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Monte Carlo approach to insurance ruin

problems using conjugate processes ∗

Luis F. Hoyos-Reyes 1

Abstract

In this paper is discussed a simulation method developed by S.
Asmussen called conjugate processes which is based on a version
of Wald’s fundamental identity. With this method it is possible
to simulate within finite time risk reserve processes with infinite
time horizons. This allows us to construct Monte Carlo estimators
for the ruin probability, which is one of the main problems in
insurance risk theory. Some examples of the Poisson/Exponential
and Poisson/Uniform cases are presented.
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1 Introduction

One of the main problems in insurance risk theory is to estimate the
ruin probability [1-8,11]. It can be roughly described as follows.

The risk reserve process over (0, t] is the difference between a pre-
mium deterministic process u + ct and the accumulated claims Zt (a
compound Poisson process), for some given initial capital u ≥ 0 . The
premium income rate c is fixed by the insurance company and is in-
dependent of t. The idea is to study the behavior of the risk reserve
process that models the accumulated capital over finite or infinite time
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horizons, in particular the probability that exists a moment τ when the
risk process is negative. This is called the ruin probability.

The main purpose of this paper is to introduce Monte Carlo esti-
mators (MCEs) for the ruin probability in infinite time horizon using
conjugate processes. This approach allows us to simulate within finite
time a risk reserve process with infinite time horizon. Here, we construct
a MCE for the ruin probability using the empirical distribution of the
ruin events after a sufficiently large number of simulations. Some ex-
amples of the Poisson/Exponential (P/E) and Poisson/Uniform (P/U)
cases are presented.

This paper is organized as follows. We begin in §2 by introducing
basic terminology and notation. In §3 we show a formulation for the
conjugate process and construct the MCEs. In §4 we compute exam-
ples of the P/E and P/U cases. Finally, §5 presents some concluding
remarks.

2 Preliminaries

Assumption 2.1

(a) The claims arrive according to a Poisson process {Nt}t≥0 with
intensity λ and interclaim times {Tt}t≥1.

(b) The claim sizes X1, X2, . . . are i.i.d nonnegative random variables
with a finite mean µ.

(c) Xi and {Nt}t≥0 are independent.

Definition 2.2 The accumulated claim process is Zt :=
∑Nt

n=0Xn for
t ≥ 0, with X0 := 0.

We next recall the classical risk reserve process [2,7,8].

Definition 2.3 Let u be the initial capital and c > 0 be the premium
income rate.

We define the risk reserve process

Yt := Zt − ct, t ∈ (0,∞),

and the time to ruin

τ := inf {t > 0 : Yt > u} .
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Definition 2.4 A family (Fθ)θ∈Θ of distributions on R is called a con-
jugate family if the Fθ are mutually equivalent with densities of the
form

(1)
dFθ

dFθ0

(x) = exp {(θ − θ0)x− hθ0(θ)}

and if for some fixed θ0 ∈ Θ the parameter set Θ contains all θ ∈ R for
which (1) defines a probability density for some hθ0(θ).

Then, by definition, Pθ0 := P is the probability law of the process Yt.
In addition, θ0 < 0 is the solution of

ϕ′
X(−θ0) = c/λ,

where ϕX(β) := E
(
eβX

)
is the moment generating function of X. This

definition of θ0 allows us to choose the sign of EθYt as we prove below
(Proposition 2.7).

Also note that ϕθ0(β) = Eθ0

(
eβX

)
= ϕX(β).

Equation (1) implies that hθ0(θ) is given in terms of the cumulant
generating function of Fθ0 by

hθ0(θ) := logEθ0e
(θ−θ0)X .

The accumulated claim process Zt is a compound Poisson process, so
its moment generating function [2] is

(2) ϕZt(β) = eλt(ϕX(β)−1).

Proposition 2.5 Let θ, θ0 ∈ Θ with θ ̸= θ0. Then

ϕθ(β) =
ϕθ0(β + θ − θ0)

ϕθ0(θ − θ0)
.

