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Existence of Nash equilibria in nonzero-sum

ergodic stochastic games in Borel spaces ∗

Rafael Beńıtez-Medina

Abstract

In this paper we study nonzero-sum stochastic games with Borel
state and action spaces, and the average payoff criterion. Under
suitable assumptions we show the existence of Nash equlibria in
stationary strategies. Our hypotheses include ergodicity condi-
tions and an ARAT (additive reward, additive transition) struc-
ture.
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1 Introduction

This paper concerns nonzero-sum stochastic games with Borel state and
action spaces, and the average payoff criterion with possibly unbounded
payoffs. This class of games has many applications, for instance, in
queueing and economic theory (see [1], [2], [12], [27]).

The problem we are interested in is the existence of Nash equilibria in
stationary strategies. To do this we impose ergodicity conditions already
used by several authors for markov games and control problems (e.g.
[1], [6], [9], [10], [14], [15], [19], [22]) together with a so-called ARAT
(additive reward, additive transition law) structure. Similar results have
been obtained by Ghosh and Bagchi [5] and Küenle [14] for games with
bounded payoffs. Other related works include [18], which deals with
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Borel state space and bounded payoffs, and [27], in which the state
space is countable.

For stochastic games with a discounted payoff criterion there is
a larger literature. For instance, for zero-sum problems in countable
spaces, see [1], [17], [26]; for uncountable spaces, see [11], [13], [21], [25].
On the other hand, for the nonzero-sum case in countable spaces, see
[27], and for uncountable spaces, see [11], [23], [24].

The remainder of the paper is organized as follows. Section 2 in-
troduces standard material on stochastic games and strategies, and the
optimality criteria. The core of the paper is contained in section 3: af-
ter introducing some assumptions, we present our main result, Theorem
3.10, on the existence of Nash equilibria. Finally, after some technical
preliminaries in section 4, the proof of Theorem 3.10 is presented in
section 5.

2 The game model

For notational ease, we shall consider a stochastic game with only two
players. For N > 2 players, the situation is completely analogous. We
begin with the following remark on terminology and notation.

2.1 Remark.

(a) A Borel subset X of a complete and separable metric space is
called a Borel space, and its Borel σ-algebra is denoted by B(X).
We only deal with Borel spaces, and so measurable always means
“Borel measurable”. Given a Borel space X, we denote by IP(X)
the family of probability measures on X, endowed with the weak
topology σ(IP(X), Cb(X)), where Cb(X) stands for the space of
continuous bounded functions on X. In this case, IP(X) is a Borel
space. Moreover, if X is compact, then so is IP(X).

(b) Let X and Y be Borel spaces. A measurable function ϕ : Y →
IP(X) is called a transition probability from Y to X, and we denote
by IP(X|Y ) the family of all those transition probabilities. If ϕ
is in IP(X|Y ), then we write its values either as ϕ(y)(B) or as
ϕ(B|y), for all y ∈ Y and B ∈ B(X). Finally, if X = Y then ϕ is
said to be a Markov transition probability on X.

The stochastic game model. We shall consider the two-person
nonzero-sum stochastic game model
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GM := (X,A,B, IKA, IKB, Q, r1, r2),(1)

whereX is the state space, and A and B are the action spaces for players
1 and 2, respectively. These spaces are all assumed to be Borel spaces.
The sets IKA ∈ B (X × A) and IKB ∈ B (X × B) are the constraint sets.
That is, for each x ∈ X, the x-section in IKA, namely

A(x) := {a ∈ A|(x, a) ∈ IKA},

represents the set of admissible actions for player 1 in the state x. Sim-
ilarly, the x-section in IKB, i.e.

B(x) := {b ∈ B|(x, b) ∈ IKB},

stands for the family of admissible actions for player 2 in the state x.
Let

IK := {(x, a, b)|x ∈ X, a ∈ A(x), b ∈ B(x)},

which is a Borel subset of X × A × B. Then Q ∈ IP(X| IK) is the
game’s transition law, and, finally, ri : IK → IR is a measurable function
representing the reward function for player i = 1, 2.

