Morfismos, Vol. 4, No. 1, 2000, pp. 1-17

The eta invariant, connective K-theory and the Gromov-Lawson-Rosenberg conjecture *

Egidio Barrera-Yañez¹

Abstract

Let $\ell = 2^{\nu} \geq 2$. Let M be an even dimensional manifold with cyclic fundamental group \mathbb{Z}_{ℓ} . Assume the universal cover \tilde{M} is spin. We shall define $N(M) = (\tilde{M} \times \tilde{M})/\mathbb{Z}_{2\ell}$ and express the eta invariant of N(M) in terms of the eta invariant of M. We use this computation to determine certain equivariant connective K theory groups and establish the Gromov-Lawson-Rosenberg conjecture for some special cases in the non-orientable setting.

1991 Mathematics Subject Classification: Primary 55N15 Secondary 53C21

Keywords and phrases: Eta invariant, connective K-theory

1 Introduction

We say that an orientable manifold M is a spin manifold if we can lift the transition functions of the tangent bundle TM from the special orthogonal group SO(m) to Spin(m). Let M be a closed spin manifold of dimension m. We shall assume that m is at least 5 to ensure that certain surgery arguments work; these arguments fail in lower dimensions. If g is a Riemannian metric on M, let D(M, s, g) be the associated Dirac operator defined by the *spin* structure s. We define the \hat{A} genus as follows:

1. If $m \equiv 0 \mod 4$, decompose $D(M, s, g) = D^+(M, s, g) + D^-(M, s, g)$ and let $\hat{A}(M, s, g) := \dim \ker(D^+(M, s, g)) - \dim \ker(D^-(M, s, g)) \in \mathbb{Z}$; the D^{\pm} are the chiral spin operators.

^{*}Invited article

¹Investigador, CINVESTAV-IPN

- 2. If $m \equiv 1 \mod 8$, let $\hat{A}(M, s, g) = \dim \ker(D(M, s, g)) \in \mathbb{Z}_2$.
- 3. If $m \equiv 2 \mod 8$, let $\hat{A}(M, s, g) = \frac{1}{2} \dim \ker(D(M, s, g)) \in \mathbb{Z}_2$.
- 4. If $m \not\equiv 0, 1, 2, 4 \mod 8$, let $\hat{A}(M, s, g) = 0$.

One can use the Atiyah-Singer index theorem to show $\hat{A}(M,s) = \hat{A}(M,s,g)$ is independent of the metric g. If M is simply connected, the spin structure s is unique and we let $\hat{A}(M) = \hat{A}(M,s)$.

If M admits a metric of positive scalar curvature, the formula of Lichnerowicz [16] shows there are no harmonic spinors; consequently $\hat{A}(M,s) = 0$. In other words, if there exists a spin structure s on M so that $\hat{A}(M,s) \neq 0$, then M does not admit a metric of positive scalar curvature. Gromov and Lawson conjectured that the \hat{A} genus might be the only obstruction to the existence of a metric of positive scalar curvature if the dimension m was at least 5 and if M was a simply connected spin manifold. Stolz [24] established this conjecture by proving:

Theorem 1.0.1 If M is a simply connected, closed, spin manifold of dimension $m \ge 5$, then M admits a metric of positive scalar curvature if and only if $\hat{A}(M) = 0$.

The situation in the non-simply connected setting is quite different. Rosenberg has modified the original conjecture of Lawson and Gromov. Fix a group π . Let M be a connected manifold of dimension $m \geq 5$ with fundamental group π and *spin* universal cover. Rosenberg conjectured that M admits a metric of positive scalar curvature if and only if a generalized equivariant index α_{π} of the Dirac operator vanishes. For the fundamental groups that we shall be considering, α_{π} can be expressed in terms of the \hat{A} -genus defined above, see 2.8 for details. Kwasik and Schultz [14] showed the Gromov-Lawson-Rosenberg conjecture holds for a finite group π if and only if the conjecture holds for all the Sylow subgroups of π . Thus one can work one prime at a time. The Gromov-Lawson-Rosenberg conjecture has been established in the following cases:

- 1. If π is a spherical space form group and if M is *spin* (Botvinnik, Gilkey & Stolz [7]).
- 2. If π is cyclic and if M admits a flat $spin^c$ structure (Botvinnik & Gilkey [5] and Kwasik & Schultz [15]).

- 3. If $\pi = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and if p is an odd prime (Schultz [23]).
- 4. If π belongs to a short list of infinite fundamental groups including free groups, free abelian groups and fundamental groups of orientable surfaces (Rosenberg & Stolz [20]).

Note that Schick [21] has shown that this conjecture fails in some instances so it is crucial to investigate the precise conditions under which the \hat{A} genus carries the full set of obstructions.

