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An stochastic consumption–investment problem

with unbounded utility function

Heliodoro D. Cruz–Suárez 1

Abstract

This paper is concerned with a discrete-time, infinite-horizon con-
sumption and investment problem, which is formulated as a Markov
Decision Process with unbounded utility of consumption, and the
total discounted reward criterion. The conditions given in the
paper permit to obtain explicit expressions for both the optimal
policy and the optimal value function V ∗. Moreover, we find a
bound for the difference between V ∗ and a rolling–horizon reward
function V̂ , that is, the discounted reward value when using a
rolling-horizon policy.
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1 Introduction

Consumption-investment problems appear in Mathematical Economics
and Mathematical Finance, and they have been studied by many au-
thors (see, for instance, [3, §3.6],[4], [5] and their references.)

This paper presents an infinite-horizon version of a discrete-time,
finite-horizon consumption-investment problem that appears in [3]. Here,
the problem is formulated as a Markov Decision Process (MDP) with
unbounded reward function and total discounted reward criterion (see
[1]). Our formulation allows us to obtain explicit expressions for both

1This paper is part of the author’s M.Sc.Thesis presented at the Instituto de
Ciencias Básicas, Universidad Veracruzana (October 1999).
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the optimal value function and the optimal stationary policy. Further-
more, using results from [2] we find an error bound for the difference
between the optimal value function and the rolling–horizon reward func-
tion, that is, the discounted reward value when using a rolling-horizon
(or value iteration) policy. (See [4] for a review of the literature of
rolling-horizon procedures).

The paper is organized as follows. Section 2 introduces the problem
we are interested in. In Section 3 we present a summary of the theory of
Markov Decision Processes (MDPs), which we use in the paper. Section
4 provides a formulation of our problem as an MDP, and presents our
main results. We conclude in Section 5 with some general remarks.

2 The consumption-investment problem

In this section we state the problem we are concerned with. We closely
follow [3, §3.6], except that here we are interested in a problem with an
infinite time horizon. (In Section 4 we reformulate the problem as an
MDP.)

An investor wishes to allocate his current wealth xt between invest-
ment at and consumption xt − at, at each time t = 0, 1, . . .. We assume
that borrowing is not allowed. Then the set

A(x) = [0, x]

consists of the admissible investment values given the wealth x. The
relation between investment decision and capital is given by

xt+1 = at · ξt, (2.1)

so that the wealth at time t+ 1 is proportional to the amount invested
at time t, where we suppose that ξt are independent and identically
distributed random variables independent of the initial wealth x0.

We also have the utility function

u(x) :=
b

γ
xγ for x ≥ 0, (2.2)

where b > 0 and 0 < γ < 1 are constants. Thus, the reward function r
is given by

r(x, a) := u(x− a), (2.3)

so that r is a “utility of consumption”.
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The objective is to maximize over all “rules” of investment π, the
expected total discounted reward

V (π, x) := Eπ
x

[ ∞∑
t=0

αtr(xt, at)

]
,

where x is the initial wealth, and α (0 < α < 1) is a discount factor. To
analize this problem we postulate the following assumption.

Assumption 2.1.

(a) The ξt are nonnegative random variables with a common density
f ;

(b) m := E[ξ0] and mγ := E[ξγ0 ] are finite, m > 1, and

0 < α ·mγ < 1, (2.4)

where γ is the constant in (2.2).

3 Discounted MDPs

In this section we present some results on the theory that we will use
to solve our problem.

Let (X,A,Q, r) be a discrete-time, stationary, Markov control model
(see, e.g., [3] for notation and terminology), which consists of the state
space X, the control (or action) set A, the transition law Q, and the
one-stage reward r. The sets X and A are assumed to be Borel spaces,
with Borel σ-algebras B(X) and B(A), respectively. Moreover, for every
x ∈ X there is a nonempty Borel set A(x) ⊂ A whose elements are the
feasible control actions when the state of the system is x. Define K :=
{(x, a)|x ∈ X, a ∈ A(x)}. The transition law Q(B|x, a) is a stochastic
kernel on X given K (that is, Q(·|x, a) is a probablility measure on
X for every (x, a) ∈ K, and Q(B|·) is measurable function on K for
every B ∈ B(X)). Finally, r is a measurable and (possibly) unbounded
function, which represents the reward–per–stage.

We suppose:

Assumption 3.1. For each state x ∈ X,

(a) A(x) is a (nonempty) compact subset of A;

(b) r(x, a) is upper semicontinuous in a ∈ A(x);
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(c) The function u′ on K defined as:

u′(x, a) :=

∫
u(y)Q(dy|x, a) (3.1)

is upper semicontinuous in a ∈ A(x) for every measurable bounded
function u on X.

