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Average optimal strategies in Markov games
under a geometric drift condition *

Heinz-Uwe Kienle

Abstract

Zero-sum stochastic games with the expected average cost crite-
rion and unbounded stage cost are studied. The state space is an
arbitrary Borel set in a complete separable metric space but the
action sets are finite. It is assumed that the transition probabili-
ties of the Markov chains induced by stationary strategies satisfy
a certain geometric drift condition. It is shown that the aver-
age optimality equation has a solution and that both players have
optimal stationary strategies.
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1 Introduction

In this paper two-person stochastic games with the expected average
cost criterion are studied. The state space is a standard Borel space,
that is, an arbitrary Borel set in a complete separable metric space.
The action sets of both players are finite. Such a stochastic game can
be described in the following way: The state x, of a dynamic system
is periodically observed at times n = 1,2,.... After an observation at
time n the first player chooses an action a,, from the action set A(z,)
and afterwards the second player chooses an action b, from the action
set B(x,) dependent on the complete history of the system at this time.
The first player must pay cost k'(zy,, @, b,), the second player must pay

*Invited article
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16 HEINZ-UWE KUENLE

k%(zy,an,by), and the system moves to a new state x,y; in the state
space X according to the transition probability p(- | xy, an, by).

Stochastic games with Borel state space and average cost criterion
are considered by several authors. Related results are given by Maitra
and Sudderth [7], [8], [9], Nowak [13], Rieder [15] and Kiienle [6] in
the case of bounded costs (payoffs). The case of unbounded payoffs is
treated by Nowak [14] and Kiienle [4]. The assumptions in this paper
concerning the transition probabilities are related to Nowak’s assump-
tions: Nowak assumes that there is a Borel set C' € X and for every
stationary strategy pair (7°°, p°>°) a measure p such that C is p-small
with respect to the Markov chain induced by this strategy pair. We
assume that C is only a p-petite set with respect to a resolvent of this
Markov chain; as against this, we demand that u is independent of the
corresponding strategy pair. (For the definition of ”small sets” and
" petite sets” see [10].)

The paper is organised as follows: In Section 2 the mathematical
model of Markov games is presented. Section 3 contains the assump-
tions on the transition probabilities and on the stage costs, and also some
preliminary results. In Section 4 we study the expected average cost of
a fixed stationary strategy pair. We show that the Poisson equation
has a solution. In Section 5 we prove that the average cost optimal-
ity equation has a solution and both players have optimal stationary
strategies.

2 The Mathematical Model

In this section we introduce the mathematical model of the stochastic
game considered in this paper.

Definition 2.1
M= ((X,0x),(A,0n), A, (B,oB), B,p, k', k?,E,F) is called a Markov
game if the elements of this tuple have the following meaning:

— (X, 0x%) is a standard Borel space, called the state space.

— A is a countable set and oa is the power set of A. A(z) € A
denotes a finite set of actions of the first player for every z € X.
A is called the action space of the first player and A(z) is called
the admissible action set of the first player at state v € X.
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— B is a countable set and op is the power set of B. B(xz) € B
denotes a finite set of actions of the second player for every z € X.
B is called the action space of the second player and B(z) is called
the admissible action set of the second player at state x € X.

— p is a transition probability from oxxaxB to ox, the transition
law.

— k', i =1,2, are oxxaxB-Mmeasurable functions, called stage cost
functions.

— Let H, = (XxAxB)"xX forn>1,Hy=X. h € H, is called
the history at time n.
A transition probability , from oy, to oa with
7 (A(zy) | 2o, a0,bo, ... ,2,) =1 for all (zg,ap,bo,...,x,) € Hy,
is called a decision rule of the first player at time n.
A transition probability p, from o, xa to o with
pn(B(xy) | zo,a0,b0, ... ,2,) = 1 for all (zg,ag, by, ... ,z,) € Hy
is called a decision rule of the second player at time n.
A decision rule of the first [second] player is called Markov
iff a transition probability 7, from og, to oa [p, from
o, to op| exists such that m,(- | zo,ao,bo, ... ,zn) = Tn(- | Tn)
[ pn( | o, a0, b0, ..., 2n) = pu(- | zp)] for all (zg, ag, bo, ... ,zn) €
H, x A. (Notation: We identify m, as 7, and p, as py.)
E and F denote non-empty sets of Markov decision rules.

A decision rule of the first [second] player is called determin-
istic if a function e, : H, — A [f, : H, — B] exists such
that m,(en(hy) | hn) =1 for all h, € H, [pn(fu(hn) | hn) =1 for all
(hn) € H,, |.

