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Geometry and dynamics of the residue

theorem ∗

Jesús Muciño–Raymundo Carlos Valero–Valdés

Abstract

Using singular flat metrics associated to meromorphic differential
forms on Riemann surfaces, a converse of the classical residue
theorem is due. Also a dynamical interpretation of residues using
real geodesic flows is given.
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1 Complex analysis by cut and paste methods

For the construction of nice manifolds in differential geometry, the cut
and paste method is useful and very easy. This can be summarized as
follows:

i) Choose some nice geometric material, for example a space form.

ii) Cut simple pieces from the material, this usually means with geodesic
boundary.

iii) Define suitable paste methods for joining pieces together in a C∞

fashion.

iv) Construct all the possible geometric objects using (i)–(iii).

The challenge is to describe and classify how many manifolds can
appear. For this the description of hidden laws arising from (i)–(iii) is

∗Invited article. Partially supported by DGAPA–UNAM and CONACYT
28492-E.

1



2 Muciño–Raymundo and Valero–Valdés

very useful, by this we understand some geometric laws that all the re-
sulting objects satisfy and such that they are implicit in (i)–(iii). Recall
as examples of hidden laws the Gauss–Bonnet Theorem for compact
surfaces with a Riemannian metric and the Mostow’s Rigidity Theorem
for n–dimensional hyperbolic manifolds, n ≥ 3.

We sketch here the above program for the study of meromorphic
differential forms and vector fields as differential geometric objects on
Riemann surfaces. Our goal is the description of the Residue Theorem
as a hidden law.

The starting point is that over Cl or in more generality over a Rie-
mann surface, there exists a natural one to one correspondence between
meromorphic differential forms and meromorphic vector fields. Namely,
given a vector field X, there is a uniquely define differential form ω
requiring ω(X) ≡ 1. In local coordinates this is

X = f(z)
∂

∂z
←→ ω =

dz

f(z)
.

Where by f(z) ∂
∂z we have in mind f(z) as a complex tangent vector to

M at z, see [7] p. 340 for the formal definition.

Let (M,J) be a Riemann surface (here J : TM → TM , J2 = −Id
yields the complex structure) provided with a meromorphic vector field
X. Then M has a canonical geometric structure defined over M −
{zeros and poles of X} given by the C∞ flat Riemannian metric

g =

( 1
u2+v2

0

0 1
u2+v2

)
, where as usual X = (u+

√
−1v) ∂

∂z
.

The recognition of these implicit flat polyhedral structures allows for
application of the cut and paste method. Roughly speaking, we have a
correspondence between the following:

Pairs; Flat polyhedral
a Riemann surface (M,J) and ←→ structures on
a meromorphic vector field X M − {discrete set}

where the discrete set on the right comes from the zeros and poles of
X.

We address the following questions:
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What kind of flat polyhedral structures can appear?

What hidden laws do they obey?

Another tool is the dynamics of the meromorphic vector field X.
Define its associated real vector field as ℜe(X) = X + (X), considering
f(z) as a real tangent vector field to M at z. The classical theory of
(real) differential equations allows us to construct a dynamical system
ϕ : IR × M → M , coming from the flow of the vector field (strictly
speaking ϕ can be defined only almost everywhere in IR×M for generic
X).

The blending of the polyhedral structure g and the vector field ℜ(X)
has very interesting properties.

For example, the trajectory solutions of ℜe(X) are geodesics of g.
Another key point is that the zeros and poles of the meromorphic vector
field give origin to singularities in the flat polyhedral structures, intro-
ducing a lot of flexibility and richness. In particular, from the dynamical
point of view, simple zeros of a meromorphic vector field give origin to
sources, centers or sinks of ℜe(X), see Section 3.

The classical Residue Theorem asserts that the sum of the residues
of any meromorphic differential form ω on a compact Riemann surface is
zero. Note that for simple singularities, information about the residues
of ω changes to information on the linear parts at the zeros of X. Some
geometrical and dynamical flavor is described by:

Theorem A. Let X be a meromorphic vector field on a compact Rie-
mann surface (M,J), having only simple zeros with linear parts a1, . . . , as
∈ Cl . Consider ℜe(X) = X + X its real associated vector field, hav-
ing ϕ1 as time–1 flow, and g the singular flat Riemannian metric on
M − {zeros and poles of X} as above. Then
1.- ϕ1 leaves invariant g.
2.- The signed g–area coming from (and respectively falling into) a
source pi (respectively a sink) under ϕ1 is

2πℜe
(

1

aj

)
,

where a−1
j = λj is the residue at pi of the associated differential form.