Remark 3.2. Assumption 3.1 guarantees the existence of measurable
maximizers or selectors for dynamic programming equations, such as
(3.5) and (3.8), below.

Trivially, in our problem Assumptions 3.1(a) and 3.1(b) hold. On
the other hand, by the continuity of the functions that appear in the
dynamic programming equations of our problem, it suffices to verify (see
Lemma 4.1) the following condition, which is weaker than 3.1(c):

3.1(c’). The function u′ in (3.1) is continuous and bounded on K for
every continuous bounded function u on X.

Using standard notation and definitions [3], we denote by Π the set
of all policies and by F the subset of stationary policies. We identify each
stationary policy f ∈ F with the measurable (Borel) function f : X → A
such that f(x) ∈ A(x) for every x ∈ X.

We focus here on the expected total discounted reward defined as

V (π, x) := Eπ
x

[ ∞∑
t=0

αtr(xt, at)

]
(3.2)

when the policy π ∈ Π is used, and x ∈ X is the initial state. In (3.2),
α ∈ (0, 1) is a given discount factor, and Eπ

x denotes the expectation
with respect to the probability measure P π

x induced by the pair (π, x)
[3].

A policy π∗ is said to be optimal if

V (π∗, x) = V ∗(x) x ∈ X,

where

V ∗(x) := sup
π∈Π

V (π, x) (3.3)

is the so-called optimal value function.

Now, we list some definitions and results to be used in the next
section.
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Definition 3.3. For each nonnegative measurable function v on X, we
define the function Hv by

(Hv)(x) := sup
a∈A(x)

∫
v(y)Q(dy|x, a) for x ∈ X.

Let Hnv := H(Hn−1v) for n = 1, 2, . . ., with H0v = v.
The following assumption ensures the result in Lemma 3.8, below.

Assumption 3.4.

R(x) :=
∞∑
t=0

αtHtr0(x) < ∞ (3.4)

for every x ∈ X, where

r0(x) := sup
a∈A(x)

|r(x, a)|.

(Note that Assumption 3.4 holds if r is bounded).
Let R := {V : X → R, V measurable and |V | ≤ R}, with R as in

(3.4).

Definition 3.5. The value iteration (VI) functions are defined as

Vn(x) := sup
a∈A(x)

[
r(x, a) + α

∫
Vn−1(y)Q(dy|x, a)

]
(3.5)

for all x ∈ X and n = 1, 2, . . ., with V0(·) ≡ 0.

Remark 3.6. Under Assumptions 3.1 and 3.4, for each n = 1, 2, . . .,
there exists a stationary policy fn ∈ F such that the supremum in (3.5)
is attained, i.e.,

Vn(x) = r(x, fn(x)) + α

∫
Vn−1(y)Q(dy|x, fn(x)) (3.6)

for all x ∈ X and n = 1, 2, . . ., and fn is said to be an nth VI decision
function.

Definition 3.7. Let N be a fixed positive integer. We define the
(stationary) rolling horizon (RH) policy as f̂ := fN , the N th VI decision
function. Furthermore, let

V̂ (x) := V (f̂ , x) for x ∈ X (3.7)
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be the corresponding reward function when using the RH policy f̂ .
Finally, we have the following result.

Lemma 3.8. [3, Theorems 4.1 and 4.2]. Suppose that Assumptions 3.1
and 3.4 hold. Then:

(a) The optimal value function V ∗ in (3.3) is the unique function in
R that satisfies the Optimality Equation

V ∗(x) = sup
a∈A(x)

[
r(x, a) + α

∫
V ∗(y)Q(dy|x, a)

]
∀x ∈ X. (3.8)

(b) For every x ∈ X, Vn(x) → V ∗(x) as n → +∞, with Vn as in (3.6).

(c) Let V̂ be as in (3.7). Then

0 ≤ V ∗(x)− V̂ (x) ≤ αNHNR(x) +
∞∑

t=N

αtHtr0(x) (3.9)

≤ 2
∞∑

t=N

αtHtr0(x) ∀x ∈ X. (3.10)

4 Results

This section gives the solution to the consumption-investment problem
described in Section 2.

We begin with the following remark, in which the problem is formu-
lated as an MDP.

Remark 4.1 The problem described in Section 2 can be stated as an
MDP in the following manner.