The game is played as follows. At each stage t = 0, 1, . . . , the play-
ers 1 and 2 observe the current state x ∈ X of the system, and in-
dependently choose actions a ∈ A(x) and b ∈ B(x), respectively. As
a consequence of this, the following happens: (1) player i receives an
immediate reward ri(x, a, b), i = 1, 2; and (2) the system moves to a
new state with distribution Q(·|x, a, b). The goal of each player is to
maximize, in the sense of Definition 2.2, below, his long-run expected
average reward (or payoff) per unit time.

2.2 Strategies

LetH0 := X andHt := IK×Ht−1 for t = 1, 2, . . . . For each t, an element
ht = (x0, a0, b0, . . . , xt−1, at−1, bt−1, xt) of Ht represents a “history” of
the game up to time t. A strategy for player 1 is then defined
as a sequence π1 = {π1t , t = 0, 1, . . .} of transition probabilities π1t in
IP(A|Ht) such that

π1t (A(xt)|ht) = 1 ∀ht ∈ Ht, t = 0, 1, . . . .

We denote by Π1 the family of all strategies for player 1.
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Now define IA(x) := IP(A(x)) for each state x ∈ X, and let S1 be
the class of all transition probabilities ϕ ∈ IP(A|X) such that ϕ(x) is
in IA(x) for all x ∈ X. Then a strategy π1 = {π1t } ∈ Π1 is called
stationary if there exists ϕ ∈ S1 such that

π1t (·|ht) = ϕ(xt)(·) ∀ht ∈ Ht, t = 0, 1, . . . .

We will identify S1 with the family of stationary strategies for player 1.
The sets of strategies Π2 and S2 for player 2 are defined similarly,

writing B(x) and IB(x) := IP(B(x)) in lieu of A(x) and IA(x), respec-
tively.

Let (Ω,F) be the canonical measurable space that consists of the
sample space Ω := (X × A × B)∞ and its product σ-algebra F . Then
for each pair of strategies (π1, π2) ∈ Π1 × Π2 and each initial state
x ∈ X there exists a probability measure P π

1,π2

x and a stochastic process
{(xt, at, bt), t = 0, 1, . . . .} defined on (Ω,F) in a canonical way, where
xt, at and bt represent the state and the actions of players 1 and 2,
respectively, at each stage t = 0, 1, . . .. The expectation operator with
respect to P π

1,π2

x is denoted by Eπ
1,π2

x .

2.3 Average payoff criteria

For each n = 1, 2, . . . and i = 1, 2, let

J in(π
1, π2, x) := Eπ

1,π2

x [
n−1∑
t=0

ri(xt, at, bt)]

be the n-stage expected total payoff (or reward) of player i when the
players use the strategies π1 ∈ Π1 and π2 ∈ Π2, given the initial state
x0 = x.

The corresponding long-run expected average payoff (EAP) per unit
time is then defined as

J i(π1, π2, x) := lim inf
n→∞

J in(π
1, π2, x)/n.(2)

The EAP is also known as the ergodic payoff (or ergodic reward) crite-
rion.

2.2 Definition. A pair of strategies (π1∗, π2∗) is called a Nash equi-
librium (for the EAP criterion) if

J1(π1∗, π2∗, x) ≥ J1(π1, π2∗, x) for all π1 ∈ Π1, x ∈ X,
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and

J2(π1∗, π2∗, x) ≥ J2(π1∗, π2, x) for all π2 ∈ Π2, x ∈ X.

Our aim is to establish, under certain assumptions, the existence of
a Nash equilibrium (ϕ∗, ψ∗) in S1 × S2.

We introduce the following notation. For any given function f :
IK → IR and probability measures ϕ ∈ IA(x) and ψ ∈ IB(x), we write

f(x, ϕ, ψ) :=

∫
A(x)

∫
B(x)

f(x, a, b)ψ(db)ϕ(da)

whenever the integrals are well defined. In particular, for ri and Q as
in (1),

ri(x, ϕ, ψ) :=

∫
A(x)

∫
B(x)

ri(x, a, b)ψ(db)ϕ(da)

and

Q(·|x, ϕ, ψ) :=
∫
A(x)

∫
B(x)

Q(·|x, a, b)ψ(db)ϕ(da).

