Morfismos, Vol. 5, No. 2, 2001, pp. 37-50

Monte Carlo approach to insurance ruin
problems using conjugate processes *

Luis F. Hoyos-Reyes *

Abstract

In this paper is discussed a simulation method developed by S.
Asmussen called conjugate processes which is based on a version
of Wald’s fundamental identity. With this method it is possible
to simulate within finite time risk reserve processes with infinite
time horizons. This allows us to construct Monte Carlo estimators
for the ruin probability, which is one of the main problems in
insurance risk theory. Some examples of the Poisson/Exponential
and Poisson/Uniform cases are presented.
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1 Introduction

One of the main problems in insurance risk theory is to estimate the
ruin probability [1-8,11]. It can be roughly described as follows.

The risk reserve process over (0,t] is the difference between a pre-
mium deterministic process u + ¢t and the accumulated claims Z; (a
compound Poisson process), for some given initial capital u > 0 . The
premium income rate c¢ is fixed by the insurance company and is in-
dependent of t. The idea is to study the behavior of the risk reserve
process that models the accumulated capital over finite or infinite time

*Research partially supported by a CONACyT scholarship. This paper is part of
the author’s M. Sc. Thesis presented at the Divisién de Ciencias Bésicas e Ingenieria,
UAM-Iztapalapa.

!Professor at Departamento de Sistemas, UAM-Azcapotzalco.

37



38 Luis F. Hoyos-Reyes

horizons, in particular the probability that exists a moment 7 when the
risk process is negative. This is called the ruin probability.

The main purpose of this paper is to introduce Monte Carlo esti-
mators (MCEs) for the ruin probability in infinite time horizon using
conjugate processes. This approach allows us to simulate within finite
time a risk reserve process with infinite time horizon. Here, we construct
a MCE for the ruin probability using the empirical distribution of the
ruin events after a sufficiently large number of simulations. Some ex-
amples of the Poisson/Exponential (P/E) and Poisson/Uniform (P/U)
cases are presented.

This paper is organized as follows. We begin in §2 by introducing
basic terminology and notation. In §3 we show a formulation for the
conjugate process and construct the MCEs. In §4 we compute exam-
ples of the P/E and P/U cases. Finally, §5 presents some concluding
remarks.

2 Preliminaries

Assumption 2.1

(a) The claims arrive according to a Poisson process {N;},~, with
intensity A and interclaim times {73}, .

(b) The claim sizes X1, Xo,... are i.i.d nonnegative random variables
with a finite mean p.

(¢) Xi and {N¢},5 are independent.

Definition 2.2 The accumulated claim process is Z; := Zgéo X, for
t > 0, with Xg :=0.

We next recall the classical risk reserve process [2,7,8].

Definition 2.3 Let u be the initial capital and ¢ > 0 be the premium
income rate.
We define the risk reserve process

Y, :=Z; — ct, t € (0,00),

and the time to ruin

T:=inf{t >0:Y; > u}.



Insurance ruin problems

Definition 2.4 A family (Fy)gco of distributions on R is called a con-
jugate family if the Fpy are mutually equivalent with densities of the
form

dFy

(1) aF,

() = exp {(6 — o)z — hg,(0)}

and if for some fixed 8y € © the parameter set © contains all # € R for
which (1) defines a probability density for some hg,(6).

Then, by definition, Py, := P is the probability law of the process Y;.
In addition, 6y < 0 is the solution of

(Z)/X(_QO) = C/)‘>

where ¢x(8) := FE (eﬁX ) is the moment generating function of X. This

definition of 6y allows us to choose the sign of EyY; as we prove below
(Proposition 2.7).

Also note that ¢g,(8) = FEjy, (eﬁX) = ¢x(B).

Equation (1) implies that hg,(#) is given in terms of the cumulant
generating function of Fy, by

he, (0) := log Eg,e 900X,

The accumulated claim process Z; is a compound Poisson process, so
its moment generating function [2] is

¢ 62,(8) = NOXO)),
Proposition 2.5 Let 0,0y € © with 6 # 6y. Then

_ ¢90(5 + 60 — 6o)
Po(B) = oo 0—00)

Proof:  Using (1)
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6@ = [ eFara

- [ Eoge@-ox HLo(7)

:¢90(5+9—90)' 0

¢90 (9 - 90)

Proposition 2.6 M = MNox(B) — 1) — Be.

