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Existence of optimal strategies for

zero-sum stochastic games with

discounted payoff ∗

Francisco Ramı́rez-Reyes

Abstract

This work deals with zero-sum stochastic games with Borel state
and action spaces, and unbounded payoff function. We consider
finite-horizon as well as infinite-horizon discounted problems. Our
main purpose is to give conditions for the existence of the game
value and for the existence of optimal strategies for both play-
ers. The infinite-horizon case is analyzed using the approach of
successive approximations.
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1 Introduction

We consider in this work two-person zero-sum stochastic games with
Borel state and action spaces. Our main objective is to give conditions
for the existence of optimal strategies for the discounted payoff criterion
with unbounded running (or immediate) payoff function. We first study
the finite-horizon problem in n-stages, and then obtain the infinite-
horizon discounted case by letting n → ∞.

Zero-sum stochastic games with discounted payoff have been widely
studied for finite or countable state spaces and bounded payoff function.
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The countable state case with unbounded rewards has been studied by
Altman [1] and Sennott [21], for instance. For the uncountable case and
bounded reward function, see [12,14,17] and their references, and for
unbounded reward functions, see for example Rieder [20] and Nowak
[16]. Nowak [16] has established the existence of optimal strategies
under hypotheses similar to ours. However, our proof of the existence
of optimal strategies is different from Nowak’s.

For applications of stochastic games to queueing systems and telecom-
munications networks, see [1,21]. On the other hand, for results on the
average payoff case, see for example, [5,8,13,16].

This work is organized as follows. Section 2 introduces the basic
notation and definitions. In Section 3 we describe the game model and
the optimality criteria we are interested in, as well as our assumptions.
Section 4 deals with finite-horizon stochastic games. In that section
we prove the existence of the game value, and the existence of optimal
strategies for both players. Finally, these results are extended in Section
5 to the infinite-horizon stochastic game.

2 Preliminaries

In this section we introduce some basic notation and definitions used
throughout the paper.

2.1 Borel spaces and stochastic kernels

A Borel subset X of a complete and separable metric space is called
a Borel space, and its Borel σ-algebra is denoted by B(X). As we
only consider Borel spaces, throughout the following, “measurable” (for
either sets or functions) means “Borel measurable”.

Definition 2.1.1 Let X and Y be Borel spaces. A stochastic kernel on
X given Y is a function P (·|·) such that

i) P (·|y) is a probability measure on X for each fixed y ∈ Y , and

ii) P (D|·) is a measurable function on Y for each fixed D ∈ B(X).

The set of all stochastic kernels on X given Y is denoted by P(X|Y ).



Existence of optimal strategies for zero-sum stochastic games 65

We denote by M(X) the set of all measurable functions u : X → R
and by B(X) the subset of bounded functions in M(X). By C(X) we
denote the set of all continuous function in B(X). Thus, we have

C(X) ⊂ B(X) ⊂ M(X).

Given a Borel space X, we denote by P(X) the family of probability
measures on X.

Remark 2.1.2 Unless stated otherwise, throughout the following we
suppose that P(X) is endowed with the weak topology, so that µn → µ
weakly if

∫
udµn →

∫
udµ for each u in C(X). In this case we have that

for any Borel space X:

i) P(X) is a Borel space. (See [11], p. 91.)

ii) If in addition X is compact, then so is P(X). (See [19], Theorem II
6.4.)

2.2 Multifunctions and selectors

Let X and A be (nonempty) Borel spaces.

A multifunction (also known as a correspondence or a set-valued
mapping) F from X to A is a function such that F (x) is a nonempty
subset of A for each x ∈ X. A single-valued mapping F : X → A is of
course an example of a multifunction.

