Morfismos, Vol. 4, No. 2, 2000, pp. 1-14

Algebraic K-theory and the η -invariant *

José Luis Cisneros Molina¹

Abstract

The aim of this paper is to present the main results of J. D. S. Jones and B. W. Westbury on algebraic K-Theory, homology spheres and the η -invariant [6], giving the basic definitions and prerequisites to understand them.

1991 Mathematics Subject Classification: 18F25, 19D06, 53C27, 58J28. Keywords and phrases: Algebraic K-theory, Quillen's +-construction, spin geometry, Dirac operator, η -invariant.

1 Introduction

In [6] J. D. S. Jones and B. W. Westbury constructed elements in $K_3(\mathbb{C})$, the 3rd algebraic K-theory group of the field of complex numbers, using homology 3-spheres endowed with a representation of their fundamental group. They also computed the image of such elements under the regulator map, using the η -invariant. The aim of this paper is to present the main results of J. D. S. Jones [6], giving the basic definitions and prerequisites to understand them.

The paper is divided in four parts. In section 2 we define the algebraic K-groups of a ring using Quillen's +-construction. We also explain how homology *n*-spheres equipped with a representation of its fundamental group in the general linear group over a ring R define elements in the K-group $K_n(R)$. In section 3 we give the definition of the η -invariant of a self-adjoint elliptic operator on a closed manifold and its variations. In section 4 we describe the Dirac operator which is a very important example of this kind of operators and the one which we are interested

^{*}Invited article

¹Supported by a scholarship from DGAPA, UNAM.

in. Finally in section 5 the main results by Jones and Westbury are presented.

2 Algebraic K-Theory

In this section we define the algebraic K-groups and we describe how to construct elements in this groups using homology spheres equipped with a representation of its fundamental group.

2.1 Classifying space of a group

Any discrete group G has a *classifying space* BG which is a pointed space (i.e. it has a base point *) unique up to homotopy equivalence such that:

 $\pi_1(BG) = G$ and $\pi_i(BG) = 0$ for $i \neq 1$ i.e. BG is an Eilenberg-Mac Lane space K(G, 1).

From its definition, the universal covering of BG, denoted by EG is contractible. The covering $EG \rightarrow BG$ is called the *universal bundle* for G and the space BG satisfies the following universal property:

If $EG \to BG$ is a universal bundle for G and X is of the homotopy type of a CW-complex with base point x_0 (e.g. manifold). Then we have the following one-to-one correspondences

 $[X, BG] \longleftrightarrow \operatorname{Hom}(\pi_1(X, x_0), G) \longleftrightarrow F_G(X)$

where [X, BG] denotes the homotopy classes of maps from X to BG, Hom $(\pi_1(X, x_0), G)$ denotes the homomorphisms from $\pi_1(X, x_0)$ to G and $F_G(X)$ the equivalence classes of principal (flat) G-bundles over X.

Note that in the case when $G = GL_N(\mathbb{C})$, $\operatorname{Hom}(\pi_1(X, x_0), G)$ is precisely the set of representations of $\pi_1(X, x_0)$ on \mathbb{C}^N .

2.2 Quillen's +-construction

In order to define the algebraic K-theory groups of a ring R, we need the +-construction due to Daniel Quillen in the early 1970's, for which, among other reasons, he was awarded the Fields Medal in 1978.

Theorem 2.2.1 (Quillen). Let X be a connected CW-complex with base point x_0 . Let $A \subset \pi_1(X)$ be a perfect normal subgroup (i.e. A = [A, A] and $A = [\pi_1(X), A]$, where [,] is the commutator). Then there is a space X^+ (depending on A) and a map $i: X \to X^+$ such that: (a) The map i induces an isomorphism

$$i: \pi_1(X)/A \to \pi_1(X^+).$$

(b) For any $\pi_1(X^+)$ -module L one has

$$i_* \colon H_*(X, i_*L) \xrightarrow{\cong} H_*(X^+, L).$$

(c) The pair (X^+, i) is determined by a) and b) up to homotopy equivalence.

Let R be a ring with 1. Consider the group $GL_N(R)$ of invertible $N \times N$ matrices over R. The *elementary group* $E_N(R)$ is the subgroup of $GL_N(R)$ generated by the elementary matrices (see [12, 11, 9] for definition).

