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Zero-sum semi-Markov games in Borel spaces

with discounted payoff ∗

Fernando Luque-Vásquez 1

Abstract

We study two-person zero-sum semi-Markov games in Borel spaces
with possibly unbounded payoff, under the discounted criterion.
We consider the n-stage case as well as the infinite horizon case.
Conditions are given for the existence of the value of the game,
the existence of optimal strategies for both players, and for a char-
acterization of the optimal stationary policies.
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1 Introduction

This paper deals with two-person zero-sum semi-Markov games with
Borel spaces and possibly unbounded payoff function, under the dis-
counted criterion. We consider the n-stage case as well as the infinite
horizon case. Under suitable assumptions on the transition law, the
payoff function and the distribution of the transition times, we show
the existence of the value of the game, the existence of optimal strate-
gies for both players, and we also obtain a characterization for a pair of
stationary stategies to be optimal in the infinite horizon case.

Markovian stochastic games with discounted payoff have been stud-
ied by several authors (for example, [1, 7, 8, 10, 11, 12]) but, to the best
of our knowledge, the only paper that studies semi-Markov stochastic
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games with discounted payoff is [5], which considers a countable state
space and a bounded payoff function. Our main results generalize to
the semi-Markov context some theorems in [8, 10, 11] on which our
approach is based. We also extend results in [5, 6].

The remainder of the paper is organized as follows. In Section 2
the semi-Markov game model is described. Next, in Section 3, the
discounted criterion is introduced. In Section 4 we introduce the as-
sumptions and present our main results, Theorems 4.3 and 4.4, which
are proved in Sections 5 and 6, respectively.

Terminology and notation. Given a Borel space X, i.e. a Borel
subset of a complete and separable metric space, we denote by B(X) its
Borel σ-algebra. P(X) denotes the family of probability measures on
X endowed with the weak topology. If X and Y are Borel spaces, we
denote by P(X |Y ) the family of transition probabilities (or stochastic
kernels) from Y to X. For a transition probability f ∈ P(X |Y ), we
write its values as f(y)(B) or f(B |y ) for all B ∈ B(X) and y ∈ Y. If
X = Y, then f is called a Markov transition probability on X.

2 The semi-Markov game

A semi-Markov game model is defined by a collection

(X,A,B,KA,KB, Q, F, , r),

whereX is the state space, and A and B are the action spaces for players
1 and 2, respectively. These spaces are assumed to be Borel spaces,
whereasKA ∈ B(X×A) andKB ∈ B(X×B) are the constraint sets. For
each x ∈ X, the x-section A(x) := {a ∈ A : (x, a) ∈ KA } represents the
set of admissible actions for player 1 in state x. Similarly, the x-section
B(x) := {b ∈ B : (x, b) ∈ KB} denotes the set of admissible actions
for player 2 in state x. Let K := {(x, a, b) : x ∈ X, a ∈ A(x), b ∈
B(x)}, which is a Borel subset of X × A × B (see [9]). Moreover,
Q(· | x, a, b) is a stochastic kernel onX givenK called the transition law,
and F (· | x, a, b) is a probability distribution function on R+ := [0,∞)
given K called the transition time distribution. Finally, r is a real-
valued measurable function on K that denotes the payoff function, and
it represents the reward for player 1 and the cost function for player 2.

The game is played as follows: if x is the state of the game at some
decision (or transition) epoch, and the players independently choose
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actions a ∈ A(x) and b ∈ B(x), then the following happens: player
1 receives an immediate reward r(x, a, b), player 2 incurres in a cost
r(x, a, b), and the system moves to a new state according to the prob-
ability measure Q(· | x, a, b). The time until the transition occurs is a
random variable having the distribution function F (· | x, a, b).

Let H0 := X and Hn := (K×R+)×Hn−1 for n = 1, 2, ... . For each
n, an element

hn = (x0, a0, b0, δ1, ..., xn−1, an−1, bn−1, δn, xn)

of Hn represents the “history” of the game up to the nth decision epoch.
A strategy π for player 1 is a sequence π = {πn : n = 0, 1, ...} of
stochastic kernels πn ∈ P(A | Hn) such that

πn(A(xn) | hn) = 1 ∀hn ∈ Hn.