Definition 2.2.1 a) A multifunction F from X to A is said to be mea-
surable if

F−1[U ] := {x ∈ X : F (x) ∩ U ̸= ∅}
is a Borel subset of X for every open set U ⊂ A. The multifunction
F is said to be closed-valued (resp. compact-valued) if F (x) is a closed
(resp. compact) set for all x ∈ X

b) The graph of the multifunction F is the subset of X ×A defined as

GrF := {(x, a) : x ∈ X, a ∈ F (x)}
We say that F has a measurable graph if GrF is in B(X ×A).
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c) FF denotes the set of (single-valued) measurable functions
f : X → A such that (x, f(x)) is in GrF , that is, f(x) ∈ F (x) for all
x ∈ X. A function f ∈ FF is called a selector (or measurable selector
or choice or decision function) for the multifunction F .

3 The stochastic game model

In this section we introduce the two-person zero-sum stochastic game
we are interested in. We also introduce the optimality criteria, and the
assumptions we shall impose throughout the remainder of this work.

We consider the two-person zero-sum game model

GM := {X,A,B,KA,KB, Q, r}

where :

i)X is the set of states of the game, which is assumed to be a Borel space.

ii) A and B are the action spaces for player 1 and player 2, respectively,
and they are also assumed to be Borel spaces.

iii) KA and KB are nonempty Borel subsets of X × A and X × B,
respectively. For each x ∈ X the nonempty x-section

A(x) := {a ∈ A : (x, a) ∈ KA}

of A represents the set of actions available to player 1 in state x. Anal-
ogously, the x-section B(x) := {b ∈ B : (x, b) ∈ KB} denotes the set of
actions available to player 2 in state x. Define

K := {(x, a, b) : x ∈ X, a ∈ A(x), b ∈ B(x)},

which is a Borel subset ofX×A×B ( see Lemma 1.1 in [15], for instance).

iv) Q is a stochastic kernel on X given K, called the law of motion
among states. If x is the state at some stage of the game and the
players select actions a ∈ A(x) and b ∈ B(x), then Q(·|x, a, b) is the
probability distribution of the next state of the game.
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v) r : K → R is a measurable function that denotes the payoff func-
tion, and it represents the reward for player 1 (and the cost function for
player 2).

The game is played as follows. At each stage (or time) t = 0, 1, . . .,
the players 1 and 2 observe the current state x ∈ X of the system, and
then independently choose actions a ∈ A(x) and b ∈ B(x), respectively.
As a consequence of this, the following happens: (1) player 1 receives a
immediate reward r(x, a, b); (2) player 2 incurres a cost r(x, a, b), and
(3) the system moves to a new state with distribution Q(·|x, a, b). Thus
the goal of player 1 is to maximize his/her reward, whereas that of
player 2 is to minimize his/her cost.

Let us set PA(x) := P(A(x)) and PB(x) := P(B(x)) for each x ∈ X.
Then x 7→ PA(x) and x 7→ PB(x) define multifunctions fromX to P(A)
and from X to P(B), which will denoted by PA and PB, respectively.

3.1 Strategies

Let H0 = X and Ht = K ×Ht−1 for t = 1, 2, . . . . For each t an
element

ht = (x0, a0, b0, . . . , xt−1, at−1, bt−1, xt)

of Ht represents a “history” of the game up to time t. A randomized
strategy π for player 1 is a sequence π = {πt, t = 0, 1, . . .} of stochastic
kernels πt in P(A|Ht) such that

πt(A(xt)|ht) = 1 ∀ht ∈ Ht, t = 0, 1, . . .

We denote by Π the family of all strategies for player 1.

A strategy π = {πt} is called Markov if πt ∈ P(A|X) for each
t = 0, 1, . . ., that is, each πt depends only on the current state xt of the
system. The set of all Markov strategies of player 1 will be denoted by
ΠM . A Markov strategy π = {πt} is said to be a stationary strategy if
there exists f ∈ P(A|X) such that πt = f for each t = 0, 1, . . .. In this
case the stationary strategy π will be identified with f . We denote by
ΠS the set of all stationary strategies of player 1, so that ΠS ≡ FPA

.
We have, of course,

ΠS ⊂ ΠM ⊂ Π.
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The sets Γ, ΓM , ΓS of all strategies, all Markov strategies and all
stationary strategies, respectively, for player 2 are defined similarly.