We have inclusions $GL_N(R) \subset GL_{N+1}(R)$ which restrict to inclusions $E_N(R) \subset E_{N+1}(R)$ and we can define

$$GL(R) = \bigcup_{N} GL_{N}(R)$$
$$E(R) = \bigcup_{N} E_{N}(R).$$

Let X = BGL(R). Then $\pi_1(X) = GL(R)$ and A = E(R) is perfect. Then applying the +-construction we get $BGL(R)^+$. Define the algebraic K-groups of the ring R by

$$K_n(R) = \pi_n(BGL(R)^+) \text{ for } n \ge 1.$$

This definition may seem artificial, the reason is because originally the first three groups $K_0(R)$, $K_1(R)$ and $K_2(R)$ were given by algebraic definitions² and for a while seemed to be no good way to define the "higher K-functors" K_i , $i \geq 3$, until Quillen's work appeared, for a nice account of this facts see [12].

²In the present definition we are not including $K_0(R)$, in this case is called the "reduced" algebraic K-theory of R

2.3 Homology spheres

It is well known that the homology of the *n*-sphere S^n is given by

$$H_q(S^n) = \begin{cases} \mathbb{Z} & q = 0, n \\ 0 & q \neq 0, n. \end{cases}$$

A homology n-sphere as its name indicates it, is a path-connected space (say with the homotopy type of a CW-complex) with the same homology groups as S^n $(n \ge 3)$.

Let Σ be a homology *n*-sphere, since

$$0 = H_1(\Sigma, \mathbb{Z}) = \pi_1(\Sigma) / [\pi_1(\Sigma), \pi_1(\Sigma)]$$

 $\pi_1(\Sigma)$ can have no abelian quotients and so is perfect. Given a representation $\alpha: \pi_1(X) \to GL_N(R)$, let $f: \Sigma \to BGL_N(R)$ be the map which induces α on π_1 (by the universal property of classifying spaces). Composing this map with the inclusion $BGL_N(R) \to BGL(R)$ and applying Quillen's +-construction we get

$$S^n \simeq \Sigma^+ \to BGL(R)^+,$$

since the +-construction is functorial by its universal properties. Here \simeq denotes homotopy equivalence. The homotopy class of this map gives us the element in K-theory

$$[\Sigma, \alpha] \in K_n(R) = \pi_n(BGL(R)^+).$$

2.4 The regulator

There is a homomorphism

$$e: K_{2n+1}(\mathbb{C}) \to \mathbb{C}/\mathbb{Z}$$

called the regulator map which satisfies the following properties

- (i) It is an isomorphism on $K_1(\mathbb{C}) \cong \mathbb{C}^* \to \mathbb{C}/\mathbb{Z}$.
- (ii) The homomorphism e gives an isomorphism of the torsion subgroup of $K_{2n+1}(\mathbb{C})$ with \mathbb{Q}/\mathbb{Z} .

The aim now is to compute the image of the elements $[\Sigma, \alpha] \in K_3(\mathbb{C})$ under the regulator map. One way to do this is using the η -invariant.

3 The η -invariant

Let X be a closed (compact without boundary) Riemannian manifold and let E be a smooth vector bundle over X with an inner product. We denote by $C^{\infty}(X, E)$ the space of smooth sections of E and we can endow it with an inner product \langle , \rangle using the inner product on E and integration. Let $A: C^{\infty}(X, E) \to C^{\infty}(X, E)$ be an elliptic differential operator and assume that A is *self-adjoint*, that is

$$\langle s_1, As_2 \rangle = \langle As_1, s_2 \rangle$$

for every $s_1, s_2 \in C^{\infty}(X, E)$. Then A has a discrete spectrum with real eigenvalues $\{\lambda\}$ and we define the η -series of A by

$$\eta(s; A) = \sum_{\lambda \neq 0} (\operatorname{sign} \lambda) |\lambda|^{-s}$$

where the sum is taken over the non-zero eigenvalues of A. This series converges for $\Re(s)$ sufficiently large. By results of Seeley [13] extends by analytic continuation to a meromorphic function on the whole *s*-plane and is finite at s = 0.