Proof: Using (1)
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ϕθ(β) =

∫ ∞

−∞
eβxdFθ(x)

=

∫ ∞

−∞
eβx

e(θ−θ0)x

Eθ0e
(θ−θ0)X

dFθ0(x)

=
ϕθ0(β + θ − θ0)

ϕθ0(θ − θ0)
. □

Proposition 2.6 logEeβYt
t = λ(ϕX(β)− 1)− βc.

Proof: By definition of Yt, we can see that

EeβYt = ϕZt(β)/e
βct.

Hence, from (2) we have

EeβYt = eλt(ϕX(β)−1)−βct.

Applying the log function to both sides of the latter equation and di-
viding by t, completes the proof. □

Now from Proposition 2.5

Eθe
βZt = Eθ0e

(β+θ−θ0)Zt/Eθ0e
(θ−θ0)Zt .

Using (2)

Eθe
βZt = eλtϕθ0

(θ−θ0)(ϕθ(β)−1),

which implies that under Pθ, Zt is also a compound Poisson process with
arrival rate λθ = λϕθ0(θ − θ0) and claims distribution Fθ. Therefore,
replacing E with Eθ in Proposition 2.6 we obtain

(3)
logEθe

βYt

t
= λθ(ϕθ(β)− 1)− βc = λϕθ0(θ − θ0)(ϕ0(β)− 1)− βc.

Proposition 2.7 If ϕ′′
X exists in an interval I that contains −θ0, then

µθ := EθYt > 0 when θ > 0

and

µθ < 0 when θ > 0.



Insurance ruin problems 41

Proof: Let χθ(β) :=
logEθe

βYt

t , so that from (3)

χθ(β) = λθ(ϕθ(β)− 1)− βc.

In particular, if θ = θ0,

χθ0(β) = λθ0(ϕθ0(β)− 1)− βc,

and taking β = −θ0 we have

χ′
θ0(θ0) = λϕ′

θ0(−θ0)− c.

On the other hand, recalling that ϕθ0(β) = ϕX(β), we get

ϕ′
X(−θ0) = c/λ = ϕ′

θ0(−θ0),

which yields

χ′
θ0(−θ0) = 0.

Also, for all β ∈ I

χ′′
θ0(β) = λϕ′′

X(β) = λEθ0(X
2eβX) > 0,

so that −θ0 is a local minimum, and χθ0(·) is convex on I.
Now let θ ∈ Θ. Then Proposition 2.5 implies

χθ(β) = χθ0(β + θ − θ0)− χθ0(θ − θ0),

and, therefore,

(4) χ′
θ(0) = χ′

θ0(θ − θ0),

and, moreover,

χ′
θ(β) = λϕ′

X(β + θ − θ0).

On the other hand,

χ′
θ(β) = (EθYte

βYt)/Eθe
βYt ,

and so

χ′
θ(0) = EθYt = µθ.
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Using (4)

µθ = χ′
θ0(θ − θ0),

and

µ0 = χ′
θ0(−θ0) = 0.

The last two equalities and the convexity of χθ0(·) yield the desired
conclusion. □

3 Monte Carlo estimators

Our main purpose in this section is to estimate the ruin probability
considering an infinite time horizon for the risk reserve process. We
first introduce some definitions.

Definition 3.1 Let u and τ be as in Definition 2.3. The ruin probabil-
ity in finite time is

Ψ(u, T ) := P (τ < T ),

and the ruin probability in infinite time is

Ψ(u) := P (τ < ∞).

The premium income rate c is usually taken as

c = (1 + ρ)EZt/t.

As Zt is a compound Poisson process, c is independent of t. The number
ρ is called the safety loading, and is related to the capital expected
growth as follows.

Proposition 3.2 If θ > 0, then Pθ(τ < ∞) = 1.

Proof: Under the law Pθ, Zt is a compound Poisson process with
Nt ∼ Poisson(λθ) and claim sizes Xi ∼ Fθ. Therefore

Eθ(Zt) = λθtEθX.
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Applying the strong law of large numbers to the accumulated claim
process yields

(5) lim
t→∞

1

t
(Zt − λθtEθX) = 0 a.s.