3 Main result

We first introduce our assumptions, and then present our main result.

3.1 Assumption. (a) For each state x ∈ X, the sets A(x) and B(x)
of admissible actions are compact.

(b) For each (x, a, b) in IK, r1(x, ·, b) is upper semicontinuous (u.s.c)
on A(x), and r2(x, a, ·) is u.s.c on B(x).

(c) For each (x, a, b) in IK and each bounded measurable function v
on X, the functions∫

X
v(y)Q(dy|x, ·, b) and

∫
X
v(y)Q(dy|x, a, ·)

are continuous on A(x) and B(x), respectively.
(d) There exists a constant r̄ and a measurable function w(·) ≥ 1 on

X such that

|ri(x, a, b)| ≤ r̄w(x) ∀(x, a, b) ∈ IK, i = 1, 2,(3)

and, in addition, part (c) holds when v is replaced with w.

The next two assumptions are used to guarantee that the state pro-
cess {Xt} is ergodic in a suitable sense.
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3.2 Assumption. There exists a probability measure ν ∈ IP(X), a
positive number α < 1, and a measurable function β : IK → [0, 1] for
which the following holds for all (x, a, b) ∈ IK and D ∈ B(X):
(a) Q(D|x, a, b) ≥ β(x, a, b)ν(D);
(b)

∫
X w(y)Q(dy|x, a, b) ≤ αw(x) + β(x, a, b)||ν||w, where w(·) ≥ 1 is

the function in Assumption 3.1(d), and ||ν||w :=
∫
wdν.

(c) inf
∫
X β(x, ϕ(x), ψ(x))ν(dx) > 0, where the infimum is over all the

pairs (ϕ, ψ) in S1 × S2.

3.3 Assumption. There exists a σ-finite measure λ on X with re-
spect to which, for each pair (ϕ, ψ) ∈ S1 × S2, the Markov transition
probability Q(·|x, ϕ(x), ψ(x)) is λ-irreducible.

We next introduce some notation and then we mention some impor-
tant consequences of the above assumptions.

3.4 Definition. IBw(X) denotes the linear space of real-valued mea-
surable functions u on X with a finite w-norm, which is defined as

||u||w := sup
x∈X

|u(x)|/w(x),(4)

and IMw(X) stands for the normed linear space of finite signed measures
µ on X such that

||µ||w :=

∫
X
wd|µ| <∞.(5)

Note that the integral
∫
udµ is finite for each u ∈ IBw(X) and µ in

IMw(X), because, by (4) and (5),

|
∫
udµ| ≤ ||u||w

∫
wd|µ| = ||u||w||µ||w <∞.

3.5 Remark. Suppose that Assumptions 3.2 and 3.3 are satisfied.
Then:
(a) For each pair (ϕ, ψ) ∈ S1 × S2, the state (Markov) process {Xt}
is positive Harris recurrent; hence, in particular, the Markov transi-
tion probability Q(·|x, ϕ(x), ψ(x)) admits a unique invariant probability
measure in IMw(X) which will be denoted by q(ϕ, ψ); thus

q(ϕ, ψ)(D) =

∫
X
Q(D|x, ϕ(x), ψ(x))q(ϕ, ψ)(dx) ∀D ∈ B(X).
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(b) {Xt} is w-geometrically ergodic, that is, there exist positive con-
stants θ < 1 and M such that

|
∫
X u(y)Q

n(dy|x, ϕ(x), ψ(x)) −
∫
X u(y)q(ϕ, ψ)(dy)|

≤ w(x)||u||wMθn
(6)

for every u ∈ IBw(X), x ∈ X, and n = 0, 1, . . . , where Qn denotes the
n-step Markov transition probability. This result follows from Lemmas
3.3 and 3.4 in [6] where it was assumed the positive Harris recurrence in
part (a). However, as shown in Lemma 4.1 of [15], the latter recurrence
is a consequence of Assumptions 3.2 and 3.3.

