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Algebraic K-theory and the n-invariant *

José Luis Cisneros Molina !

Abstract

The aim of this paper is to present the main results of J. D. S. Jones
and B. W. Westbury on algebraic K-Theory, homology spheres
and the n-invariant [6], giving the basic definitions and prerequi-
sites to understand them.
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1 Introduction

In [6] J. D. S. Jones and B. W. Westbury constructed elements in K3(C),
the 3rd algebraic K-theory group of the field of complex numbers, using
homology 3-spheres endowed with a representation of their fundamental
group. They also computed the image of such elements under the reg-
ulator map, using the n-invariant. The aim of this paper is to present
the main results of J. D. S. Jones [6], giving the basic definitions and
prerequisites to understand them.

The paper is divided in four parts. In section 2 we define the alge-
braic K-groups of a ring using Quillen’s 4-construction. We also explain
how homology n-spheres equipped with a representation of its funda-
mental group in the general linear group over a ring R define elements in
the K-group K,,(R). In section 3 we give the definition of the n-invariant
of a self-adjoint elliptic operator on a closed manifold and its variations.
In section 4 we describe the Dirac operator which is a very important
example of this kind of operators and the one which we are interested
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in. Finally in section 5 the main results by Jones and Westbury are
presented.

2 Algebraic K-Theory

In this section we define the algebraic K-groups and we describe how
to construct elements in this groups using homology spheres equipped
with a representation of its fundamental group.

2.1 Classifying space of a group

Any discrete group G has a classifying space BG which is a pointed
space (i.e. it has a base point %) unique up to homotopy equivalence
such that:

m(BG) = G and m;(BG) = 0 for ¢ # 1 i.e. BG is an Eilenberg-
Mac Lane space K(G,1).

From its definition, the universal covering of BG, denoted by EG is
contractible. The covering EG — BG is called the universal bundle for
G and the space BG satisfies the following universal property:

If EG — B( is a universal bundle for G and X is of the homotopy
type of a CW-complex with base point xg (e.g. manifold). Then we
have the following one-to-one correspondences

[X, BG] «— Hom(7m1 (X, z0),G) «— Fg(X)

where [X, BG] denotes the homotopy classes of maps from X to BG,
Hom (71 (X, ), G) denotes the homomorphisms from 71(X,zg) to G
and Fg(X) the equivalence classes of principal (flat) G-bundles over X.

Note that in the case when G = GLy(C), Hom(m (X, z0),G) is
precisely the set of representations of 7 (X, 2¢) on C.

2.2  Quillen’s +-construction

In order to define the algebraic K-theory groups of a ring R, we need
the +-construction due to Daniel Quillen in the early 1970’s, for which,
among other reasons, he was awarded the Fields Medal in 1978.

Theorem 2.2.1 (Quillen). Let X be a connected CW-complex with
base point xg. Let A C m1(X) be a perfect normal subgroup (i.e. A =
[A, A] and A = [m1(X), A], where [, ] is the commutator). Then there
is a space Xt (depending on A) and a map i: X — Xt such that:
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(a) The map i induces an isomorphism

i:m(X)/A = T (XT).

(b) For any m(X™)-module L one has

iyt Ho(X,i,L) > H. (X, L).

(c) The pair (XT,i) is determined by a) and b) up to homotopy equiv-
alence.

Let R be a ring with 1. Consider the group GLx(R) of invertible
N x N matrices over R. The elementary group En(R) is the subgroup
of GLN(R) generated by the elementary matrices (see [12, 11, 9] for
definition).

We have inclusions GLy(R) C GLy11(R) which restrict to inclu-
sions En(R) C En+1(R) and we can define

GL(R) =| JGLN(R)
N

E(R)=|JEn(R).
N

Let X = BGL(R). Then m(X) = GL(R) and A = E(R) is per-
fect. Then applying the +-construction we get BGL(R)". Define the
algebraic K-groups of the ring R by

Kn(R) = m,(BGL(R)") for n>1.

This definition may seem artificial, the reason is because originally
the first three groups Ko(R), K1(R) and K»(R) were given by algebraic
definitions? and for a while seemed to be no good way to define the
“higher K-functors” Kj;, ¢ > 3, until Quillen’s work appeared, for a nice
account of this facts see [12].

In the present definition we are not including Ko(R), in this case is called the
“reduced” algebraic K-theory of R
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2.3 Homology spheres
It is well known that the homology of the n-sphere S™ is given by

n Z q=0,n
Hq(S):{O q#0.n

A homology n-sphere as its name indicates it, is a path-connected
space (say with the homotopy type of a CW-complex) with the same
homology groups as S™ (n > 3).