We denote by Π the family of all strategies for player 1. A strategy
π = {πn} is called a Markov strategy if πn ∈ P(A | X) for each n =
0, 1, ... , that is, each πn depends only on the current state xn of the
system. The set of all Markov strategies of player 1 is denoted by ΠM .
Let Φ1 denote the class of all transition probabilities f ∈ P(A | X)
such that f(x) ∈ P(A(x)). A Markov strategy π = {πn} is said to be
a stationary strategy if there exists f ∈ Φ1 such that πn = f for each
n = 0, 1, ... . In this case, the strategy is identified with f, and the set
of all stationary strategies for player 1 with Φ1. The sets Γ, ΓM and Φ2

of all strategies, all Markov strategies and all stationary strategies for
player 2 are defined similarly.

Let (Ω,F) be the canonical measurable space that consists of the
sample space Ω := (X × A × B × R+)

∞ and its product σ-algebra
F . Then for each pair of strategies (π, γ) ∈ Π × Γ and each initial
state x there exist a unique probability measure P πγ

x and a stochastic
process {(xn, an, bn, δn+1), n = 0, 1, ...}, where xn, an and bn represent
the state and the actions for players 1 and 2, respectively, at the nth
decision epoch, whereas δn represents the time between the (n − 1)th
and the nth decision epoch. Eπγ

x denotes the expectation operator with
respect to P πγ

x .

3 Optimality criteria

We assume that rewards and costs are continuously discounted and
player 1 tries to maximize the expected discounted payoff, while player
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2 tries to minimize it.

Definition 3.1. For n ≥ 1, α > 0, x ∈ X and (π, γ) ∈ Π × Γ, the
expected n-stage α-discounted payoff is defined as

(1) Vn(x, π, γ) := Eπγ
x

n−1∑
k=0

e−αTkr(xk, ak, bk),

where T0 = 0 and Tn = Tn−1 + δn. The infinite-horizon total expected
α-discounted payoff is

(2) V (x, π, γ) := Eπγ
x

∞∑
k=0

e−αTkr(xk, ak, bk).

To define our optimality criteria, we need to introduce the following
concepts. The functions on X given by

(3) L(x) := sup
π∈Π

inf
γ∈Γ

V (x, π, γ) and U(x) := inf
γ∈Γ

sup
π∈Π

V (x, π, γ)

are called the lower value and the upper value, respectively, of the (ex-
pected) α-discounted payoff game. It is clear that L(·) ≤ U(·) in general,
but if it holds that L(x) = U(x) for all x ∈ X, then the common value is
called the value of the semi-Markov game and will be denoted by V ∗(x).

In Section 3 we give assumptions that guarantee that the functions
in (1), (2) and (3) are well defined.

Definition 3.2. (a) A strategy π∗ ∈ Π is said to be α-optimal for player
1 if

U(x) ≤ V (x, π∗, γ) ∀γ ∈ Γ, x ∈ X.

(b) A strategy γ∗ ∈ Γ is said to be α-optimal for player 2 if

V (x, π, γ∗) ≤ L(x) ∀π ∈ Π, x ∈ X.

(c) A pair (π∗, γ∗) ∈ Π × Γ is said to be an α-optimal strategy pair
if, for all x ∈ X,

U(x) = inf
γ∈Γ

V (x, π∗, γ) and L(x) = sup
π∈Π

V (x, π, γ∗).

We note that the existence of an α-optimal strategy either for player
1 or player 2, implies that the game has a value.
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For the n-stage semi-Markov game, the lower value Ln, the upper
value Un, the value V ∗

n and optimal strategies are defined similarily.

Remark 3.3. Let

(4) βα(x, a, b) :=

∫ ∞

0
e−αtF (dt | x, a, b).

