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Algebraic K-theory and the η-invariant ∗

José Luis Cisneros Molina 1

Abstract

The aim of this paper is to present the main results of J. D. S. Jones
and B. W. Westbury on algebraic K-Theory, homology spheres
and the η-invariant [6], giving the basic definitions and prerequi-
sites to understand them.
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1 Introduction

In [6] J. D. S. Jones and B. W. Westbury constructed elements inK3(C),
the 3rd algebraic K-theory group of the field of complex numbers, using
homology 3-spheres endowed with a representation of their fundamental
group. They also computed the image of such elements under the reg-
ulator map, using the η-invariant. The aim of this paper is to present
the main results of J. D. S. Jones [6], giving the basic definitions and
prerequisites to understand them.

The paper is divided in four parts. In section 2 we define the alge-
braic K-groups of a ring using Quillen’s +-construction. We also explain
how homology n-spheres equipped with a representation of its funda-
mental group in the general linear group over a ring R define elements in
the K-groupKn(R). In section 3 we give the definition of the η-invariant
of a self-adjoint elliptic operator on a closed manifold and its variations.
In section 4 we describe the Dirac operator which is a very important
example of this kind of operators and the one which we are interested
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in. Finally in section 5 the main results by Jones and Westbury are
presented.

2 Algebraic K-Theory

In this section we define the algebraic K-groups and we describe how
to construct elements in this groups using homology spheres equipped
with a representation of its fundamental group.

2.1 Classifying space of a group

Any discrete group G has a classifying space BG which is a pointed
space (i.e. it has a base point ∗) unique up to homotopy equivalence
such that:

π1(BG) = G and πi(BG) = 0 for i ̸= 1 i.e. BG is an Eilenberg-
Mac Lane space K(G, 1).

From its definition, the universal covering of BG, denoted by EG is
contractible. The covering EG→ BG is called the universal bundle for
G and the space BG satisfies the following universal property:

If EG→ BG is a universal bundle for G and X is of the homotopy
type of a CW-complex with base point x0 (e.g. manifold). Then we
have the following one-to-one correspondences

[X,BG]←→ Hom(π1(X,x0), G)←→ FG(X)

where [X,BG] denotes the homotopy classes of maps from X to BG,
Hom(π1(X,x0), G) denotes the homomorphisms from π1(X,x0) to G
and FG(X) the equivalence classes of principal (flat) G-bundles over X.

Note that in the case when G = GLN (C), Hom(π1(X,x0), G) is
precisely the set of representations of π1(X,x0) on CN .

2.2 Quillen’s +-construction

In order to define the algebraic K-theory groups of a ring R, we need
the +-construction due to Daniel Quillen in the early 1970’s, for which,
among other reasons, he was awarded the Fields Medal in 1978.

Theorem 2.2.1 (Quillen). Let X be a connected CW-complex with
base point x0. Let A ⊂ π1(X) be a perfect normal subgroup (i.e. A =
[A,A] and A = [π1(X), A], where [ , ] is the commutator). Then there
is a space X+ (depending on A) and a map i : X → X+ such that:
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(a) The map i induces an isomorphism

i : π1(X)/A→ π1(X
+).

(b) For any π1(X
+)-module L one has

i∗ : H∗(X, i∗L)
∼=→ H∗(X

+, L).

(c) The pair (X+, i) is determined by a) and b) up to homotopy equiv-
alence.

Let R be a ring with 1. Consider the group GLN (R) of invertible
N ×N matrices over R. The elementary group EN (R) is the subgroup
of GLN (R) generated by the elementary matrices (see [12, 11, 9] for
definition).

We have inclusions GLN (R) ⊂ GLN+1(R) which restrict to inclu-
sions EN (R) ⊂ EN+1(R) and we can define

GL(R) =
∪
N

GLN (R)

E(R) =
∪
N

EN (R).

Let X = BGL(R). Then π1(X) = GL(R) and A = E(R) is per-
fect. Then applying the +-construction we get BGL(R)+. Define the
algebraic K-groups of the ring R by

Kn(R) = πn(BGL(R)+) for n ≥ 1.