3.6 Assumption. There exists a probability measure γ in IMw(X)
(i.e.

∫
wdγ < ∞) and a strictly positive density function g(x, a, b, ·)

such that

Q(D|x, a, b) =
∫
D
g(x, a, b, y)γ(dy)

for all D ∈ B(X ) and (x, a, b) ∈ IK.

Note that Assumption 3.6 implies 3.3 with λ = γ.

3.7 Assumption. The transition density g(x, a, b, y) is such that

lim
n→∞

∫
X
|g(x, an, bn, y)− g(x, a, b, y)|w(y)γ(dy) = 0 ∀x ∈ X(7)

if an → a in A(x) and bn → b in B(x), where w(·) is the function in
Assumption 3.1(d).

The next two assumptions require that the game model (1) has a
so-called ARAT (additive reward, additive transition law) structure.

3.8 Assumption. There exist substochastic kernels Q1 ∈ IP(X| IKA)
and Q2 ∈ IP(X| IKB) such that

Q(·|x, a, b) = Q1(·|x, a) +Q2(·|x, b)

for all x ∈ X, a ∈ A(x), b ∈ B(x). Further, Q1(D|x, ·) and Q2(D|x, ·)
are continuous on A(x) and B(x), respectively, for each D ∈ B(X).



26 Rafael Beńıtez-Medina

3.9 Assumption. For i = 1, 2 there exist measurable functions

ri1 : IKA → IR, ri2 : IKB → IR,

such that
(a) ri(x, a, b) = ri1(x, a) + ri2(x, b) for all x ∈ X, a ∈ A, b ∈ B.
Moreover, for each x ∈ X,
(b) the functions ri1(x, ·) and ri2(x, ·) are continuous on A(x) and B(x),
respectively, and
(c) maxa∈A(x) |ri1(x, a)| ≤ w(x), and maxb∈B(x) |ri2(x, b)| ≤ w(x).

Observe that (c) and the condition γ ∈ IMw(X) in Assumption 3.6
yield that∫

X
max
a∈A(x)

|ri1(x, a)|γ(dx) <∞,

∫
X

max
b∈B(x)

|ri2(x, b)|γ(dx) <∞.

3.10 Theorem. Under Assumptions 3.1, 3.2 and 3.6- 3.9, there is a
pair (ϕ∗, ψ∗) ∈ S1 × S2 that is a Nash equilibrium.

The remainder of this work is devoted to prove Theorem 3.10.

4 Preliminaries

Suppose that one of the players, say player 2, selects a fixed station-
ary strategy ψ in S2. Then the game model GM in (1) reduces to a
Markov control model

MCM1(ψ) = (X,A, IKA, Qψ, r1,ψ)(8)

where X, A and IKA are as in (1), and the transition law Qψ in
IP(X| IKA) and the reward function r1,ψ : IKA → IR are given by

Qψ(·|x, a) := Q(·|x, a, ψ(x)) and r1,ψ(x, a) := r1(x, a, ψ(x)),

respectively. Then from Corollary 5.12 in [10], for instance, we get the
following.

4.1 Lemma. Suppose that Assumptions 3.1, 3.2 and 3.3 are satisfied.
Then for each fixed ψ ∈ S2, there exists a stationary strategy ϕ∗ ∈ S1
that is expected average reward (EAR) optimal for the Markov control
model in (8), i.e.,

J1(ϕ∗, ψ, x) = max
π1∈Π1

J1(π1, ψ, x) =: ρ∗1(ψ) ∀x ∈ X.(9)
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Moreover, there exists a function h1ϕ∗,ψ ∈ IBw(X) such that (ρ∗1(ψ), h
1
ϕ∗,ψ)

is the unique solution in IR× IBw(X) of the equation

ρ∗1(ψ) + h1ϕ∗,ψ(x) = r1(x, ϕ
∗(x), ψ(x))

+
∫
X h

1
ϕ∗,ψ(y)Q(dy|x, ϕ∗(x), ψ(x))(10)

= maxϕ∈IA(x)[r1(x, ϕ, ψ(x))

+
∫
X h

1
ϕ∗,ψ(y)Q(dy|x, ϕ, ψ(x))](11)

for all x ∈ X, and such that
∫
X h

1
ϕ∗,ψ(y)q(ϕ

∗, ψ)(dy) = 0, with q(ϕ∗, ψ)
as in the Remark 3.5(a).

