Corollary 3.7 Let X and Y be two compact subsets of Cn such that X
is polynomially convex, Y is connected and Y \X is of finite length at
each one of its points, except perhaps at finitely many of them. If the
map Ȟ1(X∪Y ) → Ȟ1(X) induced by X ⊂ X∪Y is injective, then X∪Y
is polynomially convex and every continuous function f ∈ C(X ∪ Y )
which can be approximated by polynomials in X can be approximated by
polynomials on the union X ∪ Y .

Proof: Let Y0 be the points where Y \X is not of locally of finite length.
Notice that the inclusion mapping X → X ∪ Y can be decomposed as
the composition of the two mappings X → X∪Y0 and X∪Y0 → X∪Y .
Hence, the induced injective function Ȟ1(X ∪ Y ) → Ȟ1(X) can also
be decomposed as the composition of Ȟ1(X ∪ Y ) → Ȟ1(X ∪ Y0) and
Ȟ1(X ∪ Y0) → Ȟ1(X). It is easy to see that the last two functions are
injective as well. Now, suppose f ∈ C(X∪Y ) and f can be approximated
by polynomials on X. We have that X ∪ Y0 is polynomially convex
because of the Oka-Weil theorem or Theorem 2.1. Moreover, we also
have that X ∪ Y is polynomially convex and f can be approximated by
polynomials on X ∪ Y by Theorem 2.1 again. 2

We can also approximate by entire functions on unbounded sets
which are more general than arcs, but first, we need to introduce the
polynomially convex hull of non-compact sets:

Definition. Given an arbitrary subset Y of Cn, its polynomially convex

hull is defined by Ŷ =
∪{

K̂ : K ⊂ Y is compact
}
.

Proposition 3.8 Let Γ be a closed set in Cn of zero area such that
D̂ ∪ Γ \ Γ is bounded for every compact set D ⊂ Cn. Let B1 be an open
ball with center in the origin which contains the closure of Γ̂ \ Γ. That
is, the set B1 ∪ Γ contains the hull K̂ of every compact set K ⊂ Γ.
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Then, given two continuous functions f, ϵ ∈ C(Γ) such that ϵ is real
positive and f can be uniformly approximated by polynomials on Γ∩B1,
there exists an entire function F such that |F (z) − f(z)| < ϵ(z) for
z ∈ Γ.

Proof: Let B0 be the empty set, B1 as in the hypotheses and Bk open
balls with center in the origin such that each Bk contains the closure

of Γ̂ ∪Bk−1 \ Γ. That is, the set Bk ∪ Γ contains the hull K̂ of every
compact set K ⊂ (Γ∪Bk−1). Define Xk to be the polynomially convex
hull of Bk+1 ∩ (Γ∪Bk−1), so Xk ⊂ (Bk ∪Γ). The compact sets Xk and
Xk ∩Bk are both polynomially convex.

The given hypotheses automatically imply that there exists a poly-
nomial F1 such that |F1(z) − f(z)| < (23 − 2−1)ϵ(z) on Γ ∩ B1. Pro-
ceeding by induction, we shall construct a sequence of polynomials Fk

which converges uniformly on compact sets to an entire function with
the desired properties.

Given a polynomial Fk such that |Fk(z)− f(z)| < (23 − 2−k)ϵ(z) on
Γ ∩ Bk, let hk be a continuous function equal to Fk on Bk and such
that |hk(z)− f(z)| < (23 − 2−k)ϵ(z) for z ∈ Γ ∩Bk+1 as well. Fix a real
number 0 < λk < 1 strictly less than ϵ(z) for every z ∈ Γ ∩Bk+1.

Notice that Xk = (Xk∩Bk)∪(Γ∩Bk+1). Hence, by Theorem 2.1.A,
the function hk can be approximated by rational functions on Xk be-
causeXk∩Bk is polynomially convex and Γ has zero area. Moreover, the
functions hk can be approximated by polynomials by the Oka-Weil theo-
rem. Thus, there exists a polynomial Fk+1 such that |Fk+1(z)−hk(z)| <
2−1−kλk for z ∈ Xk, and so |Fk+1(z) − f(z)| < (23 − 2−1−k)ϵ(z) on
Γ ∩Bk+1.