The number $\eta(0; A)$ is called the η -invariant of A and is a spectral invariant which measures the asymmetry of the spectrum of A.

We also define a refinement of the η -series which takes into account the zero eigenvalues of A

$$\xi(s;A) = \frac{h + \eta(s;A)}{2}$$

where h is the dimension of the kernel of A or in other words, the multiplicity of the 0-eigenvalue of A.

Now consider a representation $\alpha: \pi_1(X) \to GL_N(\mathbb{C})$. Then α defines a flat bundle V_{α} over X in the following way. Let \tilde{X} be the universal cover of X. Then $V_{\alpha} = \tilde{X} \times_{\pi_1(X)} \mathbb{C}^N$ i.e. V_{α} is $\tilde{X} \times \mathbb{C}^N$ modulo the action of $\pi_1(X)$, where $\pi_1(X)$ acts on the first factor with the canonical action of $\pi_1(X)$ on the universal cover and via the representation α on the second factor. The bundle V_{α} also has a canonical flat connection ∇^{α} given by the exterior derivative as follows.

A connection is a first order linear differential operator

$$C^{\infty}(X, V_{\alpha}) \xrightarrow{\nabla^{\alpha}} \Omega^{1}(X, V_{\alpha})$$

which satisfies the Leibnitz rule

$$\nabla^{\alpha} fs = df \otimes s + f \otimes \nabla^{\alpha} s$$

for every $f \in C^{\infty}(X, \mathbb{R})$ and every $s \in C^{\infty}(X, V_{\alpha})$.

By the previous construction of the bundle V_{α} we have that $C^{\infty}(X, V_{\alpha}) \cong C^{\infty}(\tilde{X}, \mathbb{C}^{N})^{\alpha}$ and $\Omega^{1}(X, V_{\alpha}) \cong \Omega^{1}(\tilde{X}, \mathbb{C}^{N})^{\alpha}$, where the spaces $C^{\infty}(\tilde{X}, \mathbb{C}^{N})^{\alpha}$ and $\Omega^{1}(\tilde{X}, \mathbb{C}^{N})^{\alpha}$ are, respectively, the sections and 1-forms which are equivariant under the action of $\pi_{1}(X)$ via the representation α . On the other hand, the exterior derivative

$$C^{\infty}(\tilde{X}, \mathbb{C}^N) \xrightarrow{d} \Omega^1(\tilde{X}, \mathbb{C}^N)$$

sends invariant sections to invariant 1-forms. Hence the connection ∇^{α} is given by

$$C^{\infty}(X, V_{\alpha}) \cong C^{\infty}(\tilde{X}, \mathbb{C}^N)^{\alpha} \xrightarrow{\nabla^{\alpha} = d} \Omega^1(\tilde{X}, \mathbb{C}^N)^{\alpha} \cong \Omega^1(X, V_{\alpha}).$$

Using this connection we can couple the operator A to V_{α} to get an operator

$$A_{\alpha} \colon C^{\infty}(X, E \otimes V_{\alpha}) \to C^{\infty}(X, E \otimes V_{\alpha})$$

and as before we define the functions³

$$\eta(s;\alpha,A) = \eta(s;A_{\alpha}), \qquad \xi(s;\alpha,A) = \xi(s;A_{\alpha})$$

and their reduced forms

$$\tilde{\eta}(s;\alpha,A) = \eta(s;\alpha,A) - N\eta(s;A), \qquad \tilde{\xi}(s;\alpha,A) = \xi(s;\alpha,A) - N\xi(s;A)$$

where N is the dimension of the representation α .

Once more, following [2, Section 2] we can see that the functions $\tilde{\eta}(s; \alpha, A)$ and $\tilde{\xi}(s; \alpha, A)$ are finite at s = 0 and if we reduce modulo \mathbb{Z} then

$$\tilde{\eta}(\alpha, A) = \tilde{\eta}(0; \alpha, A) \in \mathbb{C}/\mathbb{Z}, \qquad \tilde{\xi}(\alpha, A) = \tilde{\xi}(0; \alpha, A) \in \mathbb{C}/\mathbb{Z}$$

³The operator A_{α} is not self-adjoint any more, unless the representation α is unitary. Nonetheless, A_{α} has self-adjoint symbol and that allows us to define the η and ξ functions, see [2, p. 90].

are homotopy invariants of A. The reason for regarding values in \mathbb{C}/\mathbb{Z} and not just in \mathbb{C} is that if we vary A continuously the dimension of ker A is not a continuous function of A. However the jumps of $\xi(s; A)$ are due to eigenvalues changing sign as they cross zero and therefore the jumps are integer jumps.