This definition may seem artificial, the reason is because originally
the first three groups K0(R), K1(R) and K2(R) were given by algebraic
definitions2 and for a while seemed to be no good way to define the
“higher K-functors” Ki, i ≥ 3, until Quillen’s work appeared, for a nice
account of this facts see [12].

2In the present definition we are not including K0(R), in this case is called the
“reduced” algebraic K-theory of R
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2.3 Homology spheres

It is well known that the homology of the n-sphere Sn is given by

Hq(S
n) =

{
Z q = 0, n

0 q ̸= 0, n.

A homology n-sphere as its name indicates it, is a path-connected
space (say with the homotopy type of a CW-complex) with the same
homology groups as Sn (n ≥ 3).

Let Σ be a homology n-sphere, since

0 = H1(Σ,Z) = π1(Σ)/[π1(Σ), π1(Σ)]

π1(Σ) can have no abelian quotients and so is perfect. Given a represen-
tation α : π1(X) → GLN (R), let f : Σ → BGLN (R) be the map which
induces α on π1 (by the universal property of classifying spaces). Com-
posing this map with the inclusion BGLN (R)→ BGL(R) and applying
Quillen’s +-construction we get

Sn ⋍ Σ+ → BGL(R)+,

since the +-construction is functorial by its universal properties. Here
⋍ denotes homotopy equivalence. The homotopy class of this map gives
us the element in K-theory

[Σ, α] ∈ Kn(R) = πn(BGL(R)+).

2.4 The regulator

There is a homomorphism

e : K2n+1(C)→ C/Z

called the regulator map which satisfies the following properties

(i) It is an isomorphism on K1(C) ∼= C∗ → C/Z.

(ii) The homomorphism e gives an isomorphism of the torsion sub-
group of K2n+1(C) with Q/Z.

The aim now is to compute the image of the elements [Σ, α] ∈ K3(C)
under the regulator map. One way to do this is using the η-invariant.
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3 The η-invariant

Let X be a closed (compact without boundary) Riemannian manifold
and let E be a smooth vector bundle over X with an inner product.
We denote by C∞(X,E) the space of smooth sections of E and we can
endow it with an inner product ⟨ , ⟩ using the inner product on E and
integration. Let A : C∞(X,E) → C∞(X,E) be an elliptic differential
operator and assume that A is self-adjoint, that is

⟨s1, As2⟩ = ⟨As1, s2⟩

for every s1, s2 ∈ C∞(X,E). Then A has a discrete spectrum with real
eigenvalues {λ} and we define the η-series of A by

η(s;A) =
∑
λ ̸=0

(signλ)|λ|−s

where the sum is taken over the non-zero eigenvalues of A. This series
converges for ℜ(s) sufficiently large. By results of Seeley [13] extends by
analytic continuation to a meromorphic function on the whole s-plane
and is finite at s = 0.

The number η(0;A) is called the η-invariant of A and is a spectral
invariant which measures the asymmetry of the spectrum of A.

We also define a refinement of the η-series which takes into account
the zero eigenvalues of A

ξ(s;A) =
h+ η(s;A)

2

where h is the dimension of the kernel of A or in other words, the
multiplicity of the 0-eigenvalue of A.

Now consider a representation α : π1(X)→ GLN (C). Then α defines
a flat bundle Vα over X in the following way. Let X̃ be the universal
cover of X. Then Vα = X̃ ×π1(X) CN i.e. Vα is X̃ × CN modulo the
action of π1(X), where π1(X) acts on the first factor with the canonical
action of π1(X) on the universal cover and via the representation α on
the second factor. The bundle Vα also has a canonical flat connection
∇α given by the exterior derivative as follows.

A connection is a first order linear differential operator

C∞(X,Vα)
∇α

−−→ Ω1(X,Vα)
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which satisfies the Leibnitz rule

∇αfs = df ⊗ s+ f ⊗∇αs

for every f ∈ C∞(X,R) and every s ∈ C∞(X,Vα).