Let (Ω,F) be the (canonical) measurable space that consists of the
sample space Ω := (X × A× B)∞ and its product σ-algebra F . Then
for each pair of strategies (π, γ) ∈ Π × Γ and each “initial state” x ∈
X, by a theorem of C. Ionescu-Tulcea (see [2, p. 109], [11, p. 80]),
there exists a unique probability measure P πγ

x and a stochastic process
{(xt, at, bt), t = 0, 1, . . .} defined on (Ω,F) in a canonical way, where
xt, at and bt represent the state and the actions of players 1 and 2,
respectively, at each stage t = 0, 1, . . . . The expectation operator with
respect to P πγ

x is denoted by Eπγ
x

3.2 Optimality criteria

Let α be a fixed number in (0, 1), and define the α-discounted expected
payoff function as

Jα(x, π, γ) := Eπγ
x [

∞∑
t=0

αtr(xt, at, bt)] (3.2.1)

for each pair of strategies (π, γ) and each initial state x. The number
α is called a “discount factor”.

Definition 3.2.1 For n = 1, 2, . . ., we define the n-stage expected
payoff function as

Jn(x, π, γ) := Eπγ
x [

n−1∑
t=0

αtr(xt, at, bt)].

We shall study the case in which the game model is well defined in
the sense that

sup
π∈Π

sup
γ∈Γ

|Jα(x, π, γ)| < ∞ ∀x ∈ X. (3.2.2)
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Remark 3.2.2 The condition (3.2.2) trivially holds if r is bounded,
because

|r(x, a, b)| ≤ M implies |Jα(x, π, γ)| ≤
M

1− α
∀ π, γ, x.

Another condition that ensures (3.2.2) is given in Section 3.3, below.

To introduce our first optimality criterion we need the following
concepts.

Definition 3.2.3 For each n = 1, 2, . . . , the functions on X defined
as

Ln(x) := sup
π∈Π

inf
γ∈Γ

Jn(x, π, γ)

and

Un(x) := inf
γ∈Γ

sup
π∈Π

Jn(x, π, γ)

are called the lower and the upper value functions, respectively, of the
n-stage game.

It is clear that Ln(·) ≤ Un(·) in general, and if it holds that Ln(x) =
Un(x) for all x ∈ X, then the common function is called the value, or
value function, of the n-stage game, and is denoted by Vn(·).

Definition 3.2.4 Consider the n-stage game.

i) A strategy π∗ ∈ Π is said to be optimal for player 1 if

Un(x) ≤ Jn(x, π
∗, γ) for each γ ∈ Γ and x ∈ X.

ii) A strategy γ∗ ∈ Γ is said to be optimal for player 2 if

Ln(x) ≥ Jn(x, π, γ
∗) for each π ∈ Π and x ∈ X.

If i) and ii) hold, then (π∗, γ∗) is said to be an optimal pair of
strategies. Equivalently, (π∗, γ∗) is an optimal pair of strategies for the
n-stage game if, for all x ∈ X,
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Un(x) = inf
γ∈Γ

Jn(x, π
∗, γ) and Ln(x) = sup

π∈Π
Jn(x, π, γ

∗). (3.2.3)

The value functions and the optimal pairs of strategies for Jα(x, π, γ)
are defined similarly.

3.3 Assumptions

(a) For each state x ∈ X, the (nonempty) sets A(x) and B(x) of
admissible actions are compact.

(b) For each (x, a, b) ∈ K, r(x, ·, b) is u.s.c. on A(x), and r(x, a, ·) is
l.s.c. on B(x).

(c) For each (x, a, b) ∈ K and each bounded measurable function v on
X, the functions∫

X
v(y)Q(dy|x, ·, b) and

∫
X
v(y)Q(dy|x, a, ·)

are continuous on A(x) and B(x), respectively.