Then using properties of the conditional expectation we can write

(5) V (x, π, γ) = Eπγ
x [r(x0, a0, b0) +

∞∑
n=1

n−1∏
k=0

βα(xk, ak, bk)r(xn, an, bn)],

and for n ≥ 1

Vn(x, π, γ) = Eπγ
x [r(x0, a0, b0) +

n−1∑
k=1

k−1∏
i=0

βα(xi, ai, bi)r(xk, ak, bk)].

4 Assumptions and main results

The problem we are concerned with is to show the existence of α-optimal
strategies which, as is well known (see for instance [7]), requires imposing
suitable assumptions on the semi-Markov game model. The first one is
a regularity condition that ensures that an infinite number of transitions
do not occur in a finite interval. The second one is a combination of
standard continuity and compactness requirements, whereas the third
one is a growth condition on the payoff function r.

Assumption 1 (A1). There exist θ > 0 and ε > 0 such that

F (θ | x, a, b) ≤ 1− ε ∀(x, a, b) ∈ K.

An important consequence of this assumption is the following.

Lemma 4.1. If A1 holds, then

(6) ρα := sup
(x,a,b)∈K

βα(x, a, b) < 1.
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Proof: Let (x, a, b) ∈ K be fixed. Then integrating by parts in (4) we
have

βα(x, a, b) = α

∫ ∞

0
e−αtF (t |x, a, b)dt

= α[

∫ θ

0
e−αtF (t |x, a, b)dt+

∫ ∞

θ
e−αtF (t |x, a, b)dt]

≤ (1− ε)(1− e−αθ) + e−αθ = 1− ε+ εe−αθ < 1.

As (x, a, b) ∈ K was arbitrary, we get (6). □

Assumption 2 (A2). (a) For each x ∈ X, the sets A(x) and B(x) are
compact.

(b) For each (x, a, b) ∈ K, r(x, ·, b) is upper semicontinuous on A(x),
and r(x, a, ·) is lower semicontinuous on B(x).

(c) For each (x, a, b) ∈ K and each bounded and measurable function
v on X, the functions

a 7−→
∫

v(y)Q(dy | x, a, b) and b 7−→
∫

v(y)Q(dy | x, a, b)

are continuous on A(x) and B(x), respectively.

(d) For each t ≥ 0, F (t | x, a, b) is continuous on K.

Assumption 3 (A3). There exist a measurable function w : X →
[1,∞) and positive constants m and η, with ηρα < 1, such that for all
(x, a, b) ∈ K

(a) |r(x, a, b)| ≤ mw(x);

(b)
∫
w(y)Q(dy | x, a, b) ≤ ηw(x).

In addition, part (c) in A2 holds when v is replaced with w.

Remark 4.2. By Lemma 1.11 in [8], it follows that if Assumption 2(a)
holds then the multifunctions A : X → 2P(A) and B : X → 2P(B) defined
as A(x) := P(A(x)) and B(x) := P(B(x)) are measurable compact-
valued multifunctions.

We now introduce the following notation: for any given function
h : K →R, x ∈ X, and probability measures µ ∈ A(x) and λ ∈ B(x) we
write

h(x, µ, λ) :=

∫
B(x)

∫
A(x)

h(x, a, b)µ(da)λ(db),
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whenever the integrals are well defined. In particular,

r(x, µ, λ) :=

∫
B(x)

∫
A(x)

r(x, a, b)µ(da)λ(db),

βα(x, µ, λ) :=

∫
B(x)

∫
A(x)

βα(x, a, b)µ(da)λ(db),

and

Q(D | x, µ, λ) :=
∫
B(x)

∫
A(x)

Q(D | x, a, b)µ(da)λ(db), D ∈ B(X).

Bw(X) denotes the linear space of measurable functions u on X with
finite w-norm, which is defined as

∥u∥w := sup
x∈X

|u(x)|
w(x)

.

For u ∈ Bw(X) and (x, a, b) ∈ K, we write

H(u, x, a, b) := r(x, a, b) + βα(x, a, b)

∫
X
u(y)Q(dy | x, a, b).