By the previous construction of the bundle Vα we have that C∞(X,Vα) ∼=
C∞(X̃,CN )

α
and Ω1(X,Vα) ∼= Ω1(X̃,CN )α, where the spaces C∞(X̃,CN )

α

and Ω1(X̃,CN )α are, respectively, the sections and 1-forms which are
equivariant under the action of π1(X) via the representation α. On the
other hand, the exterior derivative

C∞(X̃,CN )
d→ Ω1(X̃,CN )

sends invariant sections to invariant 1-forms. Hence the connection ∇α

is given by

C∞(X,Vα) ∼= C∞(X̃,CN )
α ∇α=d−−−−→ Ω1(X̃,CN )α ∼= Ω1(X,Vα).

Using this connection we can couple the operator A to Vα to get an
operator

Aα : C
∞(X,E ⊗ Vα)→ C∞(X,E ⊗ Vα)

and as before we define the functions3

η(s;α,A) = η(s;Aα), ξ(s;α,A) = ξ(s;Aα)

and their reduced forms

η̃(s;α,A) = η(s;α,A)−Nη(s;A), ξ̃(s;α,A) = ξ(s;α,A)−Nξ(s;A)

where N is the dimension of the representation α.

Once more, following [2, Section 2] we can see that the functions
η̃(s;α,A) and ξ̃(s;α,A) are finite at s = 0 and if we reduce modulo Z
then

η̃(α,A) = η̃(0;α,A) ∈ C/Z, ξ̃(α,A) = ξ̃(0;α,A) ∈ C/Z

3The operator Aα is not self-adjoint any more, unless the representation α is
unitary. Nonetheless, Aα has self-adjoint symbol and that allows us to define the η
and ξ functions, see [2, p. 90].
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are homotopy invariants of A. The reason for regarding values in C/Z
and not just in C is that if we vary A continuously the dimension of
kerA is not a continuous function of A. However the jumps of ξ(s;A)
are due to eigenvalues changing sign as they cross zero and therefore
the jumps are integer jumps.

Note that if we fix the manifold X and the operator A, the invariant
ξ̃(α,A) only depends on the representation α of the fundamental group
of X or equivalently on the flat bundle Vα aver X.

4 The Dirac operator

In this section we describe a particular example of a self-adjoint elliptic
differential operator called the Dirac operator which is the one we shall
use to compute C/Z-valued invariants of elements of the K-groups of any
subring of C. The Dirac operator is very important by itself and plays a
central role in the Atiyah-Singer Index Theorem, in the Seiberg-Witten
theory and many other things. The main references for the material in
this section are [7, 1].

4.1 Clifford algebras

Let V be a finite dimensional real vector space with a non-degenerate,
symmetric bilinear form q : V ⊗ V → R. Let {e1, . . . , en} be an orthog-
onal basis for V then the Clifford algebra Cl(V, q) is the algebra over R,
with unit, generated by the ei, subject to the relations

e2i = −q(ei, ei)
eiej = −ejei i ̸= j.

For the special case when V = Rn and q is the standard inner
product we denote the algebra Cl(V, q) by Cln and its complexification
by ClCn = Cln ⊗ C.

Example 4.1.1.

Cl0 = R with basis 1

Cl1 = C with basis 1, e1

Cl2 = H with basis 1, e1, e2, e1e2
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The group Spin(n) is defined as a subgroup of the group of units of
Cln and it is the non-trivial double covering of SO(n) and for n > 2 it
is its universal covering.

Now lets restrict ourselves to odd dimensional vector spaces, in this
case, the complexified Clifford algebra ClCn has two inequivalent irre-
ducible complex representations and when they are restricted to Spin(n)
they give isomorphic irreducible complex representations of Spin(n). We
denote such a representation space by S.

4.2 Spin structures

LetX be an odd dimensional oriented closed Riemannian manifold. The
Riemannian metric and the orientation give a reduction of the structure
group of the tangent bundle TX of X to SO(n). A spin structure on X
is a lift of the structure group SO(n) of TX to Spin(n).

A spin structure on X provide us with a principal Spin(n)-bundle
Q which is a double cover of the principal SO(n)-bundle P associated
to the tangent bundle TX. The restriction to the fibre of this double
cover ϖ : Q→ P is the double covering Spin(n)→ SO(n).

Now consider the spin representation S of Spin(n) and let

S(X) = Q×Spin(n) S

be the vector bundle over X associated to the principal Spin(n)-bundle
Q. The bundle S(X) is called the spinor bundle of X and its sec-
tions are called spinor fields. We denote the space of spinor fields by
C∞(X,S(X)).