Let ¥ be a homology n-sphere, since

0= Hy(2,Z) = m(2)/ [ (), 11 (D)

m1(X) can have no abelian quotients and so is perfect. Given a represen-
tation a: 71 (X) = GLn(R), let f: ¥ — BGLy(R) be the map which
induces « on 71 (by the universal property of classifying spaces). Com-
posing this map with the inclusion BGLy(R) — BGL(R) and applying
Quillen’s +-construction we get

S" %t - BGL(R)Y,

since the +-construction is functorial by its universal properties. Here
« denotes homotopy equivalence. The homotopy class of this map gives
us the element in K-theory

[%,a] € K,(R) = m,(BGL(R)™").

2.4 The regulator
There is a homomorphism
e: Kopt1(C) — C/Z
called the regulator map which satisfies the following properties
(i) It is an isomorphism on K;(C) = C* — C/Z.

(ii) The homomorphism e gives an isomorphism of the torsion sub-
group of Kop,41(C) with Q/Z.

The aim now is to compute the image of the elements [X, a] € K3(C)
under the regulator map. One way to do this is using the n-invariant.
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3 The n-invariant

Let X be a closed (compact without boundary) Riemannian manifold
and let F be a smooth vector bundle over X with an inner product.
We denote by C*°(X, E) the space of smooth sections of E and we can
endow it with an inner product (, ) using the inner product on E and
integration. Let A: C®(X,FE) — C*°(X, E) be an elliptic differential
operator and assume that A is self-adjoint, that is

<81, A52> = <A81, 52>

for every s, 59 € C°(X, E). Then A has a discrete spectrum with real
eigenvalues {\} and we define the n-series of A by

n(s;A) = (sign )M~

A#£0

where the sum is taken over the non-zero eigenvalues of A. This series
converges for R(s) sufficiently large. By results of Seeley [13] extends by
analytic continuation to a meromorphic function on the whole s-plane
and is finite at s = 0.

The number 7(0; A) is called the n-invariant of A and is a spectral
invariant which measures the asymmetry of the spectrum of A.

We also define a refinement of the n-series which takes into account
the zero eigenvalues of A

_ h+n(s; A)

£(s; A) 5

where h is the dimension of the kernel of A or in other words, the
multiplicity of the 0-eigenvalue of A.

Now consider a representation a: m1(X) — GLx(C). Then « defines
a flat bundle V,, over X in the following way. Let X be the universal
cover of X. Then V, = X X1 (X) CN ie. V, is X x CN modulo the
action of 71 (X), where 71 (X)) acts on the first factor with the canonical
action of 1 (X) on the universal cover and via the representation o on
the second factor. The bundle V,, also has a canonical flat connection
V& given by the exterior derivative as follows.

A connection is a first order linear differential operator

C®(X,V,) 5 QY(X, Vy)
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which satisfies the Leibnitz rule
Veéfs=df @ s+ f @ Vs

for every f € C°(X,R) and every s € C*(X, V,).

By the previous construction of the bundle V,, we have that C*°(X, V,,) =
C(X,CN)" and Q'(X, V,) = Q1(X,CN)*, where the spaces C(X,CN)*
and Ql(X ,CN)* are, respectively, the sections and 1-forms which are
equivariant under the action of 71 (X) via the representation .. On the
other hand, the exterior derivative

c=(X,cM) % oi(x,cM)

sends invariant sections to invariant 1-forms. Hence the connection V¢
is given by

C™(X,V,) = 0®(X,cN)* Y=4 (X, eV = QL (X, V).

Using this connection we can couple the operator A to V, to get an
operator

Ag: CR(X,E®Vy) —» CF(X,E® V)
and as before we define the functions®
n(s;o, A) =n(s;4a),  &(s;a,A) = (s Aq)

and their reduced forms

n(s; o, A) = n(s; o, A) — N(s; A), £(s;a,A) = (550, A) — NE(s; A)

where N is the dimension of the representation .

Once more, following [2, Section 2] we can see that the functions
n(s; a, A) and £(s;a, A) are finite at s = 0 and if we reduce modulo Z
then

n(a, A) =7(0;a, A) € C/Z, g(a,A) zé(O;Oz,A) eC/zZ

3The operator A, is not self-adjoint any more, unless the representation o is
unitary. Nonetheless, A, has self-adjoint symbol and that allows us to define the n
and ¢ functions, see [2, p. 90].
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are homotopy invariants of A. The reason for regarding values in C/Z
and not just in C is that if we vary A continuously the dimension of
ker A is not a continuous function of A. However the jumps of £(s; A)
are due to eigenvalues changing sign as they cross zero and therefore
the jumps are integer jumps.

Note that if we fix the manifold X and the operator A, the invariant
13 (a, A) only depends on the representation a of the fundamental group
of X or equivalently on the flat bundle V,, aver X.