3.- The map ϕ1 on M satisfies the g–area Conservation Law,

∑
pi is a source

[g−area coming from pi]+
∑

pj is a sink

[g−area falling in pj ] = 0 .
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Figure 1: The Residue Theorem as a Conservation Law.
The g–area coming from a source pi under ϕ1 is defined as follows.

Consider γ a suitable small simple loop, enclosing pi and no other singu-
larities of ℜe(X), and assume that γ is transverse to ℜe(X). Then, both
γ and ϕ1(γ) form the boundary of an annulus, its g–area is the desired
number, see Figure 1. Note that for a source the area is positive, and
for a sink this is negative. In Section 4 we give the equivalence between
the Conservation Law and the classical Residue Theorem.

The converse of Theorem A is as follows:

Theorem B. Let M be a compact orientable C∞ two–manifold, given
a1, ..., as in Cl , s ≥ 2, numbers such that

∑
a−1
j = 0. Then there

exists a complex structure J and a meromorphic vector field X on M
having simple zeros in s different points {p1, ..., ps} ⊂ M and linear
parts aj = X ′(pj).

The proofs given here only involve the geometry and dynamics of
X, described above. For a classical proof of Theorem B, see [3] p. 52.

The above flat polyhedral structures appear as a main subject in
quadratic differential theory, a highly developed and useful area in com-
plex analysis, see [1], [5], [12]. Our point of view is that elementary
polyhedral structures coming from holomorphic functions can help to
explain some basic facts in complex analysis. In order to reduce the nec-
essary background of the paper we start working here with meromorphic
differential forms.

2 Complex integration, flat metrics and Ameri–
can football

Following differential geometric ideas, we describe the local model for
a domain Ω ⊂ Cl provided with a meromorphic differential form ω (at
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regular points). Assume without loss of generality, that ω is written
as dz/f , where f = u +

√
−1v, and p0 ∈ Ω is a regular point. Let

V ⊂ Ω be an open disk around p0 free of zeros and poles and consider
the holomorphic map:

h(p) =

∫ p

p0

dz

f(z)
: V ⊂ Ω→ Cl .

A natural question is for which real trajectories starting at p0,

is the value of the integral purely real

or similarly,

is the value of the integral purely imaginary?

Consider the associated meromorphic vector fieldX = (u+
√
−1v) ∂

∂z ,
and define its real and imaginary parts as the real vector fields:

ℜe(X)
.
= (X +X) = u

∂

∂x
+ v

∂

∂y
,

ℑm(X)
.
= (
√
−1X −

√
−1X) = −v ∂

∂x
+ u

∂

∂y
,

here X means the conjugate. They describe the real and imaginary
times of the dynamical system defined by X. In others words assume
α(t), β(s) : (−ϵ, ϵ) ⊂ IR → Ω are local non–singular trajectories of
ℜe(X) and ℑm(X) respectively, with α(0) = β(0) = p0, then∫ α(t)

p0

dz

f(z)
= t ∈ IR ,

∫ β(s)

p0

dz

f(z)
=
√
−1s ∈

√
−1IR .

Now we compute the bracket of ℜe(X) and ℑm(X).

Starting at p0: follow the trajectory of ℜe(X) through p0 for time t.

Then, follow the trajectory of ℑm(X) for time s, then the trajectory of
ℜe(X) backwards for time −t.
Finally, follow the trajectory of ℑm(X) backwards for time −s.
Have we retuned to the original point p0?

If γ is the above trajectory, then∫
γ

dz

f(z)
= t+

√
−1s− t−

√
−1s = 0 .
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Since 1/f(p0) ∈ Cl − {0}, the inverse function theorem says that h =∫
(dz/f) is locally an invertible map, and we are in the original point

p0. The vector fields ℜe(X) and ℑm(X) commute.
They are an orthonormal frame for the Riemannian metric g (as in

Section 1) in Ω, this is

g(ℜe(X),ℜe(X)) = g(ℑm(X),ℑm(X)) = 1 , g(ℜe(X),ℑm(X)) = 0 .

It is a very well known result that a metric having an orthonormal
frame that commutes is flat, [12] p. 261, hence the curvature of g is
zero. Let us give an example.