Let Cl(T ∗X) be the bundle over X whose fibre at x is Cl(T ∗
xX),

the Clifford algebra of the cotangent space at x with the inner product
given by the Riemannian metric.

There is a pairing

C : Cl(T ∗X)⊗ S(X)→ S(X)

which is called Clifford multiplication. If we consider the inclusion
T ∗X → Cl(T ∗X) then we get a pairing

T ∗X ⊗ S(X)→ S(X).

4.3 The Dirac operator

The Riemannian structure of X provides us with the Riemannian con-
nection on the tangent bundle. This connection can be seen as a 1-form
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β on the principal SO(n)-bundle P with values in the Lie algebra so(n).
Since Spin(n) and SO(n) have the same Lie algebra, the double cov-
ering ϖ : Q → P given by the spin structure on X gives us a 1-form
ϖ∗(β) which defines a connection on Q called the spin connection. This
connection induces a covariant derivative

∇ : C∞(X,S(X))→ C∞(X,T ∗X ⊗ S(X))

on spinor fields.

Composing ∇ with Clifford multiplication

C : C∞(X,T ∗X ⊗ S(X))→ C∞(X,S(X))

we obtain the Dirac operator

D = C ◦ ∇ : C∞(X,S(X))→ C∞(X,S(X)).

It is a self-adjoint, first order, elliptic partial differential operator.

As in the previous section, a representation α : π1(X) → GLN (C)
defines a bundle Vα with a flat connection ∇α. In this case we can define
the twisted Dirac operator Dα by the composition

C∞(X,S(X)⊗ Vα)
∇⊗Id+Id⊗∇α

−→ C∞(X,T ∗X ⊗ S(X)⊗ Vα)
C⊗Id−→ C∞(X,S(X)⊗ Vα)

where ∇⊗∇α is the product connection on the bundle S(X)⊗ Vα and
Id is the identity map.

5 The results of Jones and Westbury

The relation between the value of the regulator map on the classes
[Σ, α] ∈ K3(C) and the η-invariant of the Dirac operator of the homology
sphere Σ is given by the following theorem:

Theorem 5.1.1 (Jones–Westbury).

e([Σ, α]) = ξ̃(α,D)

where D is the Dirac operator on Σ.
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In [6] Jones and Westbury give a formula to compute e[Σ, α] when Σ
is a Seifert homology sphere. Let (a1, . . . , an) be an n-tuple of pairwise
coprime integers. The Seifert homology 3-sphere Σ(a1, . . . , an) is a 3-
manifold which admits an action of the circle S1 which is free except
for n exceptional orbits which have isotropy groups Ca1, . . . , Can where
Cm ⊂ S1 is the cyclic subgroup of order m embedded in S1 as the mth
roots of unity.

In order to give the aforementioned formula we need to know a bit
about the fundamental group of Σ(a1, . . . , an). Let T (a1, . . . , an) be the
generalised triangle group which is defined by the following generators
and relations

T (a1, . . . , an) = ⟨x1, . . . , xn|xa11 = · · · = xann = x1 . . . xn = 1⟩.

This group is perfect and it has a universal central extension
T̃ (a1, . . . , an) which fits into an exact sequence

1→ C∗ → T̃ (a1, . . . , an)→ T (a1, . . . , an)→ 1

where C∗ is an infinite cyclic group, except for the case of T (2, 3, 5)
where C∗ ∼= Z2.

In terms of generators and relations

T̃ (a1, . . . , an) = ⟨h, x1, . . . , xn| [xi, h] = 1, xa11 = h−b1 , . . . , xann = h−bn ,

x1 . . . xn = h−b0⟩
where h is the generator of the centre of T̃ (a1, . . . , an).

The bi satisfy the relation

a1 . . . an

(
−b0 +

b1
a1

+ · · ·+ bn
an

)
= 1

and we have that

π1(Σ(a1, . . . , an)) = T̃ (a1, . . . , an).