(a) Take X = A = [0,∞), and A(x) := [0, x] for x ∈ X;

(b) The transition law Q is defined via (2.1) as

Q(B|x, a) =


∫
B

1

a
f(z/a)dz if a ̸= 0,

IB(0) if a = 0,

(4.1)

where (x, a) ∈ K, B ∈ B(X), f is the density of ξt (see Assumption
2.1), and IB denotes the indicator function of B ∈ B(X);
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(c) By (2.2) and (2.3), the reward function r : K → R is given by

r(x, a) =


b

γ
(x− a)γ if x ̸= a,

0 if x = a.

(4.2)

Note that, for each x ∈ X, A(x) is compact and r(x, a) is continuous
in a ∈ A(x). Also, observe that r is unbounded.

In the remainder of the paper we concentrate on the Markov control
model in Remark 4.1. The optimization criterion we are interested in is
the expected total discounted reward in (3.2) and (3.3).

Before stating the solution to our problem, in Theorem 4.5, below,
we present three preliminary results.

Lemma 4.2. Suppose that Assumption 2.1 holds. Then Assumption
3.1(a), (b) and (c’) hold. Moreover, for each nonnegative continuous
function W : X → R such that∫

X
W (y)Q(dy|x, a) < ∞ ∀a ∈ A(x), x ∈ X, (4.3)

there exists a stationary policy g ∈ F such that

sup
a∈A(x)

[
r(x, a) + α

∫
W (y)Q(dy|x, a)

]

= r(x, g(x)) + α

∫
W (y)Q(dy|x, g(x)) ∀x. (4.4)

Proof. Obviously, Assumption 3.1(a) and (b) hold in our problem (see
Remark 4.1).

To verify Assumption 3.1(c’), choose an arbitrary state x ∈ X. Let
a ∈ A(x), and let u : X → R be continuous and bounded. Assume that
an ∈ A(x) is such that an → a. Note that, by (4.1),∫

X
u(y)Q(dy|x, an) =

∫ ∞

0
u(s · an)f(s)ds. (4.5)

Now, let M be a bound for u. Then

(a) |u(s · an)f(s)| ≤ Mf(s) ∀s ∈ [0,∞), and, furthermore, by the
continuity of u,

(b) u(s · an) → u(s · a) for each s ∈ [0,∞).



26 HELIODORO D. CRUZ–SUÁREZ

Since f is integrable, the Dominated Convergence Theorem and (4.5)
yield

lim
n→∞

∫
X
u(y)Q(dy|x, an) =

∫ ∞

0
u(s · a)f(s)ds

=

∫
X
u(y)Q(dy|x, a).

Hence, as x ∈ X and a ∈ A(x) were arbitrary, we obtain Assumption
3.1(c’).

Finally, to prove the last part of the lemma it sufficies to show that
the function

v(x, a) := r(x, a) + α

∫
W (y)Q(dy|x, a) (4.6)

is upper semicontinuous (u.s.c.) on A(x) for each x ∈ X, because then
the existence of g ∈ F that satisfies (4.4) follows from well-known mea-
surable selection theorems. Moreover, by (4.2), it is obvious that r(x, ·)
is u.s.c. (in fact, continuous) on A(x). Thus, to prove that v(x, ·)
is u.s.c., it suffices to show that so is the integral in (4.3). To get
this, choose an arbitrary x ∈ X, and let {ak} ⊂ A(x) be such that
ak → a ∈ A(x). Then∫

X
W (y)Q(dy|x, ak) =

∫ ∞

0
W (sak)f(s)ds,

and W (sak) → W (sa), by the continuity of W . Hence, by (4.3) and
Fatou’s Lemma,

lim sup
k→∞

∫
X
W (y)Q(dy|x, ak) = lim sup

k→∞

∫ ∞

0
W (sak)f(s)ds

≤
∫ ∞

0
W (sa)f(s)ds

=

∫
X
W (y)Q(dy|x, a),

which yields that the integral in (4.3) is u.s.c. on A(x). Thus, as x ∈ X
was arbitrary, it follows that v(x, ·) is u.s.c. on A(x) for each x ∈ X.
This completes the proof of the lemma. 2

Lemma 4.3. If Assumption 2.1 holds, then Assumption 3.4 also holds.

Proof. We want to prove that the series in (3.4), i.e.,

∞∑
t=0

αt(Htr0)(x), (4.7)
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converges for every x ∈ X. Let us first take x = 0. Then, by Remark
4.1(a), (c), we have A(0) = {0} and r0(0) = 0. Therefore,

(Htr0)(0) = 0 ∀t = 0, 1, . . .

and so (4.7) converges.
Suppose now that x > 0. Then

r0(x) := sup
a∈[0,x]

|r(x, a)|

= sup
a∈[0,x)

|r(x, a)|

= sup
a∈[0,x)

b

γ
(x− a)γ

=
b

γ
xγ .