Pictorial description of the flat metric. Remember an American football
game. The field is an Euclidean rectangle in IR2 furnished with a family
of parallel lines {x = constant}. On each play, the players try to carry
the ball across these lines. Only the horizontal advance is significant,
independent of the trajectory γ that describes the player with the ball.
In particular, the advance for a closed trajectory is zero. Using path
integral, a mathematical synthesis is

one play → horizontal advance
γ 7→

∫
γ dx

.

The case of complex integrals generalize the game. Locally we have a
rectangle furnished with horizontal and vertical lines (the trajectories
of ℜe(X), and ℑm(X)). On each play the players try to carry the ball
across these lines. In addition, now horizontal and vertical advances are
significant. They are independent of the trajectory, depending only on
the start and end points. In symbols

one play → horizontal and vertical advances

γ 7→
(
ℜe
(∫

γ
dz
f(z)

)
,ℑm

(∫
γ

dz
f(z)

)) .

We leave for the imaginative reader the description of field goals and
scores.

If γ is in a rectangle having as sides trajectories of ℜe(X) and ℑm(X)
and has end points p and q, then

d(p, q) =

√(
ℜe
(∫

γ

dz

f(z)

))2

+

(
ℑm

(∫
γ

dz

f(z)

))2
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Figure 2: Complex integration and american football.

is an Euclidean distance on the rectangle.

In mathematical language the above is explained in the following
result.

Corollary. Let Ω ⊂ Cl be a domain, under a local holomorphic change
of coordinates:

1.- If p0 ∈ Ω is a regular value of a meromorphic differential form
ω = dz/f(z) on Ω, then ω is equivalent with dz.

2.- If p0 ∈ Ω is a regular value of a meromorphic vector field X = f(z) ∂
∂z

on Ω, then X is equivalent with ∂
∂z .

In both cases the holomorphic change of coordinates is given by h(p) =∫ p
p0
(dz/f).

Proof: For (2) obviously,

(∫ p

p0

dz

f(z)

)
∗
f(z)

∂

∂z
=

∂

∂z
,

in the language of differential equations, h(p) is a flow box. 2

The differential geometric meaning can be found below.

Corollary. Let Ω ⊂ Cl be a domain, with a meromorphic differential
form dz/f(z), or equivalently with a meromorphic vector field f(z) ∂

∂z ,
then there exists in Ω−{zeros and poles of f} a C∞ flat Riemannian
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metric g, such that the maps∫ dz
f : V ⊂ (Ω, g) → (Cl , δ)

p 7→
∫ p
p0

dz
f(z)

are local isometries, where V is a disk around p0 free of zeros and poles,
and δ is the usual flat metric in Cl .
Moreover, the trajectories of ℜe(X) and ℑm(X) are geodesics of g.

We can now introduce the cut and paste method:

i) Choose as material the Euclidean plane (Cl , δ).

ii) Cut rectangles from the material, having (usual) horizontal and ver-
tical trajectories as boundary.

iii) Define the paste procedure as follows; gluing rectangles to get topo-
logical two–manifolds and so that the sides in the boundary of the rect-
angles are glued by isometries in such a way that horizontal and vertical
trajectories are well–defined over the boundary of the rectangles.

This must produce pairs (Ω, ω), where Ω is a Riemann surface and
ω is a meromorphic differential form.

The simplest examples appear below
Example. Consider ω = dz/z on Ω = Cl . The resulting flat metric on
Cl −{0} is isometric to the Euclidean cylinder S1

2π× IR, where 2π means
the g–length of the closed geodesics; they correspond to trajectories of
ℑm(z ∂

∂z ). See the zero of order one in Figure 3.
Example. Consider ω = zdz on Ω = Cl . The resulting flat metric on
Cl −{0} is isometric to the gluing of four copies of flat half planes along
the boundaries; the metric has as geodesics the trajectories of ℜe(1z

∂
∂z ).

See the pole of order one in Figure 3.
Further examples with computer plots appear in [2], [9] and [10].
The next step is the description at the singular points.

3 Zeros and poles of meromorphic vector fields

Start with the local normal forms.
Lemma. Let X be a meromorphic vector field on a neighborhood

of 0 ∈ Cl , with respect to a local holomorphic change of coordinates:
1.- If 0 is a pole of order k for X, then X is equivalent with

z−k ∂

∂z
.