For each function u ∈ Bw(X) let

(7) Tαu(x) := sup
µ∈A(x)

inf
λ∈B(x)

H(u, x, µ, λ),

which defines a function Tαu in Bw(X) (see Lemma 5.1 below). We
call Tα the Shapley operator, and a function v ∈ Bw(X) is said to be a
solution to the Shapley equation if Tαv(x) = v(x) for all x ∈ X. In the
proof of Lemma 5.1, we show that if Assumptions 1, 2 and 3 hold, then
for µ ∈ A(x), H(u, x, µ, ·) is l.s.c. on B(x), and for λ ∈ B(x), H(u, x, ·, λ)
is u.s.c. on A(x). Thus, by Theorem A.2.3 in [2] the supremum and the
infimum are indeed attained in (7). Hence, we can write

Tαu(x) := max
µ∈A(x)

min
λ∈B(x)

H(u, x, µ, λ).

We are now ready to state our main results.

Theorem 4.3. Suppose that A1-A3 hold. Then the n-stage semi-
Markov game (n ≥ 1) has a value V ∗

n ∈ Bw(X) and both players have
α-optimal Markov strategies. Moreover, for each n ≥ 2,

V ∗
n (x) = TαV

∗
n−1(x).
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Theorem 4.4. If A1-A3 hold, then
(a) The semi-Markov game has a value V ∗, which is the unique

function in Bw(X) that satisfies the Shapley equation,

V ∗(x) = TαV
∗(x),

and, furthermore, there exists an α-optimal strategy pair.
(b) A pair of stationary strategies (f, g) ∈ Φ1 × Φ2 is α-optimal if

and only if V (·, f, g) is a solution to the Shapley equation.

5 Proof of Theorem 4.3

First we shall prove a preliminary result.
Lemma 5.1. If A1-A3 hold, then for each u ∈ Bw(X), the function
Tαu is in Bw(X), and

(8) Tαu(x) = min
λ∈B(x)

max
µ∈A(x)

H(u, x, µ, λ).

Moreover, there exist stationary strategies f ∈ Φ1 and g ∈ Φ2 such that

(9)

Tαu(x) = H(u, x, f(x), g(x))

= maxµ∈A(x)H(u, x, µ, g(x))

= minλ∈B(x)H(u, x, f(x), λ).

Proof: By Lemma 4.1 and A3, we have that for u ∈ Bw(X) and
(x, a, b) ∈ K,

|H(u, x, a, b)| ≤ mw(x) + ρα ∥u∥w ηw(x),

which, as Tαu is measurable, implies that Tαu ∈ Bw(X). On the other
hand, by A2, it follows that the function x 7−→ H(u, x, a, b) is in Bw(X)
and H(u, x, ·, b) is u.s.c. on A(x). Then, for fixed λ ∈ B(x), by Fatou’s
Lemma, the function

a 7−→
∫
B(x)

H(u, x, a, b)λ(db)

is u.s.c. and bounded on A(x). Thus, since convergence on A(x) is the
weak convergence of probability measures, by Theorem 2.8.1 in [2], the



Zero-sum semi-Markov games in Borel spaces 23

function H(u, x, ·, λ) is u.s.c. on A(x). Similarily, H(u, x, µ, ·) is l.s.c. on
B(x). Moreover, H(u, x, µ, λ) is concave in µ and convex in λ. Thus, by
Fan’s minimax Theorem [3] we obtain (8). The existence of stationary
strategies f ∈ Φ1 and g ∈ Φ2 that satisfy (9) follows from (8) and well-
known measurable selection theorems (see for instance Lemma 4.3 in
[8]). □

Proof of Theorem 4.3. The proof proceeds by induction. For n = 1,
the theorem follows directly from Definition 3.1 and Lemma 5.1 with
u(·) = 0. Suppose the result holds for n − 1 (n ≥ 2). Let π(n−1) =
(f1, f2, ..., fn−1) with fi ∈ Φ1 and γ(n−1) = (g1, g2, ..., gn−1) with gi ∈ Φ2

be a pair of α-optimal Markov strategies of players 1 and 2, respectively,
in the (n− 1)-stage semi-Markov game. Then

(10) V ∗
n−1(·) = Vn−1(·, π(n−1), γ(n−1)),

and

V ∗
n−1(·) = TαV

∗
n−2(·).