Finally, the inequality |Fk+1(z)−Fk(z)| < 2−1−k holds for z ∈ Bk−1,
so the sequence Fk converges to an entire function with the desired
properties. 2

On the other hand, if the equality Γ̂ = Γ holds as well in the last
proposition, we can choose the empty set instead of the open ball B1

(because the proof is an inductive process); and so Γ becomes a set
of tangential approximation by entire functions. There are many closed
sets Γ which satisfy the hypotheses of the last proposition. For example,
we have the following.

Theorem 3.9 Let Γ be closed connected set of locally finite length in
Cn whose first cohomology group Ȟ1(Γ) vanishes (Γ contains no simple
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closed curves). Then, Γ is a set of tangential approximation by entire
functions.

Proof: The proof strongly uses the topology of Γ. We show that
each point of Γ has finite order; that is, has a basis of neighbourhoods
in Γ having finite boundaries. Given a point z ∈ Γ, let Br be the
open ball in Cn of radius r and center z. Since Γ is locally of finite
length, the intersection of Γ with the closed ball Br has finite length, so
the intersection of Γ with the boundary of Bs must be a finite set for
almost all radii 0 < s < r. Whence, each sub-continuum of Γ is locally
connected [17, p. 283]. On the other hand, there are no simple closed
curves contained in Γ because Ȟ1(Γ) = 0; so each sub-continuum of Γ is
a dendrite, that is, a locally connected continuum containing no simple
closed curves. In particular, if Γ is compact, then it is a dendrite.

Notice the following lemma.

Lemma 3.10 Each compact subset K ⊂ Γ is contained in a sub-conti-
nuum (dendrite) of Γ.

Proof: Since Γ is locally connected, the set K is contained in a finite
union of sub-continua of Γ. The lemma now follows since Γ is arcwise
connected (see Theorem 3.17 of [16]). 2

Let D be a compact set in Cn. Notice that D∪Γ may contain simple
closed curves Υ with D∩Υ ̸= ∅ but Υ ̸⊂ D. We shall call such a simple
closed curve Υ ⊂ (D ∪ Γ) a loop. We show there exists a ball which
contains all of these loops. Henceforth, let Br be open balls of radii r
and center in the origin, and choose a radius s > 0 such that D ⊂ Bs.
Recall that Γ ∩ Bs+1 has finite length, so there exists a ball Bt with
s < t < s + 1 such that Γ meets the boundary of Bt only in a finite
number of points Q = {q1, . . . , qm}. Let {Υj} be the possible loops
which meet the complement of Bt. The set

∪
{Υj} \ Bt is contained in

Γ and can be expressed as the union of compact arcs (not necessarily
disjoint) which lie outside of Bt except for their two end points which
lie in Q. Since Γ cannot contain simple closed curves, two different arcs
cannot share the same end points, and there can only be finitely many
such arcs. Hence, there exists a ball Bδ which contains all the loops Υ,
and D ⊂ Bδ.

We shall show that D̂ ∪ Γ\Γ is bounded. Without loss of generality,
we may suppose that D is a closed ball. Since Γ is connected, the hull
D̂ ∪ Γ is equal to

∪
r≥δ K̂r, where Kr is the connected component of
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Br ∩ (D ∪ Γ) which contains D. We can prove that K̂r = K̂δ ∪Kr, for
every r ≥ δ, using Alexander’s original argument. The following lemma
is a literal translation of Lemma 1.(a) of [3], to our context.

Lemma 3.11 For every r ≥ δ, K̂r = K̂δ ∪ τr where τr = Kr \Kδ.

Since the notation is quite complicated and different from Alexan-
der’s, and we need to invoke Theorem 2.1.B, we shall include the proof
of Lemma 3.11, but first we conclude the proof of the theorem.

By Lemma 3.11, the set D̂ ∪ Γ\Γ is bounded because K̂r = K̂δ∪τr =
K̂δ ∪Kr and D̂ ∪ Γ = K̂δ ∪ Γ. Moreover, the equality Γ̂ = Γ holds as
well because each compact subset of Γ is contained in a dendrite of finite
length and is polynomially convex (see Lemma 3.10 and Alexander’s
work [2]), so we can deduce from Proposition 3.8 that Γ is a set of
tangential approximation. 2

Proof: [Proof of Lemma 3.11] Let Tr = K̂δ ∪ τr be the set on the right
hand side of the asserted equality. Clearly, we have Tr ⊂ K̂r ⊂ T̂r (the
second inclusion is in fact equality). Thus it suffices to show that Tr is
polynomially convex. Arguing by contradiction, we suppose otherwise.
By Theorem 2.1.B, T̂r \ Tr is a 1-dimensional analytic subvariety of
Cn \ Tr.