Now, from Proposition 2.7 we have Eθ(Zt−ct) > 0 and, therefore, ρ < 0,
and using (5)

lim
t→∞

1

t
(Zt − λθtEθX − ρλθtEθX) = −ρλθEθX > 0 a.s.

This implies

(Zt − λθt(1 + ρ)EθX) → +∞ a.s.,

which completes the proof. □
Consider a conjugate family (Fθ)θ∈Θ governing a random walk {St}t≥0

in discrete or continuous time. Define FT := σ(St; t ≤ T ), with the usual
extension to stopping times.

Next, we present the version of the Wald’s fundamental identity used
by Asmussen [1,2]. The proof can be seen in [3].

Theorem 3.3 Let τ be a stopping time for {St}t≥0 and G ∈ Fτ , G ⊆
{τ < ∞}. Then for each θ0, θ ∈ Θ

(6) Pθ0G = Eθ [exp {(θ0 − θ)Sτ − τχθ(θ0 − θ)} ;G] .

From Definition 2.3 and (6)

(7)
dPθ0

dPθ
= exp {(θ0 − θ)Yτ − τχθ(θ − θ0)} ,

and integrating (7) over {τ < ∞} we can express the ruin probability
in infinite time as

Ψ(u) = Eθ [(exp {(θ0 − θ)Yτ − τχθ(θ − θ0)}) · I {τ < ∞}] .
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Proposition 3.4 Let θ > 0. If we compute n simulations of the con-
jugate process

Rθ := exp {(θ0 − θ)Yτ − τχθ(θ − θ0)} ,

then with probability 1

1

n

n∑
i=1

Ri
θ → Ψ(u) as n → ∞,

where Ri
θ is the final value of the realization of the conjugate process

after simulation i (i = 1, 2, . . . ).

Proof: By Proposition 3.2 the ruin occurs almost surely, and so each
of the n simulations of Rθ can be performed in a finite number of steps.
Moreover, as

EθRθ = Ψ(u),

by the strong law of large numbers it follows that, with probability 1,

1

n

n∑
i=1

Ri
θ → Ψ(u) as n → ∞. □

We call 1
n

∑n
i=1R

i
θ a Monte Carlo estimator (MCE) for Ψ(u).

Observe that integrating (7) over {τ < T} we can write the ruin
probability in a finite time T as

Ψ(u, T ) = Eθ [(exp {(θ0 − θ)Yτ − τχθ(θ − θ0)}) · I {τ < T}] .

Then, in this case, the corresponding conjugate process is

RT
θ := exp {(θ0 − θ)Yτ − τχθ(θ − θ0)} · I {τ < T} ,

and so we could construct an analogous MCE for Ψ(u, T ).

Remark 3.5 (a) Observe that if θ = θ0, then RT
θ0

= I {τ < T}. Thus
to simulate RT

θ0
is equivalent to simulate the original process Yt,

which, in insurance terminology is called a crude simulation [7,8].
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(b) We can simplify RT
θ taking θ as the Lundberg value θ1 := γ +

θ0, where γ > 0 is the unique solution of Lundberg’s equation
χθ0(γ) = 0. In this case, RT

θ1
is called the Lundberg process.

Using Proposition 2.7 one can see that χθ1(θ0 − θ1) = 0, which
implies that

RT
θ1 = exp(−γYτ ) · I {τ < T} .

Therefore, taking ∆ > 0, θ = (1 + ∆) · θ1 and using Theorem 3.3
we obtain the following expression:

(8) RT
θ1(1+∆) = exp {−(γ + θ1∆)Yτ + τχθ1(θ1∆)} · I {τ < T} .