Geometry and dynamics of the residue theorem 9

2.- If 0 is a simple zero for X, then X is equivalent with

az
∂

∂z
,

where a = X ′(0) is the linear part.
3.- If 0 is a zero of order k ≥ 2 for X, then X is equivalent with

zk

1 + λzk−1

∂

∂z
,

where λ is the residue of the associated meromorphic differential form
at 0.

Proof: As usual, the reduction of X to the normal form is realized by
means of a suitable holomorphic change of coordinates in power series.
See [2] or [12] p. 27–37 for the explicit computations.

Moreover, the correspondences between meromorphic; vector fields,
differential forms and quadratic differentials

f(z)
∂

∂z
↔ dz

f(z)
→ dz2

f(z)2
,

are well defined in Riemann surfaces. Hence the vector field f(z) ∂
∂z can

be translated into the meromorphic quadratic differential dz2/f(z)2, in
order to apply the theory in [12]. 2

Recall that in cases (2) and (3) the associated differential forms are

dz

az
.
=

λdz

z
, and

(
1

zk
+

λ

z

)
dz .

The geometry and dynamics of the singularities are as follows.
Consider in the sphere S2 = Cl ∪ {∞} the closure of the half plane

H
2
= {x +

√
−1y | y ≥ 0} ⊂ S2, we consider H

2
with its natural

flat metric and foliated by trajectories of ∂
∂x . We define a flat elliptic

sector as the intersection of an open neighborhood of ∞ ∈ S2 and
H2. Similarly a flat hyperbolic sector is the intersection of an open
neighborhood of 0 ∈ S2 and H2. By definition it has cone angle π.

Corollary. Let X be a meromorphic vector field on a neighborhood of
0 ∈ Cl .

1.- If 0 is a pole of order −k for X.
Then, the singular flat metric associated to X has cone angle (2k+2)π
at 0.
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The trajectories of ℜe(X) define 2k + 2 flat hyperbolic sectors at 0.

2.- If 0 is a zero of order one for X.

Then, the singular flat metric associated to X has a cylindrical end at
0, i.e. it is isometric to a cylinder S1

T ×(0,∞), where T = (2π/|X ′(0)|).
The trajectories of ℜe(X) define a source, a center or a sink at 0, ac-
cording to whether ℜe(X ′(0)) is > ,= or < 0, respectively).

3.- If 0 is a zero of order k ≥ 2 for X.

Then, the real trajectories of X define 2k − 2 elliptic sectors at 0. The
singular flat metric associated to X depends on λ as a continuous pa-
rameter of isometry type. In the case λ = 0 the metric defines a neigh-
borhood isometric to 2k−2 copies of flat elliptic sectors, glued along the
x–axis to obtain a topological disk. The case λ ̸= 0 is described in the
proof.

The trajectories of ℜe(X) define 2k − 2 flat elliptic sectors at 0.

Figure 3: Zeros and poles of meromorphic vector fields.

Proof: The cases (1) and (2) are well–known, see [12], and Figure 3.

For example in case (2), using the above Lemma it follows that the
vector field is X = λz ∂

∂z . We consider two subcases.

If ℜe(λ) = 0, then the linear part of ℜe(X) has pure imaginary
eigenvalues. Its trajectories are circles, i.e. closed geodesics in the metric
gX , giving origin to a center. The flow of the orthonormal vector field
ℑm(X) sends closed geodesics to closed geodesics. Moving a fixed closed
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geodesic with the flow of ℑm(X) in the direction of the zero of X, we
get the description of a cylinder.

If ℜe(λ) ̸= 0, then we consider the rotated vector field e
√
−1θX,

where θ ∈ [0, 2π), such that ℜe(e
√
−1θλ) = 0 as in the above subcase.

The Riemannian metrics coming from X and e
√
−1θX are isometric.

Finally note that the trajectories of ℜe(X) correspond to open geodesics
in the cylinder, describing a source or a sink.

Let us describe the geometry of (3) in more detail. These vector
fields look like [zk/(1 + λzk−1)] ∂

∂z , where k ≥ 2. We have two cases.

In the first case λ = 0.