Let V be a non-empty irreducible analytic component of T̂r \Tr. We
claim that V \Kr is an analytic subvariety of Cn\Kr. Since Tr = K̂δ∪τr,
it suffices to verify this locally at a point x ∈ V ∩Q where

Q = K̂δ \Kδ.

By Theorem 2.1.B, both K̂r and Q are analytic near x, where near
x refers to the intersection of sets with small enough neighbourhoods
of x, here and below. Furthermore, near x, V ⊂ K̂r, V ⊂ K̂r \ Q and
Q ⊂ K̂r. Thus, near x, Q is a union of some analytic components of
K̂r. It follows that near x, V is just a union of some of the other local
analytic components of K̂r at x; in fact, near x, V = V ∪ {x}. Put

W = V \Kr.

Then W is an irreducible analytic subset of Cn \Kr and moreover,

W \W ⊂ Kδ ∪ τr = Kr.

Thus W ⊂ K̂r by the maximum principle.
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Fix a point p ∈ V ⊂W . Since p ̸∈ Tr, we have p ̸∈ K̂δ and therefore
there exists a polynomial h such that h(p) = 0 and ℜh < 0 on K̂δ. By
the open mapping theorem, either h(W ) is an open neighbourhood of
0 or h ≡ 0 on W . In the latter case, h ≡ 0 on W and so W \W is
disjoint from Kδ. This implies that W \W ⊂ τ̂r so W ⊂ τ̂r. We have
a contradiction because τr is contained in a dendrite of finite length
and is polynomially convex (see Lemma 3.10 and Alexander’s work [2]),
and moreover, a dendrite cannot contain a 1-dimensional analytic set.
Hence, the former case holds. Since h(τr) is nowhere dense in the plane
(recall that it is of finite length), there is a small complex number α ∈
h(W ) such that α ̸∈ h(τr). Now put g = h−α. If α is sufficiently small,
we conclude that (i) ℜg < 0 on K̂δ, (ii) g(q) = 0 for some q ∈ W and
(iii) 0 ̸∈ g(τr).

Now (i) implies that the polynomial g has a continuous logarithm
on K̂δ and so, by restriction, on Kδ. We can extend this logarithm of g
on Kδ to a continuous logarithm of g on Kr because of (iii), since the
ball Bδ was chosen such that every simple closed curve (loop) Υ ⊂ Kr

is contained in Bδ and hence in Kδ. But Kr contains W \W . Applying
the argument principle [21, p. 271] to g on the analytic set W gives a
contradiction to (ii). 2

We remark that the condition of having zero area is essential in
Propositions 3.4 and 3.8, as the following example (inspired by [8])
shows.

Example 3.12 Let I be the closed unit interval [0, 1] of the real line
and K ⊂ I the compact set K =

{
0, 1, 12 ,

1
3 ,

1
4 , . . .

}
. It is easy to see

that the (2+ ϵ)-dimensional Hausdorff measure of the closed connected
set Y = (I × {0}) ∪ (K × C) in C2 is equal to zero for every ϵ > 0;
moreover, the equality Ŷ = Y holds. However, the following continuous
function f ∈ C(Y ) cannot be uniformly approximated by holomorphic
functions in O(Y ):

f(w, z) =

{
z if w = 1
0 otherwise

Suppose there exists a real number ϵ > 0 and a holomorphic function
g ∈ O(Y ) such that |f−g| < ϵ on Y . We automatically have that g(w, z)
is bounded, holomorphic and constant on each complex line {1

j } × C,
j = 2, 3, . . .. Hence, the holomorphic function ∂g

∂z vanishes on each

complex line {1
j }×C, j = 2, 3, . . . as well. Since the zero set of ∂g

∂z is an



Approximation on arcs going to infinity 19

analytic set, this derivative must be zero in a neighbourhood of {0}×C
and hence on the connected set Y . The last statement is a contradiction
to the fact that |g(1, z)− z| < ϵ for every z ∈ C.