A sequence IT = (m,) or P = (p,,) of decision rules of the first or
second player is called a strategy of that player.

Strategies are called deterministic, or Markov iff all their decision rules
have the corresponding property.

A Markov strategy II = (m,) or P = (p,) is called stationary iff
Ty =M = My = ...0r pp = pp = p2 = .... (Notation: II = 7>
or P = p™.) We assume in this paper that the sets of all admissible
strategies are E>° and F*°. Hence, only Markov strategies are allowed.
But by means of dynamic programming methods it is also possible to
get corresponding results for Markov games with larger sets of admis-
sible strategies. If E and F are the sets of all Markov decision rules
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18 HEINZ-UWE KUENLE

(in the above sense) then we have a Markov game with perfect (or
complete) information. In this case the action set of the second player
may depend also on the present action of the first player. If E is the
set of all Markov decision rules but F is the set of all Markov deci-
sion rules which do not depend on the present action of the first player
then we have a usual Markov game with independent action choice. Let
Q:=XxAxBxXxAxBx...and K" (w):= 3Lk (x),a5,0))
for w = (z0,a0,b0,21,...) € Q, i = 1,2, N € N. By means of the
Ionescu-Tulcea Theorem (see, for instance, [11]), it follows that there
exists a suitable g-algebra F in ) and for every initial state x € X and
strategy pair (II, P), II = (w,), P = (pn), a unique probability mea-
sure P, 11 p on F according to the transition probabilities m,, p, and p.
Furthermore, K" is F-measurable for all i = 1,2, N € N. We set

Vi (@) = [ K @)Panp(de) 2.)
Q
and
i .. 1 i, N
np(z) = lim inf N1 up (z) (2.2)

if the corresponding integrals exist.

Definition 2.2
A strategy pair (IT*, P*) is called a Nash equilibrium pair iff

1 1

O p. < OFp
for all strategy pairs (II, P).

In this paper we will consider especially zero-sum Markov games, that
means k' = —k2. In this case we call a Nash equilibrium pair also an
optimal strategy pair. We set k := k?, VTJI\} = Vﬁ}{v, Prp = CIDIlIP.

3 Assumptions and Preliminary Results

In this paper we use the same notation for a substochastic kernel and
for the ”expectation operator” with respect to this kernel, that means:
If (Y,oy) and (Z,07) are standard Borel spaces, v : Y X Z — R a
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oy xz-measurable function, and ¢ a substochastic kernel from (Y, oy)
to (Z,0z) then we put

20(w) = [ adz|9)o(y.2) forall y€ Y
Z

if this integral is well-defined.
Furthermore, we define the operator T by

Tu=Fk+pu

for all ox-measurable u : X — R for which pu exists, that means,

Tu(z,a,b) = k(z,a,b) + /Xp(d£ | z,a,b)u(§)

forallz € X;a € A,be B.
Let IT = (m,) € E®, P = (p,) € F®. If Vi, exists, then we get
N
Vitp = mopok + > mopop - - - pjpsik.
j=1

For 7 € E, p € F we put (mpp)" := wpp(mpp)”~ where (7pp)° denotes
the identity. Let ¥ € (0,1). We set for every m € E, p € F, x € X, and
Y € ox

Qonp(Y | 2) = (1—9)Y 9" (mpp) "Iy ()
n=0

where Iy is the characteristic function of the set Y.
We remark that for a stationary strategy pair (7°°, p°°) the transi-
tion probability Qy r,, is a resolvent of the corresponding Markov chain.

Assumption 3.1 There are: a nontrivial measure p on ox; a set C €
ox; a ox-measurable function W > 1; and constants ¥ € (0,1), a €
(0,1), and S € R, with the following properties:

(a)
Qﬂ,ﬂ',p > IC Y

forall m€ E and p € F,
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pW < aW + Igp,

vy @bl
zeX,acA(z),beB(x) W(l’) '

Assumption 3.1 (a) means that C' is a "petite set”, (b) is called
”geometric drift towards C'” (see Meyn and Tweedie [10]). We assume
in this paper that Assumption 3.1 is satisfied.