In other words, (9) states that ϕ∗ ∈ S1 is an optimal response of
player 1, given that player 2 uses the fixed stationary strategy ψ ∈ S2.
Similarly, we can obtain an optimal response ψ∗ ∈ S2 of player 2 if
player 1 uses a fixed strategy ϕ ∈ S1.

We now wish to express the optimal average reward ρ∗1(ψ) in (9),
in a more convenient form. We will use the following fact, which is
borrowed from Proposition 10.2.3 in [9].

4.2 Lemma. Suppose that Assumptions 3.1, 3.2 and 3.3 are satisfied,
and let (ϕ, ψ) ∈ S1 × S2 be an arbitrary pair of stationary strategies.
Then for i = 1, 2 we have:
(a) The EAP in (2) satisfies that

J i(ϕ, ψ, x) = lim
n→∞

J in(ϕ, ψ, x)/n = ρi(ϕ, ψ),(12)

where

ρi(ϕ, ψ) :=

∫
X
ri(x, ϕ(x), ψ(x))q(ϕ, ψ)(dx)(13)

with q(ϕ, ψ) as in Remark 3.5(a).
(b) The function hiϕ,ψ defined on X as

hiϕ,ψ(x) :=
∞∑
t=0

Eϕ,ψx [ri(xt, ϕ(xt), ψ(xt))− ρi(ϕ, ψ)]

belongs to IBw(X), and, moreover, its w-norm is independent of (ϕ, ψ):

||hiϕ,ψ||w ≤ r̄M/(1− θ),(14)
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where r̄ is the constant in (3), and M and θ are as in (6).
(c) The pair (ρi(ϕ, ψ), h

i
ϕ,ψ) is the unique solution in IR× IBw(X) of the

so-called Poisson equation

ρi(ϕ, ψ)+ hiϕ,ψ(x) = ri(x, ϕ(x), ψ(x))

+
∫
X h

i
ϕ,ψ(y)Q(dy|x, ϕ(x), ψ(x))(15)

that satisfies the condition∫
X
hiϕ,ψ(y)q(ϕ, ψ)(dx) = 0.

5 Proof of Theorem 3.10

From (12) and Corollary 5.12(a) in [10], we can write ρ∗1(ψ) in (9) as

ρ∗1(ψ) = ρ1(ϕ
∗, ψ) = max

ϕ∈S1

ρ1(ϕ, ψ).(16)

Similarly, for each ϕ ∈ S1 there exists ψ∗ ∈ S2 such that

ρ∗2(ϕ) = ρ2(ϕ, ψ
∗) = max

ψ∈S2

ρ2(ϕ, ψ)(17)

We next use (16) and (17) to introduce a multifunction τ from
S1 × S2 to 2S1×S2 as follows: for each pair (ϕ, ψ) in S1 × S2

τ(ϕ, ψ) := {(ϕ∗, ψ∗)|ρ1(ϕ∗, ψ) = ρ∗1(ψ), ρ2(ϕ, ψ
∗) = ρ∗2(ϕ)}.(18)

To complete the proof of Theorem 3.10 we shall proceed in two
steps, which is in fact a standard procedure (see Ghosh and Bagchi [5],
Himmelberg et. al. [11], Parthasarathy [23], for instance).

Step 1. Introduce a topology on Si (i = 1, 2) with respect to which
Si is compact and metrizable.