(d) There exist a constant M > 0 and a measurable function w : X → R
such that w(x) ≥ 1 for each x ∈ X and

|r(x, a, b)| ≤ Mw(x) ∀ (x, a, b) ∈ K, (3.3.4)

and, in addition, Assumption (c) holds when v is replaced with w.

(e) There exists a constant 1 ≤ ν < 1
α such that∫

X
w(y)Q(dy|x, a, b) ≤ νw(x) ∀ (x, a, b) ∈ K. (3.3.5)

Condition (e) may be replaced with:

e’) There exists a (nonempty) Borel set C ⊂ X such that for some
β ∈ (0, 1) and η > 0, we have∫

X
w(y)Q(dy|x, a, b) ≤ βw(x) + ηIC(x)
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for each (x, a, b) ∈ K. Here IC is the indicator function of the set C and
w is the function introduced in (d).

4 The finite-horizon stochastic game

Our main objective in this section is to prove that the finite-horizon
game has a value, and that there is an optimal pair of strategies.

4.1 Preliminaries

Let n be a positive integer. The n-stage stochastic game in which
the players play up to time n is said to be a finite-horizon game. Let
π and γ be the strategies of players 1 and 2, respectively. Then the
expected payoff in that game is given by Jn(x, π, γ) in Definition 3.2.1.

Before introducing the main results, we give some notation and
preliminary facts. First note that the multifunctions x 7→ PA(x) and
x 7→ PB(x) introduced in Section 3 are measurable and compact-valued,
by Assumption 3.3(a) and Remark 2.1.2(ii).

Let x ∈ X, µ ∈ PA(x) and λ ∈ PB(x). We define

r(x, µ, λ) :=

∫
B(x)

∫
A(x)

r(x, a, b)µ(da)λ(db), (4.1.6)

and for every Borel set D ⊂ X

Q(D|x, µ, λ) :=
∫
B(x)

∫
A(x)

Q(D|x, a, b)µ(da)λ(db). (4.1.7)

Definition 4.1.1 For each measurable function u : X → R we define
its w-norm as

∥u∥w := sup
x∈X

|u(x)|
w(x)

,

where w is the function introduced in Assumption 3.3(d). We denote by
Bw(X) the Banach space of all measurable functions u on X for which
∥u∥w is finite.
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For each u ∈ Bw(X) and (x, a, b) ∈ K, we define

H(u;x, a, b) := r(x, a, b) + α

∫
X
u(y)Q(dy|x, a, b). (4.1.8)

Using the notation in (4.1.6) and (4.1.7), let

Tαu(x) := sup
µ∈PA(x)

inf
λ∈PB(x)

H(u;x, µ, λ) ∀ u ∈ Bw(X). (4.1.9)

Our Assumptions 3.3 and Theorem A6.3 in [2] ensure that the supremum
and the infimum are indeed attained, and so the sup and inf can be
replaced with max and min, respectively. Thus, we have

Tαu(x) = max
µ∈PA(x)

min
λ∈PB(x)

H(u;x, µ, λ) ∀ u ∈ Bw(X). (4.1.10)

The following lemma shows that in (4.1.10) we may interchange the
maximum and the minimum.

Lemma 4.1.2 Suppose that Assumptions 3.3 hold. Then for each u in
Bw(X) :

(a) Tαu(x) = min
λ∈PB(x)

max
µ∈PA(x)

H(u;x, µ, λ),

(b) there exists f0 ∈ FPA
and g0 ∈ FPB

such that, for all x ∈ X,

Tαu(x) = max
µ∈PA(x)

H(u;x, µ, g0(x))

= min
λ∈PB(x)

H(u;x, f0(x), λ)

= H(u;x, f0(x), g0(x)), (4.1.11)

(c) Tαu is in Bw(X).

Proof: Choose an arbitrary function u in Bw(X).