The interesting phenomena in the papers cited above are in odd dimensions and the manifolds in question are orientable $spin^c$ manifolds. In this paper, by contrast, we shall be primarily interested in non-orientable even dimensional pin and pin^c manifolds. Here is a brief guide to the paper. In Section 2, we present the necessary analytical preliminaries. Henceforth let $\ell = 2^{\nu} \ge 2$ and let \mathbb{Z}_{ℓ} be the cyclic group of order ℓ . Let M be a manifold of dimension m with fundamental group \mathbb{Z}_{ℓ} and spin universal cover M. If m is even, we assume M nonorientable; if m is odd, we assume M orientable. In 2.3, we define a twisted product N(M) of dimension 2m associated to M which is nonorientable and which has a canonical pin^c structure. Our fundamental analytic result, stated in Theorem 2.3.2, relates the eta invariants of N(M) and M if m is even; this generalizes previous work of Gilkey [10] relating the eta invariants of N(M) and M if m is odd. In §2 we recall results concerning Clifford algebras, introduce the equivariant eta invariant, and prove Theorem 2.3.2. In §3, we shall use the results of $\S2$ to compute the additive structure of some equivariant connective Ktheory groups; see Theorem 4.0.3 for details. In §4, we shall prove the Gromov-Lawson-Rosenberg conjecture for certain non-orientable manifolds; see Theorem 5.0.5 for details.

2 Analytic Preliminaries

2.1 Notational conventions

Let $g_{\ell} = e^{2\pi\sqrt{-1}/\ell}$ be the canonical generator of the cyclic group $\mathbb{Z}_{\ell} = \{\lambda \in \mathbb{C} : \lambda^{\ell} = 1\}$ where $\ell = 2^{\nu} \geq 2$. Let $\rho_s(\lambda) := \lambda^s$; the ρ_s for s in the Poincare dual $\mathbb{Z}_{\ell}^* := \mathbb{Z}/\ell\mathbb{Z}$ parametrize the irreducible unitary representations of \mathbb{Z}_{ℓ} . Let \mathcal{P} be the universal principal \mathbb{Z}_{ℓ} bundle over the classifying space $B\mathbb{Z}_{\ell}$. A mathbb_{ℓ} structure on a manifold M is a map $f: M \mapsto B\mathbb{Z}_{\ell}$ is a \mathbb{Z}_{ℓ} structure on a manifold M, let $\mathcal{P}(M) := f^*\mathcal{P}$ be the associated \mathbb{Z}_{ℓ} principal bundle over M. If $\pi_1(M) = \mathbb{Z}_{\ell}$ and if f

defines the canonical \mathbb{Z}_{ℓ} structure over M, then $\mathcal{P}(M)$ is the universal cover \tilde{M} of M.

2.2 The eta invariant

Let M be a compact Riemannian manifold of dimension m. If m is even, we assume that M admits a pin^c structure s; if m is odd, we assume that M admits a $spin^c$ structure s; see 3 and Gilkey [9] for further details. We assume M is equipped with a \mathbb{Z}_{ℓ} structure f. If ρ is a representation of \mathbb{Z}_{ℓ} , let P_{ρ} be the Dirac operator defined by a metric g and the $(s)pin^c$ structure s with coefficients in the locally flat bundle of spinors Δ_{ρ} over M defined by ρ . The operator P_{ρ} is of Dirac type; there is a discrete spectral resolution $L^2(\Delta_{\rho}) = \bigoplus_{\lambda} E(\lambda, P_{\rho})$. The eigenspaces $E(\lambda, P_{\rho})$ are finite dimensional subspaces of the $C^{\infty}(\Delta_{\rho})$. Let $\{\lambda_n\}$ denote the eigenvalues of P_{ρ} where each eigenvalue is repeated according to multiplicity; we have $|\lambda_n| \to \infty$. The eta function is defined by

(1)
$$\eta(P_{\rho})(z) := \sum_{\lambda_n \neq 0} \operatorname{sign}(\lambda_n) |\lambda_n|^{-z} + \dim E(0, P_{\rho})$$
$$:= \sum_{\lambda \neq 0} \dim(E(\lambda, P_{\rho})) \operatorname{sign}(\lambda) |\lambda|^{-z} + \dim E(0, P_{\rho}).$$

This sum converges to define a holomorphic function of z for $\Re e(z) \gg 0$; it has a meromorphic extension to \mathbb{C} which is regular at z = 0; see [9]. The eta invariant is a measure of the spectral asymmetry of P_{ρ} which is defined by

$$\eta(M, f, s)(\rho) := \frac{1}{2} \{ \eta(P_{\rho})(z) \}_{z=0}.$$

The eta invariant is additive with respect to direct sums and extends to the group representation ring $RU(\mathbb{Z}_{\ell})$.