Step 2. Show that the multifunction τ is upper semicontinuous
(u.s.c.), that is , if (i)(ϕn, ψn) → (ϕ∞, ψ∞) in S1×S2, and (ii) (ϕ∗n, ψ

∗
n) ∈

τ(ϕn, ψn) is such that (ϕ∗n, ψ
∗
n) → (ϕ∗∞, ψ

∗
∞), then (ϕ∗∞, ψ

∗
∞) is in τ(ϕ∞, ψ∞).

From these two steps and Fan’s fixed point theorem (Theorem 1 in
[4]), it will follow that the multifunction τ has a fixed point (ϕ∗, ψ∗) in
S1 × S2, that is

(ϕ∗, ψ∗) ∈ τ(ϕ∗, ψ∗).(19)

Finally, from (16) − (18) and (19) we shall conclude that (ϕ∗, ψ∗) is a
Nash equilibrium.
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In step 1 we shall use the topology introduced by Warga (see Theo-
rem IV.3.1 in [28]): Let F1 be the Banach space of measurable functions
f : IKA → IR such that f(x, a) is continuous in a ∈ A(x) for each x ∈ X
and

||f || :=
∫
X

max
a∈A(x)

|f(x, a)|γ(dx) <∞,

with γ as in Assumption 3.6. We shall identify two stationary strategies
ϕ and ϕ

′
in S1 if ϕ = ϕ

′
γ-a.e. (almost everywhere), and , on the other

hand, ϕ ∈ S1 can be identified with the linear functional ∆ϕ ∈ F ∗
1 given

by

∆ϕ(f) :=

∫
X

∫
A
f(x, a)ϕ(da|x)γ(dx).

Thus S1 can be identified with a subset of F ∗
1 , and endowing S1 with

the weak∗ topology it can be shown that S1 is compact and metrizable
[28]. The set S2 is topologized analogously.

To proceed with step 2, suppose that

(ϕn, ψn) → (ϕ∞, ψ∞) in S1 × S2,(20)

and that
(ϕ∗n, ψ

∗
n) ∈ τ(ϕn, ψn) ∀n(21)

is such that
(ϕ∗n, ψ

∗
n) → (ϕ∗∞, ψ

∗
∞).(22)

By (21) and the definition (18) of τ , together with (10) (or (15)), for
all x ∈ X we have

ρ∗1(ψn) + h1ϕ∗n,ψn
(x) = r1(x, ϕ

∗
n(x), ψn(x))

+
∫
X h

1
ϕ∗n,ψn

(y)Q(dy|x, ϕ∗n(x), ψn(x))
(23)

and, similarly,

ρ∗2(ϕn) + h2ϕn,ψ∗
n
(x) = r2(x, ϕn(x), ψ

∗
n(x))

+
∫
X h

2
ϕn,ψ∗

n
(y)Q(dy|x, ϕn(x), ψ∗

n(x)).
(24)

Now observe that, by Assumptions 3.8 and 3.9, for each D ∈ B(X),
the functions Q1(D|x, a) and ri1(x, a) are in F1, whereas Q2(D|x, b) and
ri2(x, b) are in F2. Therefore, by (20) and (22),∫

X
r1(x, ϕ

∗
n(x), ψn(x))γ(dx) →

∫
X
r1(x, ϕ

∗
∞(x), ψ∞(x))γ(dx),(25)
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and similarly for i = 2. Moreover, for any D ∈ B(X),∫
X Q(D|x, ϕ∗n(x), ψn(x))γ(dx) →∫

X Q(D|x, ϕ∗∞(x), ψ∞(x))γ(dx),
(26)

and similarly for (ϕn, ψ
∗
n) → (ϕ∞, ψ

∗
∞).

5.1 Lemma. There is a subsequence {m} of {n} and numbers ρ̂1 and
ρ̂2 such that

ρ∗1(ψm) = ρ1(ϕ
∗
m, ψm) → ρ̂1(27)

and

ρ∗2(ϕm) = ρ2(ϕm, ψ
∗
m) → ρ̂2.(28)

Proof: Let ρi(ϕ, ψ) be as in (13). We next show that, for i = 1, 2,

|ρi(ϕ, ψ)| ≤ r̄||ν||w/(1− α) ∀(ϕ, ψ) ∈ S1 × S2,(29)

with r̄ as in (3), and ν and α as in Assumption 3.2. Clearly, (29)
implies (27) and (28) .