Let α : π1(Σ(a1, . . . , an)) → GLN (C) be a representation, since the
group π1(Σ(a1, . . . , an)) is perfect every complex representation α must
have image in SLN (C). We shall consider only those representations in
which the central element h acts as a scalar multiple of the identity, for
instance, that is the case when α is irreducible and in general for any
decomposable representation.
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Suppose α(h) = λhI where λh is a scalar, then, since α(h) ∈ SLN (C)

λh = ζrhN

is a Nth root of unity. Here ζd = e2πi/d ∈ C is the standard primitive
dth root of unity. Now consider the matrices

α(xj), j = 1, . . . , n.

In view of the relations x
aj
j = h−bj the eigenvalues λ1(j), . . . , λN (j)

satisfy the equation

λk(j)
aj = λ

−bj
h .

There are aj roots of this equation and we define sk(j) by

λk(j) = ζ
Nsk(j)−bjrh
Naj

.

We refer to the numbers

sk(j), 1 ≤ j ≤ n, 1 ≤ k ≤ N

as the type of the representation α.
Now we have

Theorem 5.1.2 (Jones-Westbury). Let α : π1(Σ(a1, . . . , an))→
SLN (C) be a representation of the fundamental group of the Seifert
homology sphere Σ(a1, . . . , an) in which the central element h acts as a
scalar multiple of the identity. Let

sk(j), 1 ≤ j ≤ n, 1 ≤ k ≤ N

be the type of the representation α; then

2Nℜ(e[Σ(a1, . . . , an), α]) = −
n∑

j=1

N∑
k=1

N∑
l=1

a(sk(j)− sl(j))
2

2a2j

where a = a1 . . . an.

This formula was obtained using the fact that the invariants ξ̃(α,D)
are cobordism invariants, so it is enough to compute them on a sim-
pler manifold which is cobordant to the Seifert homology sphere (see
[6]). The cobordism invariance follows from the index theorem for flat
bundles in [2].

Using the previous theorem they also prove the following results
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Theorem 5.1.3 (Jones-Westbury). Every element in K3(C) of fi-
nite order is of the form [Σ(p, q, r), α] for some representation

α : π1(Σ(p, q, r))→ SL2(C).

Now let Z[ζd] be the ring of algebraic numbers in the cyclotomic field
Q(ζd). Then combining the results of Borel [3], Merkurjev and Suslin
[10] and Levine [8] we have that

K3(Z[ζd]) = Z/w2(d)⊕ Zr2

where

w2(d) = lcm(24, 2d)

and r2 is the number of complex places of Q(ζd). In particular note that
if (6, d) = 1 the torsion subgroup of K3(Z[ζd]) is exactly Z/24d.

Theorem 5.1.4 (Jones-Westbury). If (6, d) = 1 there exists a
representation α : π1(Σ(2, 3, d))→ SL2(Z[ζd]) such that the element
[Σ(2, 3, d), α] ∈ K3(Z[ζd]) is a generator of the torsion subgroup.

Example 5.1.5. The Seifert homology sphere P = Σ(2, 3, 5) is called
the Poincaré 3-sphere. Its fundamental group, known as the binary
icosahedral group, is a subgroup of SU(2) and the matrices which oc-
cur in this subgroup can all be chosen to have coefficients in the ring
Z[ζ5]. This gives a representation α of π1(P ) in SL2(Z[ζ5]), and using
theorem 5.1.2 we get

e[P, α] =
1

120
.

From this we deduce that the generator of the torsion subgroup of
K3(Z[ζ5]) is given by [P, α] where α is the natural representation of
π1(P ).

6 Further research and progress

One could try to compute ξ̃(α,D) directly from its definition, without
using the fact that it is a cobordism invariant and expect an improved
formula which works for all the representations of π1(Σ) and which also
gives the imaginary part. I established a first step in this direction in
[4, 5] computing ξ̃(α,D) directly from its definition for the Poincaré
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sphere, which is the only homology 3-sphere with finite fundamental
group. The method not only works for the Poincaré sphere but for any
quotient S3/Γ of the 3-sphere by a finite subgroup Γ (3-dimensional
spherical space forms), so we get a formula to compute the η-invariant
of the Dirac operator of S3/Γ twisted by any representation of Γ, where
Γ is any finite subgroup of S3.
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