2.3 Twisted products

Let f be a \mathbb{Z}_{ℓ} structure on a compact connected Riemannian manifold of dimension m. If m is even, assume that M is not orientable and that the line bundle $\rho_{\ell/2}(M)$ carries the orientation of M; if m is odd, we assume that M is orientable. Let $\mathcal{P}(M)$ be the associated \mathbb{Z}_{ℓ} principal bundle; $\mathcal{P}(M)$ is orientable. The action of the generator g_{ℓ} on $\mathcal{P}(M)$ reverses the orientation if m is even and preserves the orientation if mis odd. We assume that $\mathcal{P}(M)$ has a given *spin* structure and lift the action of g_{ℓ} to a morphism \tilde{g}_{ℓ} of the principal Pin^- bundle over $\mathcal{P}(M)$. Then \tilde{g}_{ℓ}^{ℓ} covers the identity map of $\mathcal{P}(M)$ so $\tilde{g}_{\ell}^{\ell} = \pm 1$. If $\tilde{g}_{\ell}^{\ell} = +1$, then M admits a $(s)pin^-$ structure s_M so that the associated complex line bundle det (s_M) is trivial; if $\tilde{g}_{\ell}^{\ell} = -1$, then M admits a $(s)pin^c$ structure s_M so that the associated complex line bundle det (s_M) is given by the representation ρ_1 . Give $\mathcal{P}(M) \times \mathcal{P}(M)$ the product *spin* structure. We define a fixed point free action of $\mathbb{Z}_{2\ell}$ on $\mathcal{P}(M) \times \mathcal{P}(M)$ by $g_{2\ell}: (x, y) \to (g_{\ell} \cdot y, x)$. Let

(2)
$$N := N(M) := (\mathcal{P}(M) \times \mathcal{P}(M)) / \mathbb{Z}_{2\ell}$$

be the resulting quotient manifold. If m of M is even, the flip $(x, y) \rightarrow (y, x)$ preserves orientation of $\mathcal{P}(M) \times \mathcal{P}(M)$. Since $\rho_{\ell/2}$ carries the orientation of M, g_{ℓ} reverses the orientation of $\mathcal{P}(M)$. If m is odd, the flip reverses the orientation and g_{ℓ} preserves the orientation. Consequently regardless of the parity of m, the map $g_{2\ell}$ reverses the orientation of $\mathcal{P}(M) \times \mathcal{P}(M)$ so N is not orientable. If m is odd, then Gilkey [10] showed N admits a canonical pin^c structure; we generalize this result to the even dimensional case in §2. If $\tilde{g}_{\ell}^{\ell} = 1$ let b = 0; if $\tilde{g}_{\ell}^{\ell} = -1$, let b = 1. Then $\det(s_M) = \rho_b$. If m is odd, Gilkey proved [10] that:

Theorem 2.3.1 Let m be odd and let M and N(M) be as above. If $m \equiv 3 \mod 4$, let $\beta = 0$; if $m \equiv 1 \mod 4$, let $\beta = \ell/2$.

- 1. If $u = 2v b + \beta$, then $\eta(N)(\rho_u) = \eta(M)(\rho_v) + \eta(M)(\rho_{v-\ell/2})$ in \mathbb{R}/\mathbb{Z} .
- 2. If $u = 2v b + \beta + 1$, then $\eta(N)(\rho_u) = 0$ in \mathbb{R}/\mathbb{Z} .
- If there are no harmonic spinors on P(M), the equalities above hold in ℝ not just ℝ/Z.

In section 2, we generalize this result to even dimensional twisted products:

Theorem 2.3.2 Let m be even and let M and N(M) be as above.

- 1. If $\ell = 2$, then we have:
 - (a) If u = 2s b + m/2, then η(N)(ρ_u) = η(M)(ρ_s) in ℝ/ℤ.
 (b) If u = 2s b + 1 + m/2, then η(N)(ρ_u) = η(M)(ρ_s) in ℝ/ℤ.
- 2. If $\ell > 2$, then we have:
 - (a) If $u = 2s b + m/2 + \ell/4$, then $\eta(N)(\rho_u) = \eta(M)(\rho_s + \rho_{s+\ell/4})$ in \mathbb{R}/\mathbb{Z} .

- (b) If $u = 2s b + m/2 + \ell/4 + 1$, then $\eta(N)(\rho_u) = 0$ in \mathbb{R}/\mathbb{Z} .
- 3. If there are no harmonic spinors on $\mathcal{P}(M)$, then these equalities hold in \mathbb{R} .

2.4 Equivariant spin bordism

Let ξ be a real vector bundle over $B\mathbb{Z}_{\ell}$. The equivariant spin bordism groups $MSpin_m(B\mathbb{Z}_{\ell},\xi)$ are equivalence classes of triples (M, f, s)where M is a closed manifold of dimension m which need not be connected, f is a \mathbb{Z}_{ℓ} structure on M, and s is a spin structure on $T(M) \oplus f^*\xi$; we define the relation $(M, f, s) \sim 0$ in $MSpin_m(B\mathbb{Z}_{\ell}, \xi)$ if there exists a compact manifold Y with boundary M so that the structures s and fextend over Y.

