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Abstract

Conditions are given under which the general capacity problem in
metric spaces is solvable.
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1 Introduction

In the general capacity (GC) problem we are given the following data:
(i) two metric spaces X and Y , endowed with the corresponding Borel
σ-algebras B(X ) and B(Y ); (ii) two nonnegative measurable functions
f : Y → IR and g : X → IR, and (iii) a nonnegative measurable function
φ : X × Y → IR. Then the GC problem can be stated as follows:

GC minimize ⟨µ, f⟩ :=
∫
Y
f(y)µ(dy)(1.1)

subject to:

∫
Y
φ(x, y)µ(dy) ≥ g(x) ∀x ∈ X, µ(·) ≥ 0.(1.2)

Let F be the class of feasible solutions for GC, that is, F consists of the
measures µ on Y that satisfy (1.2). In this paper we give conditions for
the existence of an optimal solution µ∗ for GC, so that µ∗ is in F and

⟨µ∗, f⟩ = inf {⟨µ, f⟩ | µ ∈ F}.(1.3)
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The capacity problem has its origin in electrostatics, where it is of
interest to determine the capacity of a conducting body. As pointed
out in [1, p.147] (see also [2]), the electrostatic capacity problem is
related with potential theory, as in [5, 6]. The recognition of GC as an
infinite–dimensional linear program was done in [21, 15]. An interesting
connection between the general capacity problem and two-person zero-
sum infinite games is mentioned in [1, 2]. Related studies appear in [12,
16, 20], although all of these references consider the case where X and
Y are compact Hausdorff spaces.

It should be noted that our approach to the solvability of GC is
quite straightforward. The underlying basic idea is the well–known fact
that a lower semicontinuous function on a compact topological space
attains its minimum value. (For a proof of this fact see, for instance,
[3, p.389].) Our Assumption 2.1 is designed to give the appropriate
meaning to “lower semicontinuity” and “compactness”. This assump-
tion can also be used to construct suitable linear spaces of measures and
functions on which the GC problem can be nicely formulated as a linear
program. A similar linear programming (LP) formulation has been used
in [7] to study the Monge–Kantorovich mass transfer problem in general
metric spaces. An advantage of the LP formulation is that if the metric
spaces in GC are separable, then the associated linear program can be
approximated by finite linear programs [10].

2 Solvability of GC

We shall refer to the right–hand side of (1.3) as the value of the GC
problem and denote it by inf(GC). If GC is solvable, we then write the
value inf(GC) as min(GC). In this case, (1.3) thus becomes

⟨µ∗, f⟩ = min(GC).(2.1)

To prove the solvability of GC we shall require the following assump-
tion.

Assumption 2.1 (a) There exists a finite measure µ ∈ F such that
⟨µ, f⟩ < ∞.

(b) The function f is inf–compact, which means that, for each r ∈ IR,
the set

Kr = {y ∈ Y | f(y) ≤ r}(2.2)
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is compact. Moreover, f is strictly bounded away from zero, that is, there
exists ϵ0 > 0 such that f(y) ≥ ϵ0 for all y ∈ Y .

(c) For each x ∈ X, φ(x, ·) is bounded above and upper semicontinuous
(u.s.c).

Observe that the inf-compactness condition implies that f is lower
semicontinuous (l.s.c.). On the other hand, from the proof of Theorem
2.2 it can be seen that part (b) in Assumption 2.1 can be replaced by :

(b1) f(y) is strictly bounded away from zero and l.s.c.; and

(b2) there exists a nondecreasing sequence of compact sets Kn in Y
such that Kn ↑ Y and

lim
n→∞

inf{f(y) | y /∈ Kn} = ∞.

A function f that satisfies (b2) is found in the literature under sev-
eral different names: “moment” [8] or “strictly unbounded” [9, 11] or
“Lyapunov” [13] or “norm–like” [14] function.

Let M+(Y ) be the family of finite (nonnegative) measures on Y such
that ⟨µ, f⟩ < ∞. By Assumption 2.1(a), M+(Y ) is nonempty. We can
now state our main result.

Theorem 2.2 Under Assumption 2.1, the GC problem is solvable, that
is, there exists a measure µ∗ in M+(Y ) that satisfies (1.2) and (2.1).

Before proving Theorem 2.2 we shall introduce some concepts and
preliminary results.

Definition 2.3 (See [4, 17, 18, 19].) Let Γ be a family of finite mea-
sures on a metric space Y .