For an arbitrary g ∈ Φ2 put γg = (g, g1, ..., gn−1). By definition of Un,
we have

Un(x) ≤ sup
π∈Π

Vn(x, π, γ
g),

from which we obtain

Un(x) ≤ sup
µ∈A(x)

{
∫
B(x)

∫
A(x)

[r(x, a, b)

+ βα(x, a, b)

∫
sup
π∈Π

Vn−1(y, π, γ
(n−1))Q(dy |x, a, b)]µ(da)g(x)(db)}.

Therefore, by the induction hypothesis,

Un(x) ≤ sup
µ∈A(x)

H(V ∗
n−1, x, µ, g(x)).

Hence, since g ∈ Φ2 was arbitrary,

Un(x) ≤ inf
λ∈B(x)

sup
µ∈A(x)

H(V ∗
n−1, x, µ, λ),

and, by Lemma 5.1,

(11) Un(x) ≤ TαV
∗
n−1(x).
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Similarily we obtain

(12) Ln(x) ≥ TαV
∗
n−1(x).

Combining (11) and (12) we get Ln(x) = Un(x) = TαV
∗
n−1(x), i.e. the

n-stage semi-Markov game has a value V ∗
n and V ∗

n = TαV
∗
n−1. Further,

by Lemma 5.1 V ∗
n ∈ Bw(X), and there exist f0 ∈ Φ1 and g0 ∈ Φ2 such

that for every f ∈ Φ1 and g ∈ Φ2,

H(V ∗
n−1, x, f(x), g0(x)) ≤ V ∗

n (x)(13)

= H(V ∗
n−1, x, f0(x), g0(x))

≤ H(V ∗
n−1, x, f0(x), g(x)).

Let π(n) = (f0, f1, ..., fn−1) and γ(n) = (g0, g1, ..., gn−1). Then, from (10)
and (13) it follows that π(n) and γ(n) are α-optimal strategies for players
1 and 2, respectively. □

6 Proof of Theorem 4.4

To prove Theorem 4.4, we need some preliminary lemmas for which
we require the following notation. For a pair of stationary strategies
(f, g) ∈ Φ1 × Φ2, we define the operator Tfg on Bw(X) as:

Tfgu(x) := H(u, x, f(x), g(x)).

It is clear (see the proof of Lemma 5.1) that Tfgu belongs to Bw(X)
for each u ∈ Bw(X).

Lemma 6.1. If A1-A3 hold, then both Tα and Tfg are contraction
operators with modulus ηρα < 1.

Proof: First we note that both operators are monotone. That is, if
u, v ∈ Bw(X) and u(·) ≤ v(·), then for all x ∈ X

Tfgu(x) ≤ Tfgv(x).

Similarly, Tαu(x) ≤ Tαv(x) for all x ∈ X. Also, it is easy to see that for
k ≥ 0,

Tfg(u+ kw)(x) ≤ Tfgu(x) + ραηkw(x) ∀x ∈ X,

and

(14) Tα(u+ kw)(x) ≤ Tαu(x) + ραηkw(x) ∀x ∈ X.
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Now, for u, v ∈ Bw(X), by (14), the monotonocity of Tα and the fact
that u ≤ v + w ∥u− v∥w , it follows that

Tαu(x) ≤ Tαv(x) + ραη ∥u− v∥w w(x) ∀x ∈ X,

so that

(15) Tαu(x)− Tαv(x) ≤ ραη ∥u− v∥w w(x) ∀x ∈ X.