Here, the flat metric comes from the gluing of 2k − 2 copies of flat
elliptic sectors. The canonical example where k = 2, is z2 ∂

∂z in a neigh-
borhood of 0 ∈ Cl . Under suitable stereographic projection, this is the
usual flat metric in a copy of (Cl , δ) at a neighborhood of the point at
infinity. Moreover, the real trajectories of the vector field are the usual
horizontal trajectories, having α and ω–limits in ∞, that corresponds
to 0 ∈ Cl under the map z 7→ 1/z. They define two elliptic sectors at
0 ∈ Cl . The complex time required for a trajectory that winds around 0
in a counterclockwise direction is exactly zero.

In the second case λ ̸= 0.

We explain the case of order k = 2, the others follow in the same
way. Consider the singular flat metric from z2 ∂

∂z as above. Under the
map z 7→ 1/z, we are working in a neighborhood of the point at infinite
of Cl , that is a neighborhood of 0 in the original z–plane. Consider
2π
√
−1λ = a+

√
−1b ∈ Cl as a vector based at the origin. Remove from

Cl the open sets

{x+
√
−1y | 0 < x < a , y > 0} , {x+

√
−1y | 0 < y < b , x > 0} .

Glue the points
√
−1y with a+

√
−1y for y > b, and x with x+

√
−1b

for x > a. The resulting flat surface is topologically like an annulus.
Denote it by (Cl 0, gλ), where the metric comes from the usual δ. The
complex time required for a trajectory that winds around the hole in
(Cl 0, gλ) in a counterclockwise direction is 2π

√
−1λ, and the residue is

exactly λ. The flat metric of the vector field [z2/(1 + λz)] ∂
∂z around

z = 0 is isometric to a neighborhood of the end of ∞ in the above
(Cl 0, gλ).

To produce examples in case k ≥ 3 it is necessary to glue to the
above metric gλ suitable copies of usual elliptic sectors. We leave the
details to the interested reader. 2
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As far as we know the case of essential singularities is almost unex-
plored, see [4].

The following result is the key in the geometrical construction of
meromorphic fields by suitable flat structures.

Proposition. There exists a correspondence between the following:

1.- Pairs that include; a Riemann surface (M,J) and a meromorphic
vector field X having as singularities zeros and poles.

2.- Orientable paracompact C∞ two–manifolds M , with a discrete set
S ⊂M , equipped with a C∞ flat Riemannian metric g in M − S, such
that

i) g assumes some of the above local models at the points in S.

ii) The holonomy of g is the identity (i.e. the parallel transport along
all closed trajectories in M − S is the identity map).

iii) M − S is provided with a non–singular unitary geodesic field.

Proof: Let us only remark on some key points.

For (1)⇒ (2), given X, define S as the zeros and poles of X. Since
ℜe(X) and ℑm(X) are a parallel and orthonormal frame, it follows that
the holonomy of g is trivial. Moreover, use ℜe(X) to define (iii) of part
(2).

For (2) ⇒ (1), the geometry of g at the local singular model define
conformal punctures. Hence the complex structure J associated to g
extends over S. 2

For more details on the proof of the correspondence and explicit
examples, see [6], [8], [9], [12], and Section 5.

Also note that the cut and paste method defined in Section 2 always
produces examples as in (2) above.

4 Proof of Theorem A

Consider in M − {zeros and poles of X} the flat metric g, defined in
Section 1.

Proof of (1)

We need to show that the time–1 flow ϕ1 of F leaves invariant g.
However, this is elementary, since ϕ1 is an Euclidean translation with
respect to the flat metric g.

Proof of (2)
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The computation is local. Let X = a ∂
∂z be a holomorphic vector

field, where a ̸= 0. Recall that the rotated vector field

e
√
−1θX

by an angle θ ∈ [0, 2π) defines the same flat metric g that the original
from X, changing by θ the slope of the vector field ℜe(X), see [9]. For

exactly two values of θ, say θ0 and θ0+π, the trajectories of ℜe(e
√
−1θX)

are closed near the singular point 0 and hence the rotated vector field
produces closed geodesics in the metric cylinder defined by g around 0.
The period of the closed geodesics is 2π/|a|. Hence, the g–area of the
ϕ1 flow crossing by any of these trajectories is exactly

2π

|a|
cos(arg(a)) = 2πℜe

(
1

a

)
.

Proof of (3)

We use some very simple dynamical ideas. Note that the time–1
flow ϕ1 is well–defined outside of the separatrix trajectories of the poles
of X (see Figure 3). The union of these separatrices is of g–area zero.
Hence ϕ1 : Z̸ ×M →M defines a dynamical system almost everywhere
in Z̸ ×M .