(a) Γ is said to be tight if for each ϵ > 0 there is a compact set K in Y
such that µ(Kc) ≤ ϵ for all µ ∈ Γ, where Kc denotes the complement
of K.

(b) Γ is called relatively compact if for every sequence {µn} in Γ there
exists a subsequence {µm} of {µn} and a finite measure µ on Y (not
necessarily in Γ) such that {µm} converges weakly to µ, that is

⟨µm, v⟩ → ⟨µ, v⟩ ∀v ∈ Cb(Y ),(2.3)

where Cb(Y ) stands for the space of continuous bounded functions on
Y .
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The statement ‘(b) implies (c)’ in the following lemma is part of
Prohorov’s Theorem (see [4, 17, 18, 19]). The converse is also true if,
for instance, Y is a complete and separable metric space (see [4, p.37],
[17, p.47], [18, p.381]).

Lemma 2.4 Suppose that f satisfies Assumption 2.1(b), and let Γ be
a family of measures on Y . Consider the statements:

(a) There exists a constant b such that
∫
Y fdµ ≤ b for all µ ∈ Γ.

(b) Γ is tight.

(c) Γ is relatively compact.

Then
(a) =⇒ (b) =⇒ (c).(2.4)

Proof. As was already noted, the implication “(b) =⇒ (c)” is (part
of) Prohorov’s Theorem. To prove that (a) implies (b), for each n =
1, 2, . . . , let Kn be the compact set Kn = {y ∈ Y | f(y) ≤ n}. As
f is strictly bounded away from zero, Γ is bounded, that is there is a
constant M ≥ 0 such that µ(Y ) ≤ M for all µ ∈ Γ. Now, for any
measure µ in Γ

b ≥
∫
Y
hdµ ≥

∫
Kc

n

hdµ ≥ nµ(Kc
n).

That is, µ(Kc
n) ≤ b/n for all n, which clearly gives (b).

Lemma 2.5 Suppose that h : Y → IR is a nonnegative and l.s.c. func-
tion, and let {µm} be a sequence of measures on Y . If µm converges
weakly to µ [in the sense of (2.3)], then

lim inf⟨µm, h⟩ ≥ ⟨µ, h⟩.(2.5)

Proof. By the hypotheses on h, there exists a sequence {vk} in Cb(Y )
such that vk ↑ h pointwise as k → ∞. Thus,

⟨µn, h⟩ ≥ ⟨µn, vk⟩ ∀ n, k,

and, therefore, by weak convergence,

lim inf⟨µn, h⟩ ≥ lim inf⟨µn, vk⟩ = ⟨µ, vk⟩ ∀ k.

Finally, letting k → ∞, monotone convergence gives (2.5).
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Remark 2.6 If h : Y → IR is u.s.c. and bounded above, then instead
of (2.5) we get

lim sup⟨µm, h⟩ ≤ ⟨µ, h⟩.(2.6)

We are ready for the proof of Theorem 2.2.

Proof of Theorem 2.2. Let {µn} in F
∩
M+(Y ) be a minimizing

sequence for the GC problem; that is, each µn satisfies (1.2) and

⟨µn, f⟩ ↓ inf(GC).(2.7)

Thus, given ϵ > 0, there exists an integer n(ϵ) such that

inf(GC) ≤ ⟨µn, f⟩ ≤ inf(GC) + ϵ ∀n ≥ n(ϵ).

As f is bounded away from zero, the minimizing sequence {µn} is
bounded.

Next, in Lemma 2.4(a) take b := inf(GC) + ϵ . Hence, by (2.4), the
sequence Γ := {µn, n ≥ n(ϵ)} is relatively compact, and so there is a
subsequence {µm} of Γ and a measure µ∗ in M+(Y ) such that

⟨µm, v⟩ → ⟨µ∗, v⟩ ∀v ∈ Cb(Y ).

Moreover, by (2.5) and (2.7),

⟨µ∗, f⟩ = inf(GC).

Therefore, to prove that µ∗ is an optimal solution for GC it suffices
to show that µ∗ is a feasible solution for GC, that is, µ∗ satisfies the
inequality in (1.2). Now, by Assumption 2.1(c) and Remark 2.6 we get∫

Y
φ(x, y)µ∗(dy) ≥ lim sup

m→∞

∫
Y
φ(x, y)µn(dy) ≥ g(x) ∀ x ∈ X,

which implies that µ∗ is in F . This yields that µ∗ is an optimal solution
for GC.
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