If we now interchange u and v we obtain

(16) Tαu(x)− Tαv(x) ≥ −ραη ∥u− v∥w w(x) ∀x ∈ X,

and combining (15) and (16) we get

|Tαu(x)− Tαv(x)| ≤ ραη ∥u− v∥w w(x) ∀x ∈ X,

i.e.
∥Tαu− Tαv∥w ≤ ραη ∥u− v∥w .

Hence, Tα is a contraction operator with modulus ραη. Using the same
arguments we can prove that Tfg is a contraction operator with the
same modulus ραη. □

Remark 6.2. Since Tα and Tfg are contraction operators, by Banach’s
Fixed Point Theorem there exist functions v∗ and vfg in Bw(X) such
that Tαv

∗(x) = v∗(x) and Tfgvfg(x) = vfg(x) for all x ∈ X.

Lemma 6.3. For a pair of stationary strategies (f, g) ∈ Φ1 × Φ2, the
function V (·, f, g) is the unique fixed point of Tfg in Bw(X).

Proof: We have to show that V (x, f, g) = TfgV (x, f, g) ∀x ∈ X. Now,

V (x, f, g) = Efg
x {r(x0, a0, b0) +

∞∑
n=1

n−1∏
k=0

βα(xk, ak, bk)r(xn, an, bn)}

= r(x, f(x), g(x)) + Efg
x {

∞∑
n=1

n−1∏
k=0

βα(xk, ak, bk)r(xn, an, bn)}

= r(x, f(x), g(x)) + Efg
x {βα(x0, a0, b0)Efg

x [r(x1, a1, b1)

+

∞∑
n=2

n−1∏
k=1

βα(xk, ak, bk)r(xn, an, bn) |h1 ]}

= r(x, f(x), g(x)) + Efg
x {βα(x0, a0, b0)V (x1, f, g)}

= TfgV (x, f, g).
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Thus, V (·, f, g) is the fixed point of Tfg. □

Lemma 6.4. Suppose that A1-A3 hold, and let π and γ be arbitrary
strategies for players 1 and 2, respectively. Then for each x ∈ X and
n = 0, 1, ...

(a) Eπγ
x w(xn) ≤ ηnw(x),

(b) |Eπγ
x r(xn, an, bn)| ≤ mηnw(x),

(c) limn→∞Eπγ
x (

∏n−1
k=0 βα(xk, ak, bk)u(xn)) = 0 for each u ∈ Bw(X).

Proof: For n = 0, (a) and (b) are trivially satisfied. Now, if n ≥ 1 then,
by A3(b),

Eπγ
x [w(xn) | hn−1, an−1, bn−1] =

∫
w(y)Q(dy | xn−1, an−1, bn−1)

≤ ηw(xn−1).

Hence Eπγ
x w(xn) ≤ ηEπγ

x w(xn−1), which by iteration yields (a). Part
(b) follows immediately from (a) and A3(a). To prove (c), we observe
that Lemma 4.1 and (a) yield∣∣∣∣∣Eπγ

x [

n−1∏
k=0

βα(xk, ak, bk)u(xn)]

∣∣∣∣∣ ≤ ρnαE
πγ
x |u(xn)| ≤ ρnα ∥u∥w Eπγ

x w(xn)

≤ (ραη)
n ∥u∥w w(x).

This yields (c), since ραη < 1. □

Proof of Theorem 4.4. (a) Let Vα be the unique fixed point in Bw(X)
of Tα. Then

Vα(x) = TαVα(x) = max
µ∈A(x)

min
λ∈B(x)

H(Vα, x, µ, λ).

By Lemma 5.1 there exists a pair of stationary strategies (f∗, g∗) ∈
Φ1 × Φ2 such that

Vα(x) = H(Vα, x, f
∗(x), g∗(x))(17)

= min
λ∈B(x)

H(Vα, x, f
∗(x), λ)

= max
µ∈A(x)

H(Vα, x, µ, g
∗(x)).