Proof: By definition of Y;, we can see that

Ee?t = ¢5,(8) /7.

Hence, from (2) we have
EefY — Mox(B)—1)—et.

Applying the log function to both sides of the latter equation and di-
viding by t, completes the proof. [J
Now from Proposition 2.5

E@e'BZt — Eeoe(ﬁJr@*@O)Zt/E006(9*90)Zt‘
Using (2)

EpePZt = Do, (0—00)(¢0(8)—1)

Y

which implies that under Py, Z; is also a compound Poisson process with
arrival rate A\g = Ay, (0 — 0p) and claims distribution Fy. Therefore,
replacing F with Ey in Proposition 2.6 we obtain

log EgefYt
t

(3) = Ng(d0(B) — 1) — Bc = Mg, (0 — 00)(d0(B) — 1) — Be.

Proposition 2.7 If ¢’ exists in an interval I that contains —6y, then

o = EgY; >0 when 6 >0

and

e < 0 when 6 > 0.
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Proof:  Let xp(B) := M, so that from (3)

xo(B) = Xo(¢e(B) — 1) — Be.

In particular, if 8 = 6,

X@o(ﬁ) = )‘90(¢90(6) - 1) - ﬁca
and taking 8 = —60y we have

X/GQ (60) = Ad)/@o(_eo) —C
On the other hand, recalling that ¢g,(8) = ¢x(5), we get

¢ (—b0) = ¢/X = ¢y, (—0o),
which yields

XIH()(_GO) =0.
Also, forall B e I

Xb, (B) = Adx (B) = AEg, (X%e”X) > 0,

so that —6p is a local minimum, and xg, (-) is convex on I.
Now let 8 € ©. Then Proposition 2.5 implies

xo(B) = x6,(B + 0 — 0y) — xo,(0 — bo),

and, therefore,

(4) xo(0) = xg,(0 — 6o),

and, moreover,

Xp(B) = APk (B + 60 — bo).
On the other hand,

Xo(B) = (EgYie?'") [ EgePt,

and so

x9(0) = EgY; = po.
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Using (4)

1o = Xp, (0 — 00),

and

Ho = Xg,(—bo) = 0.
The last two equalities and the convexity of xg,(-) yield the desired

conclusion. [
3 Monte Carlo estimators

Our main purpose in this section is to estimate the ruin probability
considering an infinite time horizon for the risk reserve process. We
first introduce some definitions.

Definition 3.1 Let u and 7 be as in Definition 2.3. The ruin probabil-
ity in finite time is

V(u,T):=P(r<T),
and the ruin probability in infinite time is

U(u) := P(1 < 00).

The premium income rate c is usually taken as

As Z; is a compound Poisson process, ¢ is independent of . The number
p is called the safety loading, and is related to the capital expected
growth as follows.

Proposition 3.2 If 0 > 0, then Py(T < 00) = 1.

Proof:  Under the law Py, Z; is a compound Poisson process with
Ny ~ Poisson()\g) and claim sizes X; ~ Fy. Therefore

Eo(Zy) = MtEpX.
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Applying the strong law of large numbers to the accumulated claim
process yields

1
(5) lim n (Zy — MtEpX) =0 a.s.

t—o00

Now, from Proposition 2.7 we have Ey(Z;—ct) > 0 and, therefore, p < 0,
and using (5)

1
lim — (Zt — MtEpX — p)\gtEgX) = —p)\gEgX >0 a.s.

t—oo t

This implies

(Zt — /\gt(l + ,O)EQX) — 400 a.s.,

which completes the proof. [

Consider a conjugate family (Fy)gco governing a random walk {S;},~,
in discrete or continuous time. Define 7 := o(S;;t < T), with the usual
extension to stopping times.

Next, we present the version of the Wald’s fundamental identity used
by Asmussen [1,2]. The proof can be seen in [3].