Note that if we fix the manifold X and the operator A, the invariant $\tilde{\xi}(\alpha, A)$ only depends on the representation α of the fundamental group of X or equivalently on the flat bundle V_{α} aver X.

4 The Dirac operator

In this section we describe a particular example of a self-adjoint elliptic differential operator called the *Dirac operator* which is the one we shall use to compute \mathbb{C}/\mathbb{Z} -valued invariants of elements of the K-groups of any subring of \mathbb{C} . The Dirac operator is very important by itself and plays a central role in the Atiyah-Singer Index Theorem, in the Seiberg-Witten theory and many other things. The main references for the material in this section are [7, 1].

4.1 Clifford algebras

Let V be a finite dimensional real vector space with a non-degenerate, symmetric bilinear form $q: V \otimes V \to \mathbb{R}$. Let $\{e_1, \ldots, e_n\}$ be an orthogonal basis for V then the *Clifford algebra* Cl(V, q) is the algebra over \mathbb{R} , with unit, generated by the e_i , subject to the relations

$$e_i^2 = -q(e_i, e_i)$$
$$e_i e_j = -e_j e_i \qquad i \neq j.$$

For the special case when $V = \mathbb{R}^n$ and q is the standard inner product we denote the algebra Cl(V,q) by Cl_n and its complexification by $Cl_n^{\mathbb{C}} = Cl_n \otimes \mathbb{C}$.

Example 4.1.1.

$$\begin{aligned} Cl_0 &= \mathbb{R} & \text{with basis} \quad 1 \\ Cl_1 &= \mathbb{C} & \text{with basis} \quad 1, e_1 \\ Cl_2 &= \mathbb{H} & \text{with basis} \quad 1, e_1, e_2, e_1 e_2 \end{aligned}$$

The group Spin(n) is defined as a subgroup of the group of units of Cl_n and it is the non-trivial double covering of SO(n) and for n > 2 it is its universal covering.

Now lets restrict ourselves to odd dimensional vector spaces, in this case, the complexified Clifford algebra $Cl_n^{\mathbb{C}}$ has two inequivalent irreducible complex representations and when they are restricted to $\operatorname{Spin}(n)$ they give isomorphic irreducible complex representations of $\operatorname{Spin}(n)$. We denote such a representation space by S.

4.2 Spin structures

Let X be an odd dimensional oriented closed Riemannian manifold. The Riemannian metric and the orientation give a reduction of the structure group of the tangent bundle TX of X to SO(n). A spin structure on X is a lift of the structure group SO(n) of TX to Spin(n).

A spin structure on X provide us with a principal Spin(n)-bundle Q which is a double cover of the principal SO(n)-bundle P associated to the tangent bundle TX. The restriction to the fibre of this double cover $\varpi : Q \to P$ is the double covering $\text{Spin}(n) \to \text{SO}(n)$.

Now consider the spin representation S of Spin(n) and let

$$\mathcal{S}(X) = Q \times_{\mathrm{Spin}(n)} S$$

be the vector bundle over X associated to the principal Spin(n)-bundle Q. The bundle $\mathcal{S}(X)$ is called the *spinor bundle* of X and its sections are called *spinor fields*. We denote the space of spinor fields by $C^{\infty}(X, \mathcal{S}(X))$.

Let $Cl(T^*X)$ be the bundle over X whose fibre at x is $Cl(T^*_xX)$, the Clifford algebra of the cotangent space at x with the inner product given by the Riemannian metric.