To prove (29), note that Assumption 3.2(b) yields∫
X
w(y)Q(dy|x, a, b) ≤ αw(x) + ||ν||w(30)

because β(x, a, b) ≤ 1. Now let (ϕ, ψ) be an arbitrary pair in S1 × S2.
Integrating both sides of (30) with respect to ϕ(da|x) and ψ(db|x),
and then integrating with respect to the invariant probability measure
q(ϕ, ψ) yields∫

X
w(y)q(ϕ, ψ)(dy) ≤ α

∫
X
w(y)q(ϕ, ψ)(dy) + ||ν||w,

and, therefore, ∫
X
w(y)q(ϕ, ψ)(dy) ≤ ||ν||w/(1− α).

The latter inequality, together with (3) and (13), gives

|ρi(ψ, ϕ)| ≤
∫
X |ri(x, ϕ(x), ψ(x))|q(ϕ, ψ)(dx)

≤ r̄
∫
X w(y)q(ϕ, ψ)(dy)

≤ r̄||ν||w/(1− α),
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i.e., (29) holds. This in turn gives that the sequences {ρ1(ϕ∗n, ψn)} and
{ρ2(ϕn, ψ∗

n)} are uniformly bounded , and so the lemma follows. 2
For notational convenience, we shall write the subsequence {m} ⊂

{n} in (27) and (28) as the original sequence, {n}. Moreover, let

un(·) := h1ϕ∗n,ψn
(·), and ũn(·) := un(·)/w(·).(31)

By (14), the constant m0 := r̄M/(1− θ) satisfies that

|ũn(x)| ≤ m0 ∀x, n.

Let U be the space of all γ-equivalence classes of real-valued mea-
surable functions u on X such that |u(x)| ≤ m0 γ-a.e. By the Alaoglu
(or Banach-Alaoglu) Theorem (see page 424 in [3], for instance), U is a
compact and metrizable subset of L∞(γ) ≡ L∞(X,B(X), γ) equipped
with the relative weak* topology σ(L∞(γ), L1(γ)). Therefore, we can
assume that {ũn} converges in the weak* topology to some function
ũ∗ in L∞(γ). Let u∗(x) := ũ∗(x)w(x) for all x ∈ X. Then, as in the
proof of Theorem 4 in [19], using Assumption 3.7, one can show that
as n→ ∞.

max
a∈A(x)

max
b∈B(x)

|
∫
X
(un(y)− u∗(y))Q(dy|x, a, b)| → 0 ∀x ∈ X(32)

with un(·) as in (31). In turn, (32) and Assumption 3.8 yield that

max
ϕ∈IA(x)

max
ψ∈IB(x)

|
∫
X
(un(y)− u∗(y))Q(dy|x, ϕ, ψ)| → 0 ∀x ∈ X.(33)

We also have the following.

5.2 Lemma. If (ϕn, ψn) → (ϕ, ψ) in S1 × S2, then, as n→ ∞,∫
X

∫
X u(y) Q(dy|x, ϕn(x), ψn(x))γ(dx)

→
∫
X

∫
X u(y)Q(dy|x, ϕ(x), ψ(x))γ(dx)(34)

for any function u ∈ IBw(X).

Proof: Choose an arbitrary function u ∈ IBw(X). By definition of the
weak convergence of ϕn → ϕ and ψn → ψ in S1 and S2, respectively,
and Assumption 3.8, to prove the lemma it suffices to show that the
functions

(x, a) →
∫
X
u(y)Q1(dy|x, a)(35)
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and

(x, b) →
∫
X
u(y)Q2(dy|x, b)(36)

are in F1 and F2, respectively. With this in mind, first note that∫
X u(y)Qi(dy|x, ·) is continuous in a ∈ A(x) and b ∈ B(x), for i = 1
and i = 2, respectively, (see Lemma 8.3.7(a) in [9]). Moreover, by (4)
and Assumption 3.2(b) (using that β(x, a, b) ≤ 1),

max
a∈A(x)

|
∫
X
u(y)Q1(dy|x, a)| ≤ ||u||w(αw(x) + ||ν||w) ∀x ∈ X.