(c) In (b), the corresponding variance σ2
θ = VarθR

T
θ is

σ2
θ1(1+∆) = Eθ1 [exp {−2(γ + θ1)Yτ + τχθ1(θ1∆)} · I {τ < T}]−Ψ2(u, T ),

and for the infinite horizon case is

σ2
θ1(1+∆) = Eθ1 exp {−2(γ + θ1)Yτ + τχθ1(θ1∆)} −Ψ2(u).

(d) The overshot B(u) of the risk process, defined as B(u) := Yτ −u is
useful to calculate σ2

θ1
. It is known [1,2] that when the claims are

exponentially distributed and the arrival process is Poisson (P/E
case), B(u) is exponentially distributed:

(9) Pθ(B(u) > b) = exp(−b/EθX).

4 P/E and P/U examples

4.1 Example P/E

The Poisson/Exponential case has been extensively researched [1-5] be-
cause it is easy to calculate the ruin probability for the infinite time
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horizon. It is a well known fact [5] that if the safety loading ρ is posi-
tive, then

(10) Ψ(u) =
1

1 + ρ
exp

(
− ρu

µ(1 + ρ)

)
.

Let us consider the P/E case with µ := EX = 1, λ = 0.8, ρ = 0.1
and T = ∞. The right-hand side of (10) depends on the initial capital
u. Let Ψ(u) = 0.05. Then the initial capital is u = 31.904, and the
premium income rate is c = (1 + ρ)λµ (remember that we deal with a
compound Poisson Process Zt).

We solve the Lundberg equation for γ using Proposition 2.6:

χθ0(γ) = λ(ϕX(γ)− 1)− cγ = 0.

Then γ = 0 is the trivial solution, and the other solution is

γ = (c− λ)/λ = 0.0909.

Now we calculate the variances:

σ2
θ0 = Eθ0I

2{τ < ∞}− E2
θ0I{τ < ∞} = Ψ(u)−Ψ2(u) = 0.0475

σ2
θ1 = Varθ1Rθ1 = Varθ1e

−γTτ = Varθ1e
−γ(u+B(u)) = e−2γVarθ1e

−γB(u).

From (1), Eθ1X = (1 − γ)−1, which together with (9) implies that
B(u) ∼ exp(1− γ). Thus

Eθ1e
−2γB(u) = (1− γ)/(1 + γ) and Eθ1e

−γB(u) = 1− γ.

Hence,

σ2
θ1 = e−2γu

(
1− γ

1 + γ
− (1− γ)2

)
= 2.08× 10−5 < σ2

θ0 .

Note that the difference between the variances is significant, which is
an statistical advantage [9] to construct confidence intervals for Ψ(u).

To show some numerical results, let µ = 1, λ = 0.8, ρ = 0.1, c = 0.88.
¿From Proposition 2.6, we can see that Nθ

t is a Poisson process with
arrival rate c, and Xθ is exponentially distributed with parameter λ/c.
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Moreover, γ = 0.0909, θ0 = −0.0488 and θ1 = 0.0421.
One can compare the theoretical results versus the Monte Carlo

estimators (MCEs) in Table 1, where

Table 1: Infinite Time Horizon P/E

u n Ψ(u) Ψ̂(u) σMCE SMCE εR
31.9 100 0.05 0.0498 4.5× 10−4 5.00× 10−4 4.0× 10−3

31.9 1000 0.05 0.0499 1.4× 10−4 1.41× 10−4 2.0× 10−3

16.7 1000 0.20 0.1997 5.7× 10−4 5.90× 10−4 1.5× 10−3

σMCE :=
(
σ2
θ/n

)1/2
is the standard error of the MCE, SMCE is the

corresponding estimator, and the relative error is

εR :=| 1− Ψ̂(u)/Ψ(u) | .

Notice the good fitness between the standard error σMCE and its esti-
mator SMCE . Obviously, we have better aproximations to Ψ(u) taking
larger samples because the MCEs are consistent.

4.2 Example P/U

Let us assume that the claims size distribution is uniform over (0, 1).
First of all, we need to find the distibution Fθ, and then we have to
show an expression for the conjugate process RT

θ1(1−∆). From (1)

Fθ(x) =
e(θ−θ0)x − 1

eθ−θ0 − 1
, 0 < x < 1.