Let M be a manifold with $\pi_1(M) = \mathbb{Z}_{\ell}$ whose universal cover $\mathcal{P}(M)$ admits a *spin* structure. Let ρ be a representation of \mathbb{Z}_{ℓ} . There exists $0 \leq i \leq 3$ and a suitable structure s so that $[(M, f, s)] \in MSpin_m(B\mathbb{Z}_{\ell}, \xi_i)$. Only two Stiefel Whitney classes ω_i for i = 1, 2 of the twisting bundle ξ play a role. There are 4 cases to consider:

- 1. We have $\omega_1(\xi_0) = 0$ and $\omega_2(\xi_0) = 0$. We may take ξ_0 to be the trivial line bundle and identify $MSpin_m(B\mathbb{Z}_{\ell},\xi_0)$ with the ordinary equivariant spin bordism groups $MSpin_m(B\mathbb{Z}_{\ell})$; such a manifold M admits a canonical *spin* structure s we use to define the eta invariant $\eta(M, f, s)(\rho)$ if m is odd.
- 2. We have $\omega_1(\xi_1) = 0$ and $\omega_2(\xi_1) \neq 0$. We may take ξ_1 to be the underlying real 2 plane bundle of the complex line bundle defined by the representation ρ_1 . Such a manifold M admits a canonical $spin^c$ structure s with determinant line bundle given by ρ_1 we use to define the eta invariant $\eta(M, f, s)(\rho)$ if m is odd.
- 3. We have $\omega_1(\xi_2) \neq 0$ and $\omega_2(\xi_2) = 0$. We may take ξ_2 to be the real line bundle defined by $\rho_{\ell/2}$. Such a manifold M admits a canonical *pin* structure *s* we use to define the eta invariant $\eta(M, f, s)(\rho)$ if *m* is even.
- 4. We have $\omega_1(\xi_3) \neq 0$ and $\omega_2(\xi_3) \neq 0$. We may take $\xi_3 = \xi_1 \oplus \xi_2$. Such a manifold M admits a canonical pin^c structure s with determinant line bundle given by ρ_1 we use to define the eta invariant $\eta(M, f, s)(\rho)$ if m is even.

2.5 Equivariant connective K-theory

Let $Thom(\xi)$ be the associated Thom space of the k dimensional real vector bundle ξ over $B\mathbb{Z}_{\ell}$. The equivariant connective K-theory groups are defined by

$$ko_m(B\mathbb{Z}_\ell,\xi) = ko_{m+k}(Thom(\xi)).$$

Let \mathbb{HP}^2 be the quaternion projective space with the usual homogeneous metric of positive scalar curvature. Let $\mathbb{HP}^2 \to E \to B$ be a fiber bundle where the transition functions are the group of isometries PSp^3 of \mathbb{HP}^2 . Since \mathbb{HP}^2 is simply connected, the projection $p: E \to B$ induces an isomorphism on the fundamental group; any \mathbb{Z}_{ℓ} structure on E arises from a \mathbb{Z}_{ℓ} structure on B. Let $T_m(B\mathbb{Z}_{\ell},\xi)$ be the subgroup of $MSpin_m(B\mathbb{Z}_{\ell},\xi)$ generated by the total spaces E of geometric fibrations with fiber \mathbb{HP}^2 . Stolz [25] has given the following geometrical characterization of these groups localized at the prime 2:

$$ko_m(B\mathbb{Z}_\ell,\xi)_{(2)} = \{MSpin_m(B\mathbb{Z}_\ell,\xi)/T_m(B\mathbb{Z}_\ell,\xi)\}_{(2)}$$

The reduced groups $ko_m(B\mathbb{Z}_{\ell},\xi)$ are torsion 2-groups so it is not necessary to localize at the prime 2.

2.6 The eta invariant, bordism, and *K*-theory

As noted above, we can define the eta invariant $\eta(M, f, s)(\rho)$ if m is odd and if $\xi = \xi_0, \xi_1$. We can also define the eta invariant if m is even and if $\xi = \xi_2, \xi_3$. The eta invariant extends to the equivariant spin bordism groups $MSpin_m(\mathbb{Z}_{\ell}, \xi)$ and to the equivariant connective K-theory groups $ko_m(B\mathbb{Z}_{\ell}, \xi)$; these invariants are supported on the reduced bordism and K-theory groups. Let $RU_0(\mathbb{Z}_{\ell})$ be the augmentation ideal of representations of virtual dimension 0. We refer to [5, 7, 10] for the proof of the following result.

Theorem 2.6.1 Let $\rho \in RU(\mathbb{Z}_{\ell})$.