That is,

r0(x) =


b

γ
xγ if x > 0,

0 if x = 0.

Therefore, for x > 0 we have

(Hr0)(x) = sup
a∈[0,x]

∫
r0(y)Q(dy|x, a)

= sup
a∈[0,x]

∫
(0,∞)

b

γ
yγQ(dy|x, a)

=
b

γ
sup

a∈(0,x]

∫
(0,∞)

(s · a)γf(s)ds

=
b

γ
mγ sup

a∈(0,x]
aγ

= mγ
b

γ
xγ .

Note that we have omitted a = 0, since∫
r0(y)Q(dy|x, 0) = r0(0) = 0.

Similarly, by induction, it is possible to show that

(Htr0)(x) = mt
γ

b

γ
xγ ∀t = 0, 1, . . . , and x > 0.
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Hence, for x > 0,

∞∑
t=0

αt(Htr0)(x) =
b

γ
xγ

∞∑
t=0

(αmγ)
t,

which converges, by (2.4). This completes the proof of the lemma. 2

The proof of the next lemma can be found in Section 3.6 of [3].

Lemma 4.4. Let δ := [αmγ ]
1

γ−1 . Then the VI functions are

V0(x) = 0 ∀x ∈ X,

Vn(x) =


[
δn−1 1− δ

1− δn

]γ−1 b

γ
xγ if x > 0,

0 if x = 0,

(4.8)

for n = 1, 2, . . .. Furthermore, the VI decision functions (in Remark 3.6)
are given by

fn(x) =
1− δn−1

1− δn
x ∀x ∈ X, n = 1, 2, . . . (4.9)

We now present our main results.

Theorem 4.5. Suppose that Assumption 2.1 holds. Then for the MDP
formulated in Remark 4.1 we have:

(a) The optimal value function V ∗ (see (3.3)) is given by

V ∗(x) = exp

[
(γ − 1) ln

(
1− δ

−δ

)]
b

γ
xγ for x > 0, (4.10)

and V ∗(0) = 0. Moreover, the optimal stationary policy f∗ is
given by

f∗(x) =
x

δ
∀x ≥ 0. (4.11)

(b) Let N be a fixed positive integer. Let f̂ = fN be the RH policy
(see Definition 3.7) given by (4.9), i.e.,

f̂(x) :=
1− δN−1

1− δN
x ∀x ∈ X (4.12)
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Then

0 ≤ V ∗(x)− V̂ (x) ≤ 2
∞∑

t=N

αtHtr0(x)

= 2
(αmγ)

N

1− αmγ

b

γ
xγ ∀x ≥ 0,

(4.13)

where V̂ (x) = V (f̂ , x), x ∈ X.

Proof. First note that, by Lemmas 4.2 and 4.3, we have that Assump-
tions 3.1 and 3.4 hold. Hence, the results in Lemma 3.8 hold.

(a) From Lemma 3.8(b) and Lemma 4.4 we have, for x > 0,

Vn(x) =

[
δn−1 1− δ

1− δn

]γ−1 b

γ
xγ

= exp

[
(γ − 1) ln

(
δn−1 1− δ

1− δn

)]
b

γ
xγ

= exp

[
(γ − 1) ln

(
1− δ

1/δn−1 − δ

)]
b

γ
xγ .

Therefore,

V ∗(x) = lim
n→∞

Vn(x)

= exp

[
(γ − 1) ln

(
1− δ

−δ

)]
b

γ
xγ ,

and (4.10) follows. Obviously, we also have V ∗(0) = 0.
Similarly, to obtain f∗, we use (4.9) to get:

fn(x) =
1− δn−1

1− δ
x

=
1/δn−1 − 1

1/δn−1 − δ
x,

which yields (4.11) because

f∗(x) = lim
n→∞

fn(x) =
x

δ
.

(b) (4.13) follows from Lemma 3.8(c) and the calculations in the
proof of Lemma 4.3. This completes the proof of the theorem. 2
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Remark. Straightforward calculations show that V ∗ and f∗ given in
(4.10) and (4.11), respectively , satisfy the Optimality Equation (3.8),
i.e.,

V ∗(x) = r(x, f∗(x)) + α

∫
V ∗(y)Q(dy|x, f∗(x)) ∀x ∈ X.

5 Concluding remarks.

We have presented an infinite-horizon consumption-investment problem
that, in particular, illustrates the theory of discrete-time MDPs with
unbounded reward function and discounted criterion. Mild assumptions
guarantee the existence of an optimal policy and the convergence of the
value iteration (VI) procedure, which provides error bounds for RH
policies.
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