Theorem 3.3 Let 7 be a stopping time for {St};~ and G € §;, G C
{T < oo}. Then for each 6,0 € ©

(6) Py, G = Eplexp{(6p — 0)S; — Tx0(00 — 0)}; G].
From Definition 2.3 and (6)

Py,
P,

(7) =exp{(6o —0)Y; —7x0(0 — O0)},

and integrating (7) over {7 < oo} we can express the ruin probability
in infinite time as

U(u) = Eg[(exp{(6o — 0)Y: — mx0(0 — 60)}) - I {7 < c0}].
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Proposition 3.4 Let 6§ > 0. If we compute n simulations of the con-
jugate process

Ry :=exp{(0o — 0)Yr —7x0(0 — 6o)},

then with probability 1
| LA
—ZR@ — U(u) as n — oo,
n -
=1
where Ré is the final value of the realization of the conjugate process
after simulation i (i =1,2,...).

Proof: By Proposition 3.2 the ruin occurs almost surely, and so each
of the n simulations of Ry can be performed in a finite number of steps.
Moreover, as

EyRp = ¥ (u),
by the strong law of large numbers it follows that, with probability 1,

j L
—ZR@—HII(U) as n—oo. O
n

i=1

We call 23" | R a Monte Carlo estimator (MCE) for ¥ (u).

Observe that integrating (7) over {r < T'} we can write the ruin
probability in a finite time T as

U(u,T) = Eg[(exp{(6o — 0)Y; — Tx9(0 —00)}) - I {7 <T}].
Then, in this case, the corresponding conjugate process is
R§ = exp{(0o — 0)Y; — Txe(0 —60)} - [ {r < T},

and so we could construct an analogous MCE for ¥(u,T).
Remark 3.5 (a) Observe that if § = 6, then Rz; =I{r <T}. Thus

to simulate RQTO is equivalent to simulate the original process Y;,
which, in insurance terminology is called a crude simulation [7,8].
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(b) We can simplify R taking 6 as the Lundberg value 6; = v +
0p, where v > 0 is the unique solution of Lundberg’s equation
X6,(7) = 0. In this case, RGTl is called the Lundberg process.
Using Proposition 2.7 one can see that xg,(6p — 61) = 0, which
implies that

R} =exp(—Y;) - I{r <T}.

Therefore, taking A > 0, § = (1 + A) - 6; and using Theorem 3.3
we obtain the following expression:
(8) Ry, ara) = exp{—(v+01A)Y: +7xp,(01A)} - T {7 < T}.

(c) In (b), the corresponding variance o7 = VargR} is

o5 11a) = Eo [exp {=2(y + 01)Yr + 7x0, (1)} - [ {r < T}-9*(u, T),

and for the infinite horizon case is

031(1+A) = By, exp {—2(y + 61)Y; + 7x0, (01A)} — T (u).

(d) The overshot B(u) of the risk process, defined as B(u) := Y, —u is
useful to calculate agl. It is known [1,2] that when the claims are
exponentially distributed and the arrival process is Poisson (P/E
case), B(u) is exponentially distributed:

(9) Py(B(u) > b) = exp(—b/EpX).

4 P/E and P/U examples

4.1 Example P/E

The Poisson/Exponential case has been extensively researched [1-5] be-
cause it is easy to calculate the ruin probability for the infinite time
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horizon. It is a well known fact [5] that if the safety loading p is posi-
tive, then

1 pU
(10 V) = o (‘ump)) |

Let us consider the P/E case with u := EX = 1, A = 0.8, p = 0.1
and T = oo. The right-hand side of (10) depends on the initial capital
u. Let ¥(u) = 0.05. Then the initial capital is v = 31.904, and the
premium income rate is ¢ = (1 4+ p)Ap (remember that we deal with a
compound Poisson Process Z;).

We solve the Lundberg equation for v using Proposition 2.6:

X00(7) = AMdx(7) = 1) — ey =0.
Then v = 0 is the trivial solution, and the other solution is
v = (c—A)/A = 0.0909.