There is a pairing

$$C: Cl(T^*X) \otimes \mathcal{S}(X) \to \mathcal{S}(X)$$

which is called *Clifford multiplication*. If we consider the inclusion $T^*X \to Cl(T^*X)$ then we get a pairing

$$T^*X \otimes \mathcal{S}(X) \to \mathcal{S}(X).$$

4.3 The Dirac operator

The Riemannian structure of X provides us with the Riemannian connection on the tangent bundle. This connection can be seen as a 1-form

8

 β on the principal SO(n)-bundle P with values in the Lie algebra $\mathfrak{so}(n)$. Since Spin(n) and SO(n) have the same Lie algebra, the double covering $\varpi \colon Q \to P$ given by the spin structure on X gives us a 1-form $\varpi^*(\beta)$ which defines a connection on Q called the *spin connection*. This connection induces a covariant derivative

$$\nabla \colon C^{\infty}(X, \mathcal{S}(X)) \to C^{\infty}(X, T^*X \otimes \mathcal{S}(X))$$

on spinor fields.

Composing ∇ with Clifford multiplication

$$C: C^{\infty}(X, T^*X \otimes \mathcal{S}(X)) \to C^{\infty}(X, \mathcal{S}(X))$$

we obtain the *Dirac operator*

$$D = C \circ \nabla \colon C^{\infty}(X, \mathcal{S}(X)) \to C^{\infty}(X, \mathcal{S}(X)).$$

It is a self-adjoint, first order, elliptic partial differential operator.

As in the previous section, a representation $\alpha \colon \pi_1(X) \to GL_N(\mathbb{C})$ defines a bundle V_{α} with a flat connection ∇^{α} . In this case we can define the *twisted Dirac operator* D_{α} by the composition

$$\begin{array}{ccc} C^{\infty}(X,\mathcal{S}(X)\otimes V_{\alpha}) & \stackrel{\nabla\otimes Id+Id\otimes\nabla^{\alpha}}{\longrightarrow} & C^{\infty}(X,T^{*}X\otimes\mathcal{S}(X)\otimes V_{\alpha}) \\ & \stackrel{C\otimes Id}{\longrightarrow} & C^{\infty}(X,\mathcal{S}(X)\otimes V_{\alpha}) \end{array}$$

where $\nabla \otimes \nabla^{\alpha}$ is the product connection on the bundle $\mathcal{S}(X) \otimes V_{\alpha}$ and Id is the identity map.

5 The results of Jones and Westbury

The relation between the value of the regulator map on the classes $[\Sigma, \alpha] \in K_3(\mathbb{C})$ and the η -invariant of the Dirac operator of the homology sphere Σ is given by the following theorem:

Theorem 5.1.1 (Jones–Westbury).

$$e([\Sigma, \alpha]) = \xi(\alpha, D)$$

where D is the Dirac operator on Σ .

In [6] Jones and Westbury give a formula to compute $e[\Sigma, \alpha]$ when Σ is a Seifert homology sphere. Let (a_1, \ldots, a_n) be an *n*-tuple of pairwise coprime integers. The Seifert homology 3-sphere $\Sigma(a_1, \ldots, a_n)$ is a 3-manifold which admits an action of the circle S^1 which is free except for *n* exceptional orbits which have isotropy groups Ca_1, \ldots, Ca_n where $C_m \subset S^1$ is the cyclic subgroup of order *m* embedded in S^1 as the *m*th roots of unity.

In order to give the aforementioned formula we need to know a bit about the fundamental group of $\Sigma(a_1, \ldots, a_n)$. Let $T(a_1, \ldots, a_n)$ be the generalised triangle group which is defined by the following generators and relations

$$T(a_1, \ldots, a_n) = \langle x_1, \ldots, x_n | x_1^{a_1} = \cdots = x_n^{a_n} = x_1 \ldots x_n = 1 \rangle.$$

This group is perfect and it has a universal central extension $\tilde{T}(a_1, \ldots, a_n)$ which fits into an exact sequence

$$1 \to C_* \to T(a_1, \ldots, a_n) \to T(a_1, \ldots, a_n) \to 1$$

where C_* is an infinite cyclic group, except for the case of T(2,3,5)where $C_* \cong \mathbb{Z}_2$.

In terms of generators and relations

$$\tilde{T}(a_1,\ldots,a_n) = \langle h, x_1,\ldots,x_n | [x_i,h] = 1, x_1^{a_1} = h^{-b_1},\ldots,x_n^{a_n} = h^{-b_n},$$

 $x_1 \dots x_n = h^{-b_0} \rangle$

where h is the generator of the centre of $\tilde{T}(a_1, \ldots, a_n)$.