On the other hand, to see that Ŷ = Y , notice that Y =
∪

r>0 Yr,
where Yr = (I × {0})∪ (K ×∆r) and ∆r ⊂ C are closed disks of radius
r. The set K × ∆r is polynomially convex because it is the Cartesian
product of two polynomially convex sets in C; and so Yr is polynomially
convex because of Theorem 2.1.

Although connectivity, as we have emphasized, plays a crucial role
in this paper, similar results can be obtained for sets whose connected
components form a locally finite family. Finally, we remark that, on
a Stein manifold, analogous results also hold by simply embedding the
Stein manifold into some Cn. A possible exception is Proposition 3.2,
since ℜ(z) is not well-defined on a manifold.

4 Historical notes

In this section we recapitulate and supplement some of the historical
remarks which are dispersed throughout this paper.

Of course, the foundation of approximation theory is the Weierstrass
theorem (1885), which affirms that each closed interval is a set of uni-
form approximation by polynomials. This is essentially a real result.
In the complex setting, the most beautiful approximation theorem is a
deep theorem of Walsh [24, in 1926] which lifts the Weierstrass theorem
to the complex domain by asserting that each Jordan arc (homeomor-
phic image of a closed interval) in the complex plane is a set of uniform
approximation by polynomials. For a survey on this result of Walsh and
its impact, see [12].

Just as Walsh’s theorem is the most beautiful result of uniform
approximation in the complex plane C, the outstanding open problem in
complex approximation is to extend Walsh’s theorem to higher dimen-
sions (Cn). Any compact set firstly needs to be polynomially convex
(see [21]) in order to be a set of uniform approximation by polynomi-
als. In high dimensions, Wermer [25, in 1955] and Rudin [19, in 1956]
gave examples of Jordan arcs which are not polynomially convex, and
hence they are not sets of uniform polynomial approximation. The main
problem can be then formulated more precisely: Is it true that each
polynomially convex Jordan arc is a set of polynomial approximation?
This problem has remained open for over half a century.
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The following Jordan arcs are known to be sets of uniform approxi-
mation: analytic arcs (Wermer [26], [27] and [28] in 1958), C1-smooth
arcs (Stolzenberg [22] in 1966), rectifiable arcs (Alexander [2] in 1971);
and in the present paper we allow arcs which are of finite length at each
point, except perhaps at a finite set of points.

One can also consider rational approximation and; here again, any
compact set firstly needs to be rationally convex in order to be a set
of uniform rational approximation. It is known that any compact set
of area zero is a set of rational approximation. Bagby and one of the
authors [6] have given an example of an arc of finite area which is not
rationally convex and, a fortiori, it is not a set of rational approximation.

We have seen, on one side, that we have polynomial approximation
on Jordan arcs whose length is locally finite except perhaps at a finite
subset of points. On the other hand, we do not have rational approxi-
mation on a certain Jordan arc of finite area. It is quite natural to ask
about the intermediate cases, namely, Jordan arcs whose dimension lies
between 1 and 2. This question was in fact posed by Gamelin [11].

As mentioned earlier in this paper, the Weierstrass theorem was also
extended in a different way by Carleman [7, in 1927], who showed that
the real-line in C is a set of tangential approximation by entire functions
in C. This result was also generalized to several complex variables in
two ways. First of all, Scheinberg [20, in 1976] showed that the real
part of Cn is a set of Carleman approximation by entire functions in Cn.
Secondly, and this is the generalization which concerns us in the present
paper, Carleman himself had conjectured and Keldysh proved that each
unbounded Jordan arc in C is a set of tangential approximation by entire
functions as well. This result was extended by Alexander [2, in 1979]
to unbounded Jordan arcs in Cn which are piecewise C1-smooth. We
have shown that Alexander’s result also holds for unbounded Jordan
arcs which are of locally finite length. This had been conjectured by
Aupetit [1, in 1978] and announced by Alexander [2]. But we showed a
stronger result, by allowing a discrete subset of exceptional points, and
also by allowing more general sets than only unbounded arcs.
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93-102. Progress in Mathematics 4, Birkhäuser, Boston Mass.
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