Now we calculate the variances:

09, = EgyI*{1 < 00} — Ej I{7 < 00} = W(u) — ¥*(u) = 0.0475

agl = Var91 R91 = Va’rel e_’YTT - Val“gle_W(u"—B(“)) = e_Q,YVarele_’yB(u)‘

From (1), Eg, X = (1 — ~)~!, which together with (9) implies that
B(u) ~ exp(1 — ). Thus

Egpe P = (1-9)/(1+7) and  Epe W =1-1.

Hence,

03 = e 2 (er —(1- 7)2) —2.08x 107° < o7..
Note that the difference between the variances is significant, which is
an statistical advantage [9] to construct confidence intervals for ¥(u).
To show some numerical results, let u =1, A = 0.8, p = 0.1, ¢ = 0.88.
JFrom Proposition 2.6, we can see that Nf is a Poisson process with
arrival rate ¢, and Xy is exponentially distributed with parameter \/c.
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Moreover, v = 0.0909, 6y = —0.0488 and 6; = 0.0421.
One can compare the theoretical results versus the Monte Carlo
estimators (MCEs) in Table 1, where

Table 1: Infinite Time Horizon P/E

47

u no | U(u) | ¥(u) OMCE Symer ER
31.9 | 100 | 0.05 | 0.0498 | 4.5 x 10=% | 5.00 x 10~* | 4.0 x 1073
31.9 1000 | 0.05 [ 0.0499 [ 1.4x107% [ 1.41x107* [ 2.0x 1073
16.7 | 1000 | 0.20 [ 0.1997 | 5.7 x 107% [ 5.90 x 10~ % [ 1.5 x 103
omce = (05/n) 1/2 is the standard error of the MCE, Syck is the

corresponding estimator, and the relative error is

ep=|1—U(u)/T(u) .

Notice the good fitness between the standard error op;cr and its esti-
mator Syrcg. Obviously, we have better aproximations to W(u) taking
larger samples because the MCEs are consistent.

4.2 Example P/U

Let us assume that the claims size distribution is uniform over (0, 1).
First of all, we need to find the distibution Fy, and then we have to
show an expression for the conjugate process Rgl(lf INE From (1)

e(@—@o)x -1

Fy(z) = 0<z<l.

ef=0o — 1’

Recall that under Py, Z; is also a compound Poisson process with pa-
rameter

o= (772 —1) /(v + 6:1).

From Proposition 2.6 and (8) we obtain that in the finite horizon case,
and letting v := v + 014,

et _q

(11) Rj,(11a) = €xp <—’YOYT +7 ( ) —-1- 700> T < T},

Y0

whereas in the infinite time horizon
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6’7+91 -1
(12)  Rgaya)=exp | —v0Yr +7 T 1 —o0c] .

Let v = 0.05. Then from Lundberg’s equation

e’ —1

—1—¢cy=0,

we get ¢ = 0.508439. Moreover, simple computations show that —6y =
0.025078 and 0, = v + 0y = 0.024922.

Unfortunately, there are no theoretical results for the P/U case, so
we cannot compare the real and the estimated values like we did under
the P/E assumptions. However, it is possible to estimate the variance
of the conjugate process and to compute the estimator Sy;cr of the
standard error; see Table 2.

Table 2: Infinite Time Horizon P/U
1.00 | 0.199 [ 1.5 x 1072 | 1.2 x 1072
0.10 | 0223 [ 6.2x107* | 2.5 x 1073
0.05 0220 [ 9.9 x 107> [ 9.9 x 10~*
0.00 | 0.220 | 4.2 x107% [ 2.0 x 107

The computations were made with n = 100, and v = 30.
Observe that the best estimation occurs when A = 0, which is con-
sistent with the asymptotic optimality proved by Asmussen [2].

5 Concluding remarks

In the previous sections we have introduced MCEs for the ruin probabil-
ity using conjugate processes. In particular, we have shown formulations
for the conjugate process under the P/U assumptions for both finite (11)
and infinite (12) time horizons.

The P/U case has not been discussed enough in the literature, and
so it is suitable for the simulation approach.

Finally it is important to mention two main advantages of the MCEs
using conjugate processes: (i) the relative simplicity of the formulation,
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and (ii) the minimum computational resources needed compared with
the diffusion approach [1,2], and the martingale approach [6].
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