4 The Dirac operator

In this section we describe a particular example of a self-adjoint elliptic
differential operator called the Dirac operator which is the one we shall
use to compute C/Z-valued invariants of elements of the K-groups of any
subring of C. The Dirac operator is very important by itself and plays a
central role in the Atiyah-Singer Index Theorem, in the Seiberg-Witten
theory and many other things. The main references for the material in
this section are [7, 1].

4.1 Clifford algebras

Let V be a finite dimensional real vector space with a non-degenerate,
symmetric bilinear form ¢: V® V' — R. Let {e1,...,e,} be an orthog-
onal basis for V' then the Clifford algebra CIl(V,q) is the algebra over R,
with unit, generated by the e;, subject to the relations

el = —q(e;,€;)

€i€; = —€45€; 1 75 j
For the special case when V = R" and ¢ is the standard inner

product we denote the algebra CI(V,q) by Cl,, and its complexification
by CIS = Cl,, ® C.

Example 4.1.1.

Clp=R with basis 1
Cly =C with basis 1,eq
Cly =H with basis 1,eq1,es,e1e
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The group Spin(n) is defined as a subgroup of the group of units of
Cl,, and it is the non-trivial double covering of SO(n) and for n > 2 it
is its universal covering.

Now lets restrict ourselves to odd dimensional vector spaces, in this
case, the complexified Clifford algebra CIC has two inequivalent irre-
ducible complex representations and when they are restricted to Spin(n)
they give isomorphic irreducible complex representations of Spin(n). We
denote such a representation space by S.

4.2 Spin structures

Let X be an odd dimensional oriented closed Riemannian manifold. The
Riemannian metric and the orientation give a reduction of the structure
group of the tangent bundle T'X of X to SO(n). A spin structure on X
is a lift of the structure group SO(n) of TX to Spin(n).

A spin structure on X provide us with a principal Spin(n)-bundle
@ which is a double cover of the principal SO(n)-bundle P associated
to the tangent bundle TX. The restriction to the fibre of this double
cover w: (Q — P is the double covering Spin(n) — SO(n).

Now consider the spin representation S of Spin(n) and let

S(X) =Q X Spin(n) S

be the vector bundle over X associated to the principal Spin(n)-bundle
Q. The bundle S(X) is called the spinor bundle of X and its sec-
tions are called spinor fields. We denote the space of spinor fields by
C>(X,S8(X)).

Let CI(T*X) be the bundle over X whose fibre at = is CI(T}X),
the Clifford algebra of the cotangent space at x with the inner product
given by the Riemannian metric.

There is a pairing

C: Cl(T*X) ® 8(X) — S(X)

which is called Clifford multiplication. If we consider the inclusion
T*X — Cl(T*X) then we get a pairing

T*X © S(X) = S(X).

4.3 The Dirac operator

The Riemannian structure of X provides us with the Riemannian con-
nection on the tangent bundle. This connection can be seen as a 1-form
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B on the principal SO(n)-bundle P with values in the Lie algebra so(n).
Since Spin(n) and SO(n) have the same Lie algebra, the double cov-
ering w: () — P given by the spin structure on X gives us a 1-form
w™* () which defines a connection on @ called the spin connection. This
connection induces a covariant derivative

V: C%(X,8(X)) = C(X,T*X ® S(X))

on spinor fields.
Composing V with Clifford multiplication

C: C¥(X, T" X ®S(X)) - C*(X,S8(X))
we obtain the Dirac operator
D=CoV:(C¥X,8(X)) = C*(X,S8(X)).

It is a self-adjoint, first order, elliptic partial differential operator.

As in the previous section, a representation a: m(X) — GLy(C)
defines a bundle V,, with a flat connection V. In this case we can define
the twisted Dirac operator D, by the composition

C®(X,S(X) @ V,) YETHLEVE coo X T X 0 S(X) @ V)
oLt 0o(X, S(X) ® V)

where V ® V¢ is the product connection on the bundle S(X) ® V,, and
Id is the identity map.

5 The results of Jones and Westbury

The relation between the value of the regulator map on the classes
[X, a] € K3(C) and the n-invariant of the Dirac operator of the homology
sphere ¥ is given by the following theorem:

Theorem 5.1.1 (Jones—Westbury).

e([Z,a]) = &(a, D)

where D is the Dirac operator on X.
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In [6] Jones and Westbury give a formula to compute e[X, ] when 3
is a Seifert homology sphere. Let (a1, ... ,a,) be an n-tuple of pairwise
coprime integers. The Seifert homology 3-sphere ¥(ay,... ,a,) is a 3-
manifold which admits an action of the circle S which is free except
for n exceptional orbits which have isotropy groups Cay, ... ,Ca, where
C,, C S is the cyclic subgroup of order m embedded in S* as the mth
roots of unity.