By removing from (M, g) some small disks around the zeros of X,
the resulting two–manifold N ⊂M has finite g–area (see Figure 1).

Finally, note that ϕ1 preserves the g–area in (M, g). Since the area
of N is finite, the area coming in N under ϕ1, is necessarily equal to the
area leaving N under ϕ1. The result follows. 2

Remark. Equivalence between the Conservation Law and the Residue
Theorem.

Writing the Conservation Law for the family of rotated vector fields
{e

√
−1θX}, we get

2π
s∑

j=1

ℜe
(
e
√
−1θ

aj

)
= 0 .

Since the above holds for every θ ∈ [0, 2π), the Residue Theorem
∑

a−1
j =

0 follows. 2
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5 Proof of Theorem B

Given the linear parts a1, ..., as, the idea is to find a suitable flat metric
realizing the above data. The construction is by the cut and paste
method.

Case 1. M is the sphere and s = 2.
The linear parts satisfy a−1

1 +a−1
2 = 0. Note that a−1

1 ̸= 0. Consider
the flat cylinder

Cl /{n(2π
√
−1a−1

1 ) | n ∈ Z̸ } .
Introduce the vector field ∂

∂z ; this gives the desired object. Note that
for the cylindrical end p

residue (dz, p)
.
=

1

2π
√
−1

∫ 2π
√
−1a−1

1

0
dz = a−1

1 .

The metrics satisfy g = δ.

Case 2. M is the sphere and s ≥ 3.
Order the linear parts such that

arg(a−1
1 ) ≤ arg(a−1

2 ) ≤ ... ≤ arg(a−1
s ) .

Consider in Cl the unique convex polygon having s vertex at the points

a0 = 0, 2π
√
−1a−1

1 , 2π
√
−1(a−1

1 +a−1
2 ), ...., 2π

√
−1(a−1

1 +...+a−1
s ) = 0 ,

equipped with the usual flat metric δ. The case where the polygon
degenera–tes to some straight segment can appear. Assume for a mo-
ment that all the sides of the polygon are different among them. Identify
all the vertices of the polygon to the same point, called q, obtaining a
two–manifold with boundary homeomorphic to a sphere minus s open
disks. Glue to each boundary component a flat cylinder isometric to
S1
|2πa−1

j | × [0,∞), using isometries, where the sub–index |2πa−1
j | means

the δ–length of the closed geodesics. See Figure 4 for the case s = 5.
The resulting flat surface has the following features: s cylindrical ends,
say {pj}, and one point q having cone angle (2s− 2)π.

The vector field ∂
∂z on Cl induces the desired vector field on the

resulting flat surface.
In fact, for the associated meromorphic differential form note that

the integral over the j–th side of the polygon satisfies

residue (dz, pj)
.
=

1

2π
√
−1

∫ 2π
√
−1(a−1

1 +...+a−1
j )

2π
√
−1(a−1

1 +...+a−1
j−1)

dz = a−1
j .
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Figure 4: Construction of a differential form with prescribed residues.

This residue is the inverse of the desired linear part of the vector field.
The metrics satisfy g = δ.

Each cylindrical end pj produces a simple zero of the vector field,
and the cone point q one pole having order −(s− 2).

We leave to the interested reader the details when the polygon is
degenerated.

Case 3. M is of genus g ≥ 1.

Consider on the sphere S2 a meromorphic vector field Y with the
given residues. Next we increase the genus of the two–manifold by
consider the isometric connected sum of g copies of some torus.

In fact, given a flat torus Cl /Λ, we cut it along a geodesic of finite
g–length l and taking in (S2, g) a geodesic of g–length l, which does
not intersect the poles and zeros of the vector field Y , we cut S2 along
this geodesic. Finally, glue the cuts in the torus by isometries with the
cuts in S2. Note that the original vector field Y extends to the interior
of the torus in a meromorphic fashion. Moreover, the end points in
the cut give origin to two simple poles of the new vector field X in the
connected sum S2 ∪ Cl /Λ.

The case of higher genus is obvious, adding suitable copies of the
torus. 2

Note that the above idea only produces some Riemann surfaces. We
do not know if is it possible to obtain all the complex structures in the
C∞ manifold M , as is asserted in the classical proof, see [3] p. 52.
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