(a) By Assumptions 3.3(c) and the second part of 3.3(d),the inte-
gral in (4.1.8) is continuous in both a ∈ A(x) and b ∈ B(x) (see Lemma
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8.3.7(a) in [7], for instance). This fact and Assumption 3.3(b) yield
that H(u;x, ·, b) is u.s.c. on A(x), and H(u;x, a, ·) is l.s.c. on B(x).
Therefore, the function H(u;x, µ, λ) is u.s.c. in µ ∈ PA(x), and l.s.c.
in λ ∈ PB(x); see, for example, the “extended Fatou Lemma” 8.3.7(b)
and the statement (12.3.37) in [7, p. 225]. Moreover, H(u;x, µ, λ) is
concave (as it is linear) in µ and convex in λ. Thus, by Fan’s minimax
theorem (see Theorem 1 in [4]), we get (a).

(b) Define

H1(x, µ) := min
λ∈PB(x)

H(u;x, µ, λ) (4.1.12)

for all x ∈ X and µ ∈ PA(x). As noted in the proof of part (a), H1(x, ·)
is u.s.c. on PA(x). Therefore, by Remark 2.1.2(ii) and Theorem 1 in
[10], there exists f0 ∈ FPA

such that

H1(x, f0(x)) = max
µ∈PA(x)

H1(x, µ) ∀x ∈ X.

Thus, we get

H1(x, f0(x)) = max
µ∈PA(x)

min
λ∈PB(x)

H(u;x, µ, λ). (4.1.13)

Hence, from (4.1.10) and (4.1.13), we have

Tαu(x) = min
λ∈PB(x)

H(u;x, f0(x), λ).

Similarly, if we define

H2(x, λ) := max
µ∈PA(x)

H(u;x, µ, λ),

there exists g0 ∈ FPB
such that

Tαu(x) = max
µ∈PA(x)

H(u;x, µ, g0(x)).

(c) As |u(·)| ≤ ∥u∥ww(·), from (3.3.4) and (3.3.5) we get, for any
(x, a, b) in K,

|H(u;x, a, b)| ≤ Mw(x) + ∥u∥wα
∫
X
w(y)Q(dy|x, a, b)

≤ (M + αν∥u∥w)w(x). (4.1.14)
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Thus, by (4.1.11) and (4.1.14), Tαu is indeed in Bw(X). 2

4.2 Existence theorem in the finite-horizon case

Theorem 4.2.1 Suppose that Assumptions 3.3 hold. Then the finite
horizon stochastic game has a value and both players have optimal Markov
strategies. Moreover, if Vn is the value function for the n-stage game,
then Vn ∈ Bw(X) and Vn(x) = TαVn−1(x) for each n ≥ 2.

Proof: The proof proceeds by induction. For n = 1 the theorem follows
directly from Definition 3.2.1 and Lemma 4.1.2 with u(·) ≡ 0. Suppose
the result holds for n − 1 (n ≥ 2). Let πn−1 = (f1, f2, . . . , fn−1) and
γn−1 = (g1, g2, . . . , gn−1) be a pair of optimal Markov strategies for
players 1 and 2, respectively, in the (n−1)-stage stochastic game. Then

Vn−1(·) = Jn−1(·, πn−1, γn−1).

Let Un(·) and Ln(·) be the upper and lower value functions, respec-
tively; see Definition 3.2.3. Choose an arbitrary g ∈ FPB

and let
γg := (g, γn−1). We note that, by definition of Un,

Un(x) ≤ sup
π∈Π

Jn(x, π, γ
g)

Hence, for each x ∈ X,

Un(x) ≤ sup
µ∈PA(x)

[r(x, µ, g(x))+α

∫
X
sup
π∈Π

Jn−1(y, π, γn−1)Q(dy|x, µ, g(x))],

that is,

Un(x) ≤ sup
µ∈PA(x)

[r(x, µ, g(x)) + α

∫
X
Vn−1(y)Q(dy|x, µ, g(x))].

Let Hn−1(x, µ, λ) := H(Vn−1;x, µ, λ). Therefore,

Un(x) ≤ sup
µ∈PA(x)

Hn−1(x, µ, g(x))

and, as g ∈ FPB
was arbitrary,

Un(x) ≤ inf
λ∈PB(x)

sup
µ∈PA(x)

Hn−1(x, µ, λ)
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for each x ∈ X. Hence, by Lemma 4.1.2, we obtain

Un(x) ≤ TαVn−1(x).