- 1. Let m be odd and let i = 0, 1. If m = 4k+3, assume $\rho \in RU_0(\mathbb{Z}_\ell)$. The map $M \to \eta(M, f, s)(\rho)$ extends to homomorphisms η_ρ from $MSpin_m(B\mathbb{Z}_\ell, \xi_i)$ and from $ko_m(B\mathbb{Z}_\ell, \xi_i)$ to \mathbb{R}/\mathbb{Z} . If $m \equiv 3 \mod 8$, if i = 0, and if ρ is real, then we can extend η_ρ to take values in $\mathbb{R}/2\mathbb{Z}$.
- 2. Let m be even and let i = 2, 3. The map $M \to \eta(M, f, s)(\rho)$ extends to homomorphisms η_{ρ} from $MSpin_{m}(B\mathbb{Z}_{\ell}, \xi_{i})$ and from

 $ko_m(B\mathbb{Z}_{\ell},\xi_i)$ to \mathbb{R}/\mathbb{Z} . If $m \equiv 2 \mod 8$, if i = 2, and if ρ is real, then we can extend η_{ρ} to take values in $\mathbb{R}/2\mathbb{Z}$.

2.7 Geometrical bordism groups

Let $\tau = \tau(g) := R_{ijji}$ be the scalar curvature of a Riemannian metric g; we consider quadruples (M, f, s, g) where (M, f, s) are as in 2.4, and where g is a metric of positive scalar curvature on M; necessarily $m \geq 2$. The geometric equivariant spin bordism groups ${}^{+}MSpin_m(B\mathbb{Z}_{\ell},\xi)$ are defined similarly to the bordism groups $MSpin(B\mathbb{Z}_{\ell},\xi)$. For $m \geq 2$, we consider quadruples (M, f, s, g) as above and say that $(M, f, s, g) \sim 0$ if there exists a compact manifold Y with boundary M so that the structures s and f extend over Y and so that the metric g extends over Y as a metric of positive scalar curvature which is the product near the boundary M. The forgetful functor defines a natural homomorphism from ${}^{+}MSpin_m(B\mathbb{Z}_{\ell},\xi)$ to $MSpin_m(B\mathbb{Z}_{\ell},\xi)$. Let $MSpin_m^+(B\mathbb{Z}_{\ell},\xi)$ be the image of ${}^{+}MSpin_m(B\mathbb{Z}_{\ell},\xi)$ under the forgetful functor. The elements of $T_m(B\mathbb{Z}_{\ell},\xi)$ admit metrics of positive scalar curvature, see [7] for details. Let $ko_m^+(B\mathbb{Z}_{\ell},\xi)$ be the image of $MSpin_m^+(B\mathbb{Z}_{\ell},\xi)$.

2.8 The invariant α_{π}

Let i = 0, 2 and let $[(M, f, s)] \in MSpin_m(B\mathbb{Z}_{\ell}, \xi_i)$. We express the invariant α_{π} of Rosenberg [18] in terms of the \hat{A} genus as follows:

- 1. If $m \equiv 0 \mod 4$, let $\alpha_{\pi}(M, f, s) := \hat{A}(\mathcal{P}(M)) \in \mathbb{Z}$.
- 2. If $\xi = \xi_0$ and if $m \equiv 1, 2 \mod 8$, let s_L be the spin structure s twisted by the representation $\rho_{\ell/2}$. Let $\alpha_{\pi}(M, f, s) := \hat{A}(M, s) \oplus \hat{A}(M, s_L) \in \mathbb{Z}_2 \oplus \mathbb{Z}_2$.
- 3. If $\xi = \xi_2$ and if $m \equiv 2 \mod 8$, let $\alpha_{\pi}(M, f, s) := \hat{A}(\mathcal{P}(M)) \in \mathbb{Z}$.
- 4. Set $\alpha_{\pi}(M, f, s) := 0$ otherwise.

Let $to_m(B\mathbb{Z}_{\ell},\xi_i) := \widetilde{ko}_m(B\mathbb{Z}_{\ell},\xi_i) \cap \ker(\alpha_{\pi})$. Since α_{π} is surjective if $m \equiv 1 \mod 8$ or $m \equiv 2 \mod 8$, we may use α_{π} to construct the following short exact sequences:

(3)
$$\begin{array}{c} 0 \to to_{8k+1}(B\mathbb{Z}_{\ell}) \to \widetilde{ko}_{8k+1}(B\mathbb{Z}_{\ell}) \to \mathbb{Z}_2 \to 0\\ 0 \to to_{8k+2}(B\mathbb{Z}_{\ell},\xi_2) \to \widetilde{ko}_{8k+2}(B\mathbb{Z}_{\ell},\xi_2) \to \mathbb{Z}_2 \to 0 \end{array}$$

We remark that the first sequence in equation (3) splits if $k \ge 1$ and if $\ell = 4$ and that the second sequence in equation (3) splits if $k \ge 0$ for any ℓ ; see [2] for details.