Lemma 3.2 There are a ox-measurable function V with 1 < W <
V < W + const, and a constant A € (0,1) with

Qﬁ,w,pv <AV +1Ic- MV (31)
and
IpV < AV. (3.2)

Proof: Without loss of generality we assume § > 0. Let 3’ := %50,

W' :=W + 8, and o := 52 Then it holds that o’ € (a,1) and

pW + 5’
aW + '+ Blc
dW — (o —a)W+dB +(1-a)8 + Ble
W' —(a —a) + (1 - )8 + flc
dW'+ 8 +a—-d (B +1)+ Bl
= oW+ plg. (3.3)
Now let W :=W' — p'Ic =W + /(1 — I¢). Then we get from (3.3 )
p(W"+f1c) = pW’
oW+ Bl
O/W” +O/B,IC +,BIC
1-9
— O/W” + O/B/IC + 19 /8/]:0
/9 +1-19
vV
ﬁ/
< oW+ Sle (3.4)

pW’

VARRVAN VAN

IA

— O/W” + 6/10
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We put o := %. Then it holds that o/ = O‘Naf%fl. For B = o"p’
it follows:

pW" < %W” - f:,iplc + 5,:910
Hence,
"IpW" < (@ + 9 — )W — 98" pIc + '
Then

(1—9W" <"W"+ 3"lc — Ip(a"W" + p"1c).
This implies
(1 —-NW" < "W + B"Ic — Impp(a”W" + 8"1¢)
for every m € E, p € F. Hence,

[e.9]

Qo W' = Y (1—0)0"(wpp)"W"

n=0

< Z 19”(7rpp)”(o/’W” + /8//10)
n=0

— Zﬁn(ﬂ—pp)n(aﬁwﬂ‘i_,@”]:c)
n=1
= W'+ f'Ic. (3.5)

We choose 9" € (9,1) and set v := max{%)”(), %}, N o= 0‘1/::;7, A=
max{\,9'}. It follows that o/ < X <A< 1land N —ao" = (1—-XN)y.

Hence,

A= YW" >N —a">(1-N)y>(1- M. (3.6)

We put V := W” +~. Obviously, V> W” > 1 and V > v. Then it
follows

Qﬁ,ﬂ,pv

Qo oW+~

W'+ 18"+~

o'W+ To - yu(X) +v

"W+ 1 puV 4+~

"W+ 1o - uV + (X =" YW” + My (see (3.6 ))
AW +74)+1c-uV

AV £ 1c - V.

VAN VAR VAR VAN
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Hence, (3.1 ) is proved.
From v > % it follows

Wy >0y + 5. (3.7)
Then

IpV IpW" + 9y

IW" 4+ B+ Iy (see (3.4))
" IW" + 9y (see (3.7))
YW +7)

IV

AV.

IA A CIN

IN

Hence, (3.2 ) is also proved. O

4 Properties of Stationary Strategy Pairs
|u(z)]
V(x)
we denote by U the set of all ox-measurable functions u with |ju||y < co.
In the following we will assume that on U that metric is given which is
induced by the weighted supremum norm || - ||yy. Then U is complete.

For a function u : X — R we put ||ully := sup,cx

. Furthermore,

Lemma 4.1 |  sup (7pp)"V|v < .
neN,TeE,peF

Proof: From Assumption 3.1(b) it follows that
(mpp)"W < "W + ﬁﬂ-
By Lemma 3.2 we get
(mpp)™V < (wpp)"W + const < "W + const’ < ™V + const’.
The statement is implied by this. O

Let T, be the operator given by
Tpu(z,a,b) := (1 — ) (Vk(z,a,b) + w(zx)) + Ipu(z,a,b)

forallu e Y, x € X, a € A, be B. We note that T,, has essentially
the same structure as the cost operator T' used in stochastic dynamic
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programming and stochastic game theory. This implies that some of
our proofs are very similar to known proofs. Therefore we will restrict
ourselves to a few remarks in these cases. (A very good exposition of
basic ideas and recent developments in stochastic dynamic programming
can be found in the books of Hernédndez- Lerma and Lasserre [1], [2].)
Obviously,

u

Twu = (1— '19)19T(1 —

)+ (1 —9)w. (4.8)
Lemma 4.2 Let w €Y, 7 € E, p € F . Then the functional equation
u=mpTy,u (4.9)

has a unique solution u,, = Sr,w € U and it holds:

Srpw = lim (mpTy)"u = (1 0) > 9" (wpp)"(Impk +w)  (4.10)
n=0

for every u € Q.

Proof: We note that mpT,*0 C 0. From (3.2 ) it follows that 7pT,
is contracting on ¥ with modulus A. The rest of the proof follows by
Banach’s Fixed Point Theorem. O

We define a new operator S, r , by
S’Yuﬂ'va = _(1 - IC>7 + Sﬂ'pw - ICMw (411)

for 7 € E, p € F, w € U where S, is the operator defined by the
functional equation (4.9 ). The following lemma gives some properties
of this operator.