Recall that under Pθ, Zt is also a compound Poisson process with pa-
rameter

λθ =
(
eγ+θ1∆ − 1

)
/(γ + θ1∆).

From Proposition 2.6 and (8) we obtain that in the finite horizon case,
and letting γ0 := γ + θ1∆,

(11) RT
θ1(1+∆) = exp

(
−γ0Yτ + τ

(
eγ+θ1 − 1

γ0

)
− 1− γ0c

)
· I{τ < T},

whereas in the infinite time horizon
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(12) Rθ1(1+∆) = exp

(
−γ0Yτ + τ

(
eγ+θ1 − 1

γ0

)
− 1− γ0c

)
.

Let γ = 0.05. Then from Lundberg’s equation

eγ − 1

γ
− 1− cγ = 0,

we get c = 0.508439. Moreover, simple computations show that −θ0 =
0.025078 and θ1 = γ + θ0 = 0.024922.

Unfortunately, there are no theoretical results for the P/U case, so
we cannot compare the real and the estimated values like we did under
the P/E assumptions. However, it is possible to estimate the variance
of the conjugate process and to compute the estimator SMCE of the
standard error; see Table 2.

Table 2: Infinite Time Horizon P/U

∆ Ψ̂(u) σ̂2
θ SMCE

1.00 0.199 1.5× 10−2 1.2× 10−2

0.10 0.223 6.2× 10−4 2.5× 10−3

0.05 0.220 9.9× 10−5 9.9× 10−4

0.00 0.220 4.2× 10−6 2.0× 10−4

The computations were made with n = 100, and u = 30.
Observe that the best estimation occurs when ∆ = 0, which is con-

sistent with the asymptotic optimality proved by Asmussen [2].

5 Concluding remarks

In the previous sections we have introduced MCEs for the ruin probabil-
ity using conjugate processes. In particular, we have shown formulations
for the conjugate process under the P/U assumptions for both finite (11)
and infinite (12) time horizons.

The P/U case has not been discussed enough in the literature, and
so it is suitable for the simulation approach.

Finally it is important to mention two main advantages of the MCEs
using conjugate processes: (i) the relative simplicity of the formulation,
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and (ii) the minimum computational resources needed compared with
the diffusion approach [1,2], and the martingale approach [6].
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02200 México D.F., MEXICO,
hrlf@correo.azc.uam.mx.

References

[1] Asmussen, S., Approximations for the probability of ruin within
finite time, Scandinavian Actuarial J. 20 (1984), 31-57.

[2] Asmussen, S., Conjugate processes and the simulation of ruin
problems, Stochastic Processes and their Applications 20 (1985),
213-229.

[3] Asmussen, S., Applied Probability and Queues, Wiley, Chichester,
U.K., 1987.

[4] Asmussen, S. and Rolski, T., Computational methods in risk the-
ory: A matrix-algorithmic approach, Insurance: Mathematics and
Economics 10 (1991), 259-274.

[5] Beard, R.E., Pentikainen, T. and Pessonen, E., Risk Theory,
Chapman and Hall, New York, 1984.

[6] Dassios, A. and Embrechts, P., Martingales and insurance risk,
Commun. Statist.-Stochastic Models 5 (1989), 181-217.

[7] Embrechts, P., Stochastic Modelling in insurance, CLAPEM-IV
Proceedings, Mexico City 1990.

[8] Embrechts, P. and Wouters, P., Simulating risk solvency, Insur-
ance:Mathematics and Economics 9 (1990), 141-148.

[9] Ross, S.M., Stochastic Processes, Wiley, New York, 1983.

[10] Ross, S.M., A Course in Simulation, Macmillan, New York, 1990.



50 Luis F. Hoyos-Reyes

[11] Tijms, H.C., Stochastic Models, An Algorithmic Approach, Wiley,
Chichester, U.K., 1998.