3 Clifford Algebras and Equivariant Eta Invariant

3.1 Clifford algebras

Let *m* be even throughout §2. Let $Clif^{-}(\mathbb{R}^{m})$ be the real Clifford algebra; this is the universal unital algebra generated by \mathbb{R}^{m} subject to the Clifford commutation relations v*w+w*v = -2(v, w) for $v, w \in \mathbb{R}^{m}$. Let $\{e_1, \ldots, e_m\}$ be an orthonormal basis for \mathbb{R}^{m} . The orientation class is defined by

$$\omega_m = \sqrt{-1}^{m/2} e_1 * \dots * e_m \in Clif^-(\mathbb{R}^m).$$

Since *m* is even, we have $\omega_m^2 = 1$. Let Δ_m be the *spin* representation. Clifford multiplication defines a map $c_m : \mathbb{R}^m \otimes_{\mathbb{R}} \Delta_m \to \Delta_m$ such that $c_m(\xi)^2 = -\|\xi\|^2$. We define the associated Clifford multiplication

(4)
$$\breve{c}_m(\xi) = \sqrt{-1}c_m(\omega_m)c_m(\xi).$$

Since ω_m anticommutes with ξ , $\check{c}_m(\xi)^2 = -\|\xi\|^2$. Thus \check{c}_m also defines a representation of $Clif^-(\mathbb{R}^m)$ on Δ_m . Note that $\check{c}_m(\omega_m) = c_m(\omega_m)$; also note that $c_m(\xi) = -\sqrt{-1}\check{c}_m(\omega_m)\check{c}_m(\xi)$. Let $Pin^-(m)$ be the multiplicative subgroup of $Clif^-(\mathbb{R}^m)$ which is generated by the unit sphere of \mathbb{R}^m . Let $\chi: Pin^-(m) \to \mathbb{Z}_2$ be the orientation representation defined by $\chi(g) = \chi(v_1 * \cdots * v_k) = (-1)^k$;

$$c_m(\omega_m)c_m(g) = \chi(g)c_m(g)c_m(\omega_m).$$

Let $Spin(m) := ker(\chi) \cap Pin^{-}(m)$. If $g \in Spin(m)$, then $c_m(g) = \check{c}_m(g)$. Let $\psi(g)(\xi) := \chi(g)g * \xi * g^{-1}$ define a representation from $Pin^{-}(m)$ to O(m). The following diagram:

commutes because

$$\check{c}_m(\chi(g)g * \xi * g^{-1})c_m(g) = \sqrt{-1}c_m(\omega_m)c_m(\chi(g)g * \xi)$$

= $\sqrt{-1}c_m(g)c_m(\omega_m * \xi) = c_m(g)\check{c}_m(\xi).$

Notice diagram (5) would not commute if we replaced \check{c}_m by c_m . This is the reason we introduced the auxiliary representation \check{c}_m .

Let \mathcal{Q} be the principal pin^c bundle over a pin^c manifold M. We complexify the representations ψ , c_m , and \check{c}_m to extend them to pin^c representations. The tangent bundle $TM := \mathcal{Q} \times_{\psi} \mathbb{R}^m$ is the bundle associated to \mathcal{Q} by the representation ψ ; the spinor bundle $\Delta_m(M) := \mathcal{Q} \times_{c_m} \Delta_m$ is the bundle associated to \mathcal{Q} by the representation c_m . Diagram (5) shows that \check{c}_m extends to a linear map

$$\breve{c}_m: TM \otimes \Delta_m(M) \to \Delta_m(M)$$
 so $\breve{c}_m(\zeta)^2 = -|\zeta|^2$.

Let ∇ be the spin connection on $\Delta_m(M)$. The Dirac operator discussed in §1 is defined by

(6)
$$P := \breve{c}_m \circ \nabla.$$

Let $[(M, f, s)] \in MSpin_m(B\mathbb{Z}_{\ell}, \xi_i)$ for i = 0, 1, 2, 3 and let $\mathcal{P}(M)$ be the associated \mathbb{Z}_{ℓ} principal bundle; assume that $\mathcal{P}(M)$ has a *spin* structure. Let g_{ℓ} generate \mathbb{Z}_{ℓ} ; g_{ℓ} acts by isometries on $\mathcal{P}(M)$. Lift g_{ℓ} to an action \tilde{g}_{ℓ} on the principal *Pin* bundle of $\mathcal{P}(M)$ and let B_g be the associated action on the bundle $\Delta_m(\mathcal{P}(M))$ defined by c_m which covers the map g_{ℓ} . Let Q be the Dirac operator on $\Delta_m(\mathcal{P}(M))$ and let P be the Dirac operator on $\Delta_{2m}(\mathcal{P}(M) \times \mathcal{P}(M))$.