We will prove that Vα is the value of the semi-Markov game and that
(f∗, g∗) is an α-optimal strategy pair. The first equality in (17) implies
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that Vα is the fixed point in Bw(X) of Tf∗g∗ . Thus, by Lemma 6.3,
Vα(·) = V (·, f∗, g∗), so that it is enough to show that for arbitrary
π ∈ Π and γ ∈ Γ,

(18) V (x, f∗, γ) ≥ V (x, f∗, g∗) ≥ V (x, π, g∗) ∀x ∈ X.

We will prove the second inequality in (18). A similar proof can be
given for the first inequality. By (5) we have

V (x, π, g∗) = Eπg∗
x {r(x0, a0, b0) +

∞∑
n=1

n−1∏
k=0

βα(xk, ak, bk)r(xn, an, bn)}.

From properties of the conditional expectation we have for n ≥ 1, hn ∈
Hn, an ∈ A(xn), and bn ∈ B(xn),

Eπg∗
x {

∏n
k=0 βα(xk, ak, bk)V (xn+1, f

∗, g∗) | hn, an, bn}

=
∏n

k=0 βα(xk, ak, bk)E
πg∗
x {V (xn+1, f

∗, g∗) | hn, an, bn}

=
∏n

k=0 βα(xk, ak, bk)
∫
V (y, f∗, g∗)Q(dy | xn, πn(hn), g∗(xn))

=
∏n−1

k=0 βα(xk, ak, bk){βα(xn, an, bn)
∫
V (y, f∗, g∗)Q(dy | xn, πn(hn),

g∗(xn)) + r(xn, πn(hn), g
∗(xn))− r(xn, πn(hn), g

∗(xn))}

≤
∏n−1

k=0 βα(xk, ak, bk)[V (xn, f
∗, g∗)− r(xn, πn(hn), g

∗(xn))].

Equivalently, for n ≥ 1∏n−1
k=0 βα(xk, ak, bk)V (xn, f

∗, g∗)

−Eπg∗
x {

∏n
k=0 βα(xk, ak, bk)V (xn+1, f

∗, g∗) | hn, an, bn]

≥
∏n−1

k=0 βα(xk, ak, bk)r(xn, πn(hn), g
∗(xn)).

We also have

V (x0, f
∗, g∗)−Eπg∗

x [βα(x0, a0, b0)V (x1, f
∗, g∗)] ≥ r(x0, π0(x0), g

∗(x0)).
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Now, taking expectations and summing over n = 0, 1, ..., N we obtain

V (x, f∗, g∗)− Eπg∗
x {

N∏
k=0

βα(xk, ak, bk)V (xN+1, f
∗, g∗)}

≥ Eπg∗
x [r(x0, a0, b0) +

N∑
n=1

n−1∏
k=0

βα(xk, ak, bk)r(xn, an, bn)].

Finally, letting N → ∞, by (5) and Lemma 6.4 (c) we obtain the re-
quired result.

(b) (=⇒) Suppose that (f, g) ∈ Φ1 × Φ2 is a pair of α-optimal
stationary strategies. Then for all x ∈ X, π ∈ Π and γ ∈ Γ,

(19) V (x, f, γ) ≥ V (x, f, g) ≥ V (x, π, g).

Fix x ∈ X and for an arbitrary λ ∈ B(x) define γ̂ = (γ̂n) as follows:
γ̂0 = λ and γ̂n = g for n = 1, 2, .... Then, by the first inequality in (19),

V (x, f, g) ≤ V (x, f, γ̂) =

∫
B(x)

∫
A(x)

[r(x, a, b)

+ βα(x, a, b)

∫
V (y, f, g)Q(dy |x, a, b)]f(x)(da)λ(db).

It follows that
V (x, f, g) ≤ H(V (·, f, g), x, f, λ),

from which we get
V (x, f, g) ≤ TαV (x, f, g).

Similarily, we can prove

V (x, f, g) ≥ TαV (x, f, g),

and combining the last two inequalities we get the desired result.
(⇐=) The proof of this part is contained in the proof of part (a). □
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