The b_i satisfy the relation

$$a_1 \dots a_n \left(-b_0 + \frac{b_1}{a_1} + \dots + \frac{b_n}{a_n} \right) = 1$$

and we have that

$$\pi_1(\Sigma(a_1,\ldots,a_n))=\tilde{T}(a_1,\ldots,a_n).$$

Let $\alpha: \pi_1(\Sigma(a_1, \ldots, a_n)) \to GL_N(\mathbb{C})$ be a representation, since the group $\pi_1(\Sigma(a_1, \ldots, a_n))$ is perfect every complex representation α must have image in $SL_N(\mathbb{C})$. We shall consider only those representations in which the central element h acts as a scalar multiple of the identity, for instance, that is the case when α is irreducible and in general for any decomposable representation.

10

Suppose $\alpha(h) = \lambda_h I$ where λ_h is a scalar, then, since $\alpha(h) \in SL_N(\mathbb{C})$

$$\lambda_h = \zeta_N^{r_h}$$

is a Nth root of unity. Here $\zeta_d = e^{2\pi i/d} \in \mathbb{C}$ is the standard primitive dth root of unity. Now consider the matrices

$$\alpha(x_j), \quad j=1,\ldots,n.$$

In view of the relations $x_j^{a_j} = h^{-b_j}$ the eigenvalues $\lambda_1(j), \ldots, \lambda_N(j)$ satisfy the equation

$$\lambda_k(j)^{a_j} = \lambda_h^{-b_j}.$$

There are a_j roots of this equation and we define $s_k(j)$ by

$$\lambda_k(j) = \zeta_{Na_j}^{Ns_k(j) - b_j r_h}.$$

We refer to the numbers

$$s_k(j), \quad 1 \le j \le n, \ 1 \le k \le N$$

as the type of the representation α .

Now we have

Theorem 5.1.2 (Jones-Westbury). Let $\alpha: \pi_1(\Sigma(a_1, \ldots, a_n)) \rightarrow SL_N(\mathbb{C})$ be a representation of the fundamental group of the Seifert homology sphere $\Sigma(a_1, \ldots, a_n)$ in which the central element h acts as a scalar multiple of the identity. Let

$$s_k(j), \quad 1 \le j \le n, \ 1 \le k \le N$$

be the type of the representation α ; then

$$2N\Re(e[\Sigma(a_1,\ldots,a_n),\alpha]) = -\sum_{j=1}^n \sum_{k=1}^N \sum_{l=1}^N \frac{a(s_k(j)-s_l(j))^2}{2a_j^2}$$

where $a = a_1 \dots a_n$.

This formula was obtained using the fact that the invariants $\xi(\alpha, D)$ are cobordism invariants, so it is enough to compute them on a simpler manifold which is cobordant to the Seifert homology sphere (see [6]). The cobordism invariance follows from the index theorem for flat bundles in [2].

Using the previous theorem they also prove the following results

Theorem 5.1.3 (Jones-Westbury). Every element in $K_3(\mathbb{C})$ of finite order is of the form $[\Sigma(p,q,r), \alpha]$ for some representation

$$\alpha \colon \pi_1(\Sigma(p,q,r)) \to SL_2(\mathbb{C}).$$

Now let $\mathbb{Z}[\zeta_d]$ be the ring of algebraic numbers in the cyclotomic field $\mathbb{Q}(\zeta_d)$. Then combining the results of Borel [3], Merkurjev and Suslin [10] and Levine [8] we have that

$$K_3(\mathbb{Z}[\zeta_d]) = \mathbb{Z}/w_2(d) \oplus \mathbb{Z}^{r_2}$$

where

$$w_2(d) = \operatorname{lcm}(24, 2d)$$

and r_2 is the number of complex places of $\mathbb{Q}(\zeta_d)$. In particular note that if (6, d) = 1 the torsion subgroup of $K_3(\mathbb{Z}[\zeta_d])$ is exactly $\mathbb{Z}/24d$.

Theorem 5.1.4 (Jones-Westbury). If (6, d) = 1 there exists a representation $\alpha : \pi_1(\Sigma(2, 3, d)) \to SL_2(\mathbb{Z}[\zeta_d])$ such that the element $[\Sigma(2, 3, d), \alpha] \in K_3(\mathbb{Z}[\zeta_d])$ is a generator of the torsion subgroup.