Lemma 3.1.1 With the notation established above, we have:

- 1. $c_m(\omega_m)Q = -Qc_m(\omega_m), \ B_gc_m(\omega_m) = \psi(g)c_m(\omega_m)B_g, \ and \ B_gQ = QB_g.$
- 2. Let $\zeta = \xi \oplus \tilde{\xi} \in \mathbb{R}^m \oplus \mathbb{R}^m = \mathbb{R}^{2m}$. Then:
 - (a) $\breve{c}_{2m}(\xi \oplus \tilde{\xi}) = c_m(\xi) \otimes 1 + c_m(\omega_m) \otimes c_m(\tilde{\xi}).$
 - (b) $\breve{c}_{2m}(\omega_{2m}) = c_m(\omega_m) \otimes c_m(\omega_m).$
 - (c) $c_{2m}(\xi \oplus \tilde{\xi}) := -\sqrt{-1}\check{c}_{2m}(\omega_{2m})\check{c}_{2m}(\xi \oplus \tilde{\xi}).$
- 3. $\Delta_{2m}(\mathcal{P}(M) \times \mathcal{P}(M)) = \Delta_m(\mathcal{P}(M)) \otimes \Delta_m(\mathcal{P}(M)).$

4.
$$P = Q \otimes 1 + c_m(\omega_m) \otimes Q$$
.

Proof: The first assertion is immediate. We use (2-a) to define \check{c}_{2m} . Because *m* is even, $\check{c}_{2m}(\zeta)^2 = -|\zeta^2|$. Thus for dimensional reasons we may take \check{c}_{2m} to be the fundamental representation of the Clifford algebra; the remaining assertions now follow.

Let \mathcal{B}_{ℓ} and $\mathcal{B}_{2\ell}$ be the induced actions of g_{ℓ} and $g_{2\ell}$ on the bundles $\Delta_m(\mathcal{P}(M))$ and $\Delta_{2m}(\mathcal{P}(M) \times \mathcal{P}(M))$. Decompose $\Delta_m(\mathcal{P}(M)) = \Delta_m^+(\mathcal{P}(M)) \oplus \Delta_m^-(\mathcal{P}(M))$ into the chiral spin bundles, i.e. into the ± 1 eigenspaces of $c_m(\omega_m)$. Let T(x, y) = (y, x). Let \mathcal{B}_T be the action of Ton $\Delta_{2m}(\mathcal{P}(M) \times \mathcal{P}(M))$. Define the map α by setting

(7)
$$\alpha(a_{+} \otimes b_{+})(x,y) = b_{+}(y,x) \otimes a_{+}(y,x)$$
$$\alpha(a_{+} \otimes b_{-})(x,y) = b_{-}(y,x) \otimes a_{+}(y,x)$$
$$\alpha(a_{-} \otimes b_{+})(x,y) = b_{+}(y,x) \otimes a_{-}(y,x)$$
$$\alpha(a_{-} \otimes b_{-})(x,y) = b_{-}(y,x) \otimes a_{-}(y,x)$$

We refer to [3] for details of the following Lemma.

Lemma 3.1.2 With the notation established above, we have:

- 1. $\mathcal{B}_T = \sqrt{-1}^{m/2} \alpha.$
- 2. $\mathcal{B}_{2\ell} = (\mathcal{B}_{\ell} \otimes c_m(\omega_m)) \circ \mathcal{B}_T.$
- 3. If $\ell = 2$ then $[N(M)] \in MSpin_{2m}(B\mathbb{Z}_4, \xi_3)$.
- 4. If $\ell \geq 4$ then $[N(M)] \in MSpin_{2m}(B\mathbb{Z}_{2\ell},\xi_2)$.

3.2 Equivariant eta invariant

It is convenient to give a different formulation of Theorem 2.3.2. Let M be a closed connected non-orientable manifold of even dimension m with $\pi_1(M) = \mathbb{Z}_{\ell}$. Let $\mathcal{P}(M)$ be the principal \mathbb{Z}_{ℓ} bundle defined by a \mathbb{Z}_{ℓ} structure f on M. We set b = 0 if M admits a pin^- structure s and b = 1 if M admits a pin^c structure s. Then ρ_b defines the determinant line bundle of the structure s on M. Define the equivariant eta invariant:

(8)
$$\tilde{\eta}(M) := \sum_{t} \eta(M)(\rho_t) \otimes_{\mathbb{Z}} \rho_t \in \mathbb{R} \otimes_{\mathbb{Z}} RU(\mathbb{Z}_\ell).$$

If $h \in \mathbb{Z}_{\ell}$ and if $\tau \in RU(\mathbb{Z}_{\ell})$, then we define $\tau(h) = \operatorname{Tr}\tau(h) \in \mathbb{C}$; this extends to an evaluation $\tilde{\eta}(M)(h)$ taking values in \mathbb{C} . Define $\tau_{2\ell} : \mathbb{Z}_{\ell} \to$