Hence, as
∫
wdγ < ∞ (by Assumption 3.6), the function in (35) is in

F1. Similarly, the function in (36) is in F2. 2

By Lemmas 5.1 and 5.2, together with (25), (26) and (33), letting
n→ ∞ in (23) we obtain γ-a.e.

ρ̂1 + u∗(x) = r1(x, ϕ
∗
∞(x), ψ∞(x))

+
∫
X u∗(y)Q(dy|x, ϕ∗∞(x), ψ∞(x))

(37)

= maxϕ∈IA(x)[r1(x, ϕ, ψ∞(x))

+
∫
X u∗(y)Q(dy|x, ϕ, ψ∞(x))],

where the second equality comes from (10)- (11) replacing (ϕ∗, ψ) with
(ϕ∗n, ψn).

Finally, arguing as in the last part of the proof of Theorem 5.8 in
[10], let D ∈ B(X) be the set with γ(D) = 1 on which (37) holds, and
let h∗ : X → IR be such that h∗(x) := u∗(x) for x ∈ D, and

h∗(x) := max
ϕ∈IA(x)

[r1(x, ϕ, ψ∞(x)) +

∫
X
u∗(y)Q(dy|x, ϕ, ψ∞(x))]− ρ̂1

for all x in the complement Dc of D. As γ(Dc) = 0, by Lemma 6.3 in
[10], we have Q(Dc|x, a, b) = 0 for all (x, a, b) ∈ IK. Therefore, (37)
holds for all x ∈ X when u∗(·) is replaced with h∗(·). This implies (by
Lemma 4.1) that

ρ̂1 = ρ∗1(ψ∞) = ρ1(ϕ
∗
∞, ψ∞).(38)

An analogous argument using (21), (22) and (24) with obvious changes,
shows that

ρ̂2 = ρ∗2(ϕ∞) = ρ2(ϕ∞, ψ
∗
∞).(39)
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In other words, (38) and (39) state that, under (20)- (22), the pair
(ϕ∗∞, ψ

∗
∞) is in τ(ϕ∞, ψ∞), and so the set-valued map defined by (18)

is u.s.c. Thus, as was already noted, it follows from Fan’s fixed point
theorem that τ has a fixed point (as in (19), say), which completes the
proof of Theorem 3.10. 2
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07000, México D.F., MEXICO,
rbenitez@math.cinvestav.mx.

References

[1] Altman E., Hordijk A. and Spieksma F. M., Contraction con-
ditions for average and α-discount optimality in countable state
Markov games with unbounded rewards, Math. Oper. Res., 22
(1997), 588-618.

[2] Curtat L. O., Markov equilibria of stochastic games with comple-
mentarities, Games and Economic Behavior, 17 (1996), 177-199.

[3] Dunford N. and Schwartz J. T., Linear Operators, Vol. 1, Inter-
science Publishers, New York, 1958.

[4] Fan K., Fixed point and minimax theorems in locally convex topo-
logical spaces, Proc. Nat. Acad. Sci., U. S. A., 38 (1952), 539-560.

[5] Ghosh M. K. and Bagchi A., Stochastic games with average payoff
criterion, Appl. Math. Optim., 38 (1998), 283-301.

[6] Gordienko E. and Hernández-Lerma O., Average cost Markov con-
trol processes with weighted norms: existence of canonical policies,
Appl. Math. (Warsaw), 23 (1995), 199-218.

[7] Hernández-Lerma O., Adaptive Markov Control Process,
Springer-Verlag, New York, 1989.



34 Rafael Beńıtez-Medina
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