Example 5.1.5. The Seifert homology sphere $P = \Sigma(2,3,5)$ is called the Poincaré 3-sphere. Its fundamental group, known as the binary icosahedral group, is a subgroup of SU(2) and the matrices which occur in this subgroup can all be chosen to have coefficients in the ring $\mathbb{Z}[\zeta_5]$. This gives a representation α of $\pi_1(P)$ in $SL_2(\mathbb{Z}[\zeta_5])$, and using theorem 5.1.2 we get

$$e[P,\alpha] = \frac{1}{120}$$

From this we deduce that the generator of the torsion subgroup of $K_3(\mathbb{Z}[\zeta_5])$ is given by $[P, \alpha]$ where α is the natural representation of $\pi_1(P)$.

6 Further research and progress

One could try to compute $\tilde{\xi}(\alpha, D)$ directly from its definition, without using the fact that it is a cobordism invariant and expect an improved formula which works for all the representations of $\pi_1(\Sigma)$ and which also gives the imaginary part. I established a first step in this direction in [4, 5] computing $\tilde{\xi}(\alpha, D)$ directly from its definition for the Poincaré sphere, which is the only homology 3-sphere with finite fundamental group. The method not only works for the Poincaré sphere but for any quotient S^3/Γ of the 3-sphere by a finite subgroup Γ (3-dimensional spherical space forms), so we get a formula to compute the η -invariant of the Dirac operator of S^3/Γ twisted by any representation of Γ , where Γ is any finite subgroup of S^3 .

Acknowledgement

I would like to thank Professor John Jones for his comments on this work.

José Luis Cisneros Molina Instituto de Matemáticas, UNAM, Unidad Cuernavaca, Apdo. Postal #273-3, Adm. de Correos #3, C.P. 62251, Cuernavaca, Morelos, Mexico. jlcm@matcuer.unam.mx

References

- M. F. Atiyah, R. Bott, and A. Shapiro. Clifford modules. *Topology*, 3, Suppl. 1, (1964), 3–38.
- [2] M. F. Atiyah, V. K. Patodi, and I. M. Singer. Spectral asymmetry and riemannian geometry III. *Mathematics Proceedings of* the Cambridge Philosophycal Society, 79 (1976), 71–99.
- [3] A. Borel. Stable real cohomology of arithmetic groups. Annales Scientifiques de l'École Normale Supérieure, 7 (1974), 235–272.
- [4] J. L. Cisneros Molina. The η -invariant of twisted Dirac operators of S^3/Γ . To appear in *Geometriae Dedicata*, (2000).
- [5] J. L. Cisneros-Molina. The regulator, the Bloch group, hyperbolic manifolds, and the η-invariant. PhD thesis, University of Warwick, Coventry, England, September (1998).
- [6] J. D. S. Jones and B. W. Westbury. Algebraic K-theory, homology spheres, and the η-invariant. *Topology*, 34(4) (1994), 929–957.
- [7] H. Blaine Lawson, Jr. and Marie-Louise Michelsohn. *Spin Geom*etry. Princeton University Press, Princeton, New Jersey, (1989).

- [8] M. Levine. The indecomposable K_3 of fields. Annales Scientifiques de l'École Normale Supérieure, 22 (1989), 255–344.
- [9] E. Lluis-Puebla. Algebra homológica, Cohomología de Grupos y K-Teoría Algebraica Clásica. Addison-Wesley Iberoamericana, (1990).
- [10] A. S. Merkurjev and A. A. Suslin. On K_3 of a field. LOMI preprint M-2-07, (1987).
- [11] J. W. Milnor. Introducton to Algebraic K-Theory. Study 72. Princeton University Press, Princeton, New Jersey, (1971).
- [12] J. Rosenberg. Algebraic K-Theory and Its Applications. Graduate Texts in Mathematics 147. Springer-Verlag, (1994).
- [13] R. T. Seeley. Complex powers of an elliptic operator. In Singular Integrals, Proc. Symp. Pure Math., volume 10, pages 288– 307. American Mathematical Society, Providence, Rhode Island, U.S.A., (1967).