Similarly, we obtain

Ln(x) ≥ TαVn−1(x).

From the last two inequalities, we get Un(x) = Ln(x) = TαVn−1(x),
so that the n-stage game has a value Vn = TαVn−1. By Lemma 4.1.2,
we now conclude that Vn ∈ Bw(X), and that there exist f0 ∈ FPA

and
g0 ∈ FPB

such that for every f ∈ FPA
and g ∈ FPB

Vn(x) = Hn−1(x, f0(x), g0(x)),

Vn(x) ≥ Hn−1(x, f(x), g0(x)),

Vn(x) ≤ Hn−1(x, f0(x), g(x)).

Let πn = (f0, f1, . . . , fn−1) and γn = (g0, g1, . . . , gn−1). Then it follows
that πn and γn are optimal for the players 1 and 2, respectively, in the
n-stage stochastic game. 2

5 The infinite-horizon stochastic game

In this section, we consider infinite-horizon stochastic games. We prove
that the α-discounted value function Vα is a fixed point of the operator
Tα in (4.1.9)-(4.1.10), that is, Vα = TαVα, and show that the sequence
{Vn} converges geometrically to Vα in the w-norm.

5.1 Preliminaries

We consider again the Markov game model GM in Section 3 and the
α-discounted expected payoff Jα(x, π, γ) in (3.2.1). The corresponding
α-discounted lower and upper value functions are

Lα(x) := sup
π∈Π

inf
γ∈Γ

Jα(x, π, γ),

Uα(x) := inf
γ∈Γ

sup
π∈Π

Jα(x, π, γ).
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We wish to show that Lα(·) = Uα(·), so that the value Vα(·) for the
α-discounted game exists. To do this we will first show that Tα is a
contraction, which means the following.

Definition 5.1.1 Let (S, d) be a metric space. A map T : S → S is
called a contraction if there is a number 0 ≤ τ < 1 such that

d(Ts1, T s2) ≤ τd(s1, s2)

for all s1, s2 ∈ S. In this case τ is called the modulus of T .

Proposition 5.1.2 (Banach’s Fixed Point Theorem.)
A contraction map T on a complete metric space (S, d) has a unique fixed
point s∗ . Moreover, d(Tns, s∗) ≤ τnd(s, s∗) for all s ∈ S, n = 0, 1, . . .,
where τ is the modulus of T , and Tn := T (Tn−1) for n = 1, 2, . . ., with
T 0 := identity.

Lemma 5.1.3 Under Assumptions 3.3, the operator Tα defined in (4.1.9)
is a contraction mapping on Bw(X), with modulus τ := να (with ν as
in (3.3.5)).

Proof: To begin, note that Tα is a monotone operator, i.e., if u and
ũ are functions in Bw(X), and u ≥ ũ, then Tαu(x) ≥ Tαũ(x) for all
x ∈ X. On other hand, by (3.3.5), for any real number k ≥ 0

Tα(u+ kw)(x) ≤ Tαu(x) + ναkw(x) ∀ x ∈ X. (5.1.15)

for all x ∈ X and u ∈ Bw(X).

Now, to verify that Tα is a contraction, choose arbitrary u and ũ in
Bw(X). As u ≤ ũ + w∥u − ũ∥w, the monotonicity of Tα and (5.1.15)
with k = ∥u− ũ∥w yield

Tαu(x) ≤ Tα(ũ+ kw)(x) ≤ Tαũ(x) + ναkw(x)

i.e.,

Tαu(x)− Tαũ(x) ≤ να∥u− ũ∥ww(x).
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If now interchange u and ũ we get

Tαu(x)− Tαũ(x) ≥ −να∥u− ũ∥ww(x),
so that

|Tαu(x)− Tαũ(x)| ≤ να∥u− ũ∥ww(x).
Hence, letting τ := να, we obtain ∥Tαu− Tαũ∥w ≤ τ∥u− ũ∥w, and the
lemma follows because u, ũ ∈ Bw(X) were arbitrary. 2

Lemma 5.1.4 Let M , w and ν be as in Assumptions 3.3. Moreover,
let π ∈ Π and γ ∈ Γ be arbitrary strategies for players 1 and 2, re-
spectively, and let x ∈ X be an arbitrary initial state. Then for each
t = 0, 1, . . .