Lemma 4.3 (a) Sy ,0 C Y.
(b) Sy.x,p is isotonic.
(¢) Sy, is contracting.

Proof: (a) is obvious.
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(b) Using (4.10 ) we get

Sympw = —(1=Te)y+ (1—0)> 0" (mpp)"(9mpk + w) — T pw
n=0
= —(1-Ig)y+ (1 —0)) 9" (xpp) mpk
n=0
+(Q1977r,p - ICﬂ)w (412)

The statement follows from Assumption 3.1 (a).

(c) By Lemma 3.2 and (4.12 ) we get for u,v € U

’S%ﬂ,pu - S”/Jr,pv‘ = ‘(Qﬁ,ﬂ,p —Iop)(u —v)|
< (Qt?,ﬂ',p _IC:U')VH’U’_UHV
< ANVlu—=o|y. O (4.13)

Lemma 4.4 The operator S - , has in U a unique fixed point w, r ,.
MU~ 7, 1s continuous and non-increasing in -y.

Proof: The existence and uniqueness of the fixed point follows from
Lemma 4.3 by Banach’s Fixed Point Theorem. From S, » ,v > Sy 1 ,v
for v < 4/, and the isotonicity of Sy, it follows that wyr, > Uy x -
Hence, gty x,p > pittyr 1 ,. Furthermore, for arbitrary -, 4/

Uymp = Uy ol = [(L=Tc)(Y =) + (Qorp — Tow) (Uymp — Uy iz p)|
< Iy =AWV A Mty mp =ty mpllvV
Hence,
[ty,mp =ty pllv < 1Y = AT+ Aty m,p — Uy oy
and
Wty rp = ity mpl - < Nty zp = Uy pllv iV
/
< D2y o

Theorem 4.5 There exists a constant g and v € ¥ such that
g+ v =mpk + wppv. (4.14)
It holds:

g = (bﬂ-oopoo
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Proof: From Lemma 4.4 it follows that there is a v* with v* = puss 7 .
Hence,

Uysmp = Syomplyemp
= —(1=Ic)v" + Srptiyrrp — Loty rp
SrpUysmp =" (4.15)

Let w* := U+ xp. If we put w = w* in (4.9 ), then we get
Srpw® = (1 = 0)(Impk + w*) + ImppSzpw™.
It follows by (4.15 ) that
w* + " = (1 —9)(Irpk + w*) + Impp(w* + 7).
Therefore,
Jw* + (1 = 9)y" = (1 — 9)Inpk + Irppw™.
For g = %*, v = % we get (4.14 ). From (4.14 ) it follows

N-1

Ng="> (mpp)"mpk + (mpp)~v - v.
n=0

If we consider Lemma 4.1 we get

N-1
.1
7= I&gnoo N Z;)(pr)"ka = Proopee. U
n—=

5 Existence of optimal stationary strategies

We give first a lemma which concerns a certain auxiliary one-stage game.
The results of this lemma are well-known and can be derived, for in-
stance, from the results in [12].

Lemma 5.1 Let u: X x A x B — R a oxxaAxp-measurable function

with Sup,ex acA(2)peB(z) % < oo. Then it holds:

(a) infreg sup cp Tpu = sup g infreg Tpu € V.

(b) There are 7 € E, p* € F with 7*pu < 7*p*u < mwp*u for all
TecE, peF.

25
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For a function v : X X A - R (v : X x B — R) we put Lv := inf cg v
(Uv := sup cp pv). We can now prove the following lemma concerning
an auxiliary functional equation.

Lemma 5.2 The functional equation

u = inf sup{(1 — ) (Inpk + w) + Imppu}
ﬂ'EE ,OGF
= LUT,u
- (1- ﬂ)ﬁLUT(ﬁ) +(1- 9w (5.16)

has for every w € U a unique solution u* =: Sw in Q.

Proof: Let w € 0. Then it follows from Lemma 5.1 that LUT,U C ‘0.
Because mpT,, is contracting on U, it holds for u,v € *U:

mpTwu < mpTyv + M|u — vy V.
Since L and U are isotonic it follows:
LUTyu < LUT v + A||lu — ||y V.

Because u and v can be interchanged, we get that LUT,, is also
contracting. The statement follows by Banach’s Fixed Point Theorem.
O

In the following lemma Sy, and S are the operators defined by the
functional equations (4.9 ) and (5.16 ).