In order to give the aforementioned formula we need to know a bit
about the fundamental group of ¥ (a1, ... ,ay,). Let T'(ay,... ,ay) be the
generalised triangle group which is defined by the following generators
and relations

T(ai,...,an) = (x1,... ,xp| 2]t = =20 =21...2, = 1).
This group is perfect and it has a universal central extension
T(ay,...,ayn) which fits into an exact sequence

1= C,—Tlay,...,a,) = T(ay,... an) =1

where C, is an infinite cyclic group, except for the case of 7'(2,3,5)
where Cy, = Zs.
In terms of generators and relations

T(ay,... an) = (h,x1,... x| [xi,h] = 1,250 = K701 . g% = p=0n

:L'l...iL'n:h_b0> ~
where h is the generator of the centre of T'(a1, ... ,ay).
The b; satisfy the relation

b by
al...an<—b0+1+...+>:1
ai

and we have that

T (2(a1, ... ,a,)) =T(ay, ... a,).

Let a: m(3(a1, ... ,an)) = GLN(C) be a representation, since the
group 71(X(aq, ... ,ay)) is perfect every complex representation « must
have image in SLx(C). We shall consider only those representations in
which the central element h acts as a scalar multiple of the identity, for
instance, that is the case when « is irreducible and in general for any
decomposable representation.
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Suppose a(h) = ApI where Ay, is a scalar, then, since a(h) € SLy(C)

Ap = Cy
is a Nth root of unity. Here ¢; = €2™"/4 € C is the standard primitive
dth root of unity. Now consider the matrices
a(zj), j=1,...,n
In view of the relations x;j = hb the eigenvalues A1 (j),...,An(j)
satisfy the equation

Na —b;
)\k(]) 7= ’\h ..

There are a; roots of this equation and we define s;(j) by

Nsg(§)=bjrn

M) = Gy

We refer to the numbers
sp(j), 1<j<n, 1<k<N

as the type of the representation a.
Now we have

Theorem 5.1.2 (Jones-Westbury).  Let a: m(2(ay, ... ,an)) —
SLy(C) be a representation of the fundamental group of the Seifert
homology sphere (a1, ... ,ay) in which the central element h acts as a
scalar multiple of the identity. Let

se(j), 1<j<n, 1<k<N

be the type of the representation «; then

n

N . .
OINR(e[(ay,. .. ,a ) a(Sk(J)Q;ZSZ(J))Q
J

J=1k=11=1

where a = aq ... ay.

This formula was obtained using the fact that the invariants &(a, D)
are cobordism invariants, so it is enough to compute them on a sim-
pler manifold which is cobordant to the Seifert homology sphere (see
[6]). The cobordism invariance follows from the index theorem for flat
bundles in [2].

Using the previous theorem they also prove the following results
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Theorem 5.1.3 (Jones-Westbury). Every element in K3(C) of fi-
nite order is of the form [E(p,q,r), a] for some representation

a: m(X(p,q,7r)) = SLa(C).

Now let Z[(4] be the ring of algebraic numbers in the cyclotomic field
Q(¢q). Then combining the results of Borel [3], Merkurjev and Suslin
[10] and Levine [8] we have that

K3(Z[G)]) = Z/wa(d) & 27
where
wa(d) = lem(24, 2d)

and 79 is the number of complex places of Q((y). In particular note that
if (6,d) =1 the torsion subgroup of K3(Z[(4]) is exactly Z/24d.

Theorem 5.1.4 (Jones-Westbury). If (6,d) = 1 there exists a
representation «: w1 (X(2,3,d)) — SLa(Z[C4)) such that the element
[X(2,3,d),a] € K3(Z[(4)) is a generator of the torsion subgroup.

Example 5.1.5. The Seifert homology sphere P = ¥(2,3,5) is called
the Poincaré 3-sphere. [Its fundamental group, known as the binary
icosahedral group, is a subgroup of SU(2) and the matrices which oc-
cur in this subgroup can all be chosen to have coefficients in the ring
Z[Cs]. This gives a representation o of w1 (P) in SLa(Z[(5]), and using
theorem 5.1.2 we get

e[P,a] = i

120

From this we deduce that the generator of the torsion subgroup of
K3(Z[(5)) is given by [P,«] where « is the natural representation of
7T1(P).

6 Further research and progress

One could try to compute &(«, D) directly from its definition, without
using the fact that it is a cobordism invariant and expect an improved
formula which works for all the representations of 71(X) and which also
gives the imaginary part. I established a first step in this direction in
[4, 5] computing &(av, D) directly from its definition for the Poincaré
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sphere, which is the only homology 3-sphere with finite fundamental
group. The method not only works for the Poincaré sphere but for any
quotient S3/T" of the 3-sphere by a finite subgroup I' (3-dimensional
spherical space forms), so we get a formula to compute the n-invariant
of the Dirac operator of S3/I" twisted by any representation of I, where
I" is any finite subgroup of S3.
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