(a) Eπγ
x w(xt) ≤ νtw(x),

(b) |Eπγ
x r(xt, at, bt)| ≤ Mνtw(x), and

(c) lim
t→∞

αtEπγ
x u(xt) = 0 for all u ∈ Bw(X).

Proof : (a) This is trivially satisfied for t = 0. Now, if t ≥ 1, we have

Eπγ
x [w(xt)|ht−1, at−1, bt−1] =

∫
X
w(y)Q(dy|xt−1, at−1, bt−1)

≤ νw(xt−1) by (3.3.5).

Therefore Eπγ
x w(xt) ≤ νEπγ

x w(xt−1), which iterated yields (a).

(b) Observe that Assumption 3.3(d) yields

|r(xt, at, bt)| ≤ Mw(xt) ∀ t = 0, 1, . . . ,

so that, by (a),

Eπγ
x |r(xt, at, bt)| ≤ Mνtw(x).

(c) By definition of the w-norm and part (a), we get

Eπγ
x |u(xt)| ≤ ∥u∥wEπγ

x w(xt) ≤ ∥u∥wνtw(x),
and (c) follows. 2
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Definition 5.1.5 Let f ∈ FPA
, g ∈ FPB

, and let H be as in (4.1.8).
Define the operator

Rfg : Bw(X) → Bw(X), u 7→ Rfgu,

by

Rfgu(x) := H(u;x, f(x), g(x)) ∀ x ∈ X. (5.1.16)

Lemma 5.1.6 The operator Rfg is a contraction operator on Bw(X)
and Jα(x, f, g) is its unique fixed point in Bw(X).

Proof : That Rfg is a contraction operator on Bw(X) with modulus
τ := αν, follows along the same lines as the proof of Lemma 5.1.3.
Therefore, Rfg has a unique fixed point ufg in Bw(X), i.e.,

ufg = Rfgufg. (5.1.17)

From (5.1.17) and (5.1.16) we have then that ufg is the unique solution
in Bw(X) of the equation

ufg(x) = r(x, f(x), g(x))+α

∫
X
ufg(y)Q(dy|x, f(x), g(x)), ∀ x ∈ X.

(5.1.18)
Moreover, iteration of (5.1.17) or (5.1.18) yields

ufg(x) = Rn
fgufg(x) = Efg

x [

n−1∑
t=0

αtr(xt, f(xt), g(xt))] + αnEfg
x ufg(xn)

for all x ∈ X and n ≥ 1, where Efg
x u(xn) =

∫
X u(y)Qn(dy|x, f, g), and

Qn(·|x, f, g) is the n-step transition kernel of the Markov process {xt}
when using f and g. Finally, by Lemma 5.1.4(c) and letting n → ∞,
we see from (3.2.1) that ufg(x) = Jα(x, f, g) for all x ∈ X. 2

5.2 Existence theorem in the infinite-horizon case

To state our main result in this section, we first recall from Theorem
4.2.1 that

Vn(x) = TαVn−1(x)
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for all n ≥ 1 and x ∈ X, with V0(·) ≡ 0. That is, from Definition 3.2.3,

Vn(x) = sup
π∈Π

inf
γ∈Γ

Jn(x, π, γ)

= inf
γ∈Γ

sup
π∈Π

Jn(x, π, γ) ∀ x ∈ X.

We next consider the case when n → ∞. The following theorem states,
among other things, that the sequence {Vn} converges geometrically to
Vα in the w-norm.