Lemma 5.3 For every w € U there are 7* € E, p* € F with
Sre pw < Sw < Sy pw (5.17)
for all m € E, p € F . Furthermore,

Sw := inf sup Sr,w. (5.18)
TeE peF
Proof: 1t follows from Lemma 5.1 that there are 7* € E, p* € F such
that

U

1—19)

U

1—19)

7 pT( LUT(

<
1— 19) -
< 7wpT(

(5.19)



AVERAGE OPTIMAL STRATEGIES IN MARKOV GAMES

where u,, = Sw. Hence,
T pTwty < LUT wtyy = Uy < TP Tyl (5.20)
for all m € E, p € F. Assume that
(7 pTp) gy < Uy < (™ Topp) "ty (5.21)
for n € N. Then it follows from (5.20 ) that
Uy < 70 T (7" T by = (7 T)" gy (5.22)
Analogously,
Uy > (7% pTop)" ity (5.23)

From (5.22 ) and (5.23 ) it follows by mathematical induction that
(5.21 ) holds for all n € N. For n — oo we get (5.17 ).
(5.18 ) follows immediately from (5.17 ). O

We define a new operator S, by
Syw:=—(1—-1Ig)y+ Sw— Icpw

form e E, pe F, we U, v €R. The following lemma gives some
properties of this operator.

Lemma 5.4 (a) S,0 C V.
(b) S, is isotonic.
(c) Sy is contracting with modulus A.

(d) Sy has in U a unique fixed point v,. It holds lim, o (S5)"u = v,
for every u € 2U. Moreover, v, is isotonic and continuous in +.

Proof: (a) is obvious.
(b) From (4.11 ) and (5.18 ) it follows that

Syw = 1n£: sup Sy pW.
Tel heR

By Lemma 4.3 we get the statement.
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(c) Let w',w"” € ¥. By Lemma 5.3 it follows that there are 7" € E,
p € F, such that

S’UJ/ < Smp/w’

Sw// Z Sﬂ,,,pw//
for all m € E, p € F. Hence,

Syw' —Sw" = —(1-Ic)y+ Sw' —Iopw'
—(—(1—=Ic)y+ Sw” — Ic,uw”)
(1 =To)y + Spr pw' — Iopw'
—(—=(1 = Ie)y + Spr pw” = TIopw")
= Sy g = Sy pu”

< AV —w"|lv

IN

since S, r» » is contracting (see Lemma 4.3). Because w’ and w” can
be interchanged, we get the statement.

(d) The existence of a unique fixed point v, € U and
limy, 00 (Sy)"u = v, for every u € U follows from Banach’s Fixed Point
Theorem. For 7/ <~ it holds

Syw < Syw = Syw+ (1-Ic)(y =) < Syw+ (v =)V

Assume that for n > 1

Sn_l’U/<U/<Sn_IU/+L7/V.
Y T =" =Yy Y 1=\

Then it follows

A

Sy < Sy Sy vy < Sy = vy < S (S5 0y + T1V)

y—°
1—\

V)+ (v =AWV

AC=Dy 4y ) (see (©)
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_ A
R v

= Sty + 7

Hence, by mathematical induction we find that this inequality holds for
all n € N. For n — oo it follows

A
V’YV

Uy S Uy S Uy + "

The rest of the statement is implied by this. O
Theorem 5.5 There are g = const and v € ¥ with

g+v=LUTwv. (5.24)
It holds

g= inf sup Ppp.
I_IG:Eoc PEFOO

Furthermore, there is an optimal stationary strategy pair.

Proof: From Lemma 5.4 it follows that pv, is non-increasing in .
Therefore, there is a v* with v* = pv,«.

U’Y* == S,.Y*’U,Y*
= —(1—=Ic)Y" + Svys —Iopvys
= Svy =9 (5.25)

Let w* := vy If we put w = w* in (5.16 ) then we get
Sw* = LU((1 — 9)(9k + w*) + IpSw™).
It follows by (5.25 )
w* +~" = LU((1 = 9)(Vk + w*) + Ip(w* +~7)).
Therefore,
Jw* + (1 —9)y* = LU((1 — 9)9k + Idpw™).
For g= 1, v = % we get (5.24 ).

9
From (5.24 ) and Lemma 5.1 it follows that there are 7* € E, p* € F,

T ppTvy — g S Uy < Tpp* Ty +€—g

29
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for all Il = (m,) € E*, P = (p,,) € F*. It follows

T poTm ;T - 7 pnTvys — (N + 1)g
< vy < mp Tmp T wnp Toy — (N + 1)g

For N — oo we get

@Hp*oo S g S (Pﬂ-*oop

for all II € E*°, P € F*°. This implies

g= inf sup Prp
[TEE®> pcFoe

and the optimality of (7*°°, p*>°). O
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