Theorem 5.2.1 Suppose that Assumptions 3.3 hold. Let ν be the con-
stant in (3.3.5), and define τ := να. Then:

(a) The α-discounted value function Vα is the unique function in the
space Bw(X) that satisfies the equation TαVα = Vα, and

∥Vn − Vα∥w ≤ Mτn/(1− τ) ∀ n = 1, 2, . . . . (5.2.19)

(b) There exists an optimal pair of strategies.

Proof: By Lemma 5.1.3 and Banach’s Fixed Point Theorem (Proposition
5.1.2), Tα has a unique fixed point V ∗ in Bw(X), i.e.,

TαV
∗ = V ∗, (5.2.20)

and

∥Tn
αu− V ∗∥w ≤ τn∥u− V ∗∥w ∀ u ∈ Bw(X), n = 0, 1, . . . (5.2.21)

Hence, to prove part (a) we need to show that

(i) Vα is in Bw(X), with norm ∥Vα∥w ≤ M/(1− τ), and
(ii) Vα = V ∗.

In this case, using

Vn = TαVn−1 = Tn
αV0 ∀ n = 0, 1, . . . , V0 = 0, (5.2.22)

(5.2.19) will follow from (5.2.22) and (5.2.21) with u ≡ 0.
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To prove (i), let π ∈ Π and γ ∈ Γ be arbitrary strategies for players
1 and 2, respectively, and let x ∈ X be an arbitrary initial state, then
(i) follows from Lemma 5.1.4(b) since a direct calculation gives

|Jα(x, π, γ)| ≤
∞∑
t=0

αtE|r(xt, at, bt)| ≤ Mw(x)/(1− τ)

with τ := αν. Thus, as π ∈ Π, γ ∈ Γ and x ∈ X were arbitrary,

|Vα(x)| ≤ Mw(x)/(1− τ)

To prove (ii), let us note that by the equality V ∗ = TαV
∗ and Lemma

4.1.2, there exists f∗ ∈ FPA
and g∗ ∈ FPB

such that, for all x ∈ X,

V ∗(x) = sup
µ∈PA(x)

H(V ∗;x, µ, g∗(x))

= inf
λ∈PB(x)

H(V ∗;x, f∗(x), λ) (5.2.23)

= H(V ∗;x, f∗(x), g∗(x)).

Observe that (5.2.23) can be written as

V ∗(x) = r(x, f∗(x), g∗(x)) + α

∫
X
V ∗(y)Q(dy|x, f∗(x), g∗(x)).

Then it follows from Lemma 5.1.6 that V ∗(x) = Jα(x, f∗, g∗). Therefore,
we have

Jα(x, f∗, g∗) = sup
µ∈PA(x)

[r(x, µ, g∗(x))+α

∫
X
Jα(y, f∗, g∗)Q(dy|x, µ, g∗(x))]

for all x ∈ X. Then by standard dynamic programming results (see, for
instance, [3,6,7,10,11,14]), it follows that

Jα(x, f∗, g∗) = sup
π∈Π

Jα(x, π, g∗).

Similarly, considering the infimum in (5.2.23) we get

Jα(x, f∗, g∗) = inf
γ∈Γ

Jα(x, f∗, γ).
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Consequently,

Jα(x, f∗, g∗) = sup
π∈Π

Jα(x, π, g∗) ≥ inf
γ∈Γ

sup
π∈Π

Jα(x, π, γ),

and, on the other hand,

Jα(x, f∗, g∗) = inf
γ∈Γ

Jα(x, f∗, γ) ≤ sup
π∈Π

inf
γ∈Γ

Jα(x, π, γ).

Hence,

inf
γ∈Γ

sup
π∈Π

Jα(x, π, γ) = Jα(x, f∗, g∗) = sup
π∈Π

inf
γ∈Γ

Jα(x, π, γ).

This proves that the stochastic game has a value, that the value
function is Vα(x) = Jα(x, f∗, g∗) = V ∗(x) for all x ∈ X, and that f∗, g∗
are optimal strategies for players 1 and 2, respectively. 2
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México D.F. 07000
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