U(2) by

$$\tau_{4} = \rho_{-b+m/2}(\rho_{0} \oplus \rho_{1}) \text{ and } \tau_{2\ell} = \rho_{-b+m\ell/4}(\rho_{\ell/4} \oplus \rho_{-\ell/4}), \text{ i.e.}$$
(9)
$$\tau_{4}(g_{4}) = \sqrt{-1}^{m/2} e^{-2\pi\sqrt{-1}b/4} \begin{pmatrix} 1 & 0\\ 0 & \sqrt{-1} \end{pmatrix} \text{ if } \ell = 2, \text{ and}$$

$$\tau_{2\ell}(g_{2\ell}) = \sqrt{-1}^{m/2} e^{-2\pi\sqrt{-1}b/2\ell} \begin{pmatrix} e^{2\pi\sqrt{-1}/8} & 0\\ 0 & e^{-2\pi\sqrt{-1}/8} \end{pmatrix} \text{ if } \ell \ge 4.$$

Let $r : \mathbb{Z}_{2\ell} \to \mathbb{Z}_{\ell}$ be reduction mod ℓ ; $r(g_{2\ell}) = g_{\ell}$. The dual map r^* from $RU(\mathbb{Z}_{\ell})$ to $RU(\mathbb{Z}_{2\ell})$ is defined by $r^*(\rho_s) = \rho_{2s}$. Theorem 2.3.2 is equivalent to the following result. We refer to [3] for the proof of the following Theorem.

Theorem 3.2.1 We have $\tilde{\eta}(N) = r^*(\tilde{\eta}(M)) \cdot Tr(\tau)$ in $\mathbb{R}/\mathbb{Z} \otimes_{\mathbb{Z}} RU(\mathbb{Z}_{2\ell})$. If there are no harmonic spinors on $\mathcal{P}(M)$, the equality holds in $\mathbb{R} \otimes_{\mathbb{Z}} RU(\mathbb{Z}_{2\ell})$.

The following is an immediate consequence of Theorem 2.3.1, Theorem 3.2.1, and calculations of Gilkey [9]

Corollary 3.2.2 For the projective spaces we have:

1.
$$\eta(N(\mathbb{RP}^{4k}))(\rho_{2s+2k}) = \eta(\mathbb{RP}^{4k})(\rho_s) = (-1)^{s}2^{-2k-1}.$$

2. $\eta(N(\mathbb{RP}^{4k+1}))(\rho_{2s}) = \eta(\mathbb{RP}^{4k+1})(\rho_s(\rho_0 - \rho_1)) = (-1)^{s}2^{-2k-1}.$
3. $\eta(N(\mathbb{RP}^{4k+2}))(\rho_{2s+2k-1}) = \eta(\mathbb{RP}^{4k+2})(\rho_s) = (-1)^{s}2^{-2k-2}.$
4. $\eta(N(\mathbb{RP}^{4k+3}))(\rho_{2s}) = \eta(\mathbb{RP}^{4k+3})(\rho_s(\rho_0 - \rho_1)) = (-1)^{s}2^{-2k-2}.$

4 Connective K-theory

Recall we defined $to_m(B\mathbb{Z}_4,\xi_i) := ko_m(B\mathbb{Z}_4,\xi_i) \cap \ker(\alpha_\pi)$ for i = 0, 2. We use the results of §2 to compute the following connective K-theory groups. Our results do not suffice to determine the additive structure of certain groups; these are marked by \star .

Theorem 4.0.3 Let $k \ge 1$. We have:

	$\widetilde{ko}_m(BZ_4)$	$to_m(BZ_4)$	$ko_m(BZ_4,\xi_1)$
m = 8k + 1	$\mathbb{Z}_{2^{2k+1}}\oplus\mathbb{Z}_2$	$\mathbb{Z}_{2^{2k+1}}$	$\mathbb{Z}_{2^{4k+3}}\oplus\mathbb{Z}_{2^{2k}}$
m = 8k + 3	$\mathbb{Z}_{2^{4k+3}} \oplus \mathbb{Z}_{2^{2k+1}}$	$\mathbb{Z}_{2^{4k+3}} \oplus \mathbb{Z}_{2^{2k+1}}$	$\mathbb{Z}_{2^{2k+1}}$
m = 8k + 5	$\mathbb{Z}_{2^{2k+2}}$	$\mathbb{Z}_{2^{2k+2}}$	$\mathbb{Z}_{2^{4k+5}} \oplus \mathbb{Z}_{2^{2k+1}}$
m = 8k + 7	$\mathbb{Z}_{2^{4k+5}} \oplus \mathbb{Z}_{2^{2k+1}}$	$\mathbb{Z}_{2^{4k+5}} \oplus \mathbb{Z}_{2^{2k+1}}$	$\mathbb{Z}_{2^{2k+2}}$
	$ko_m(BZ_4,\xi_2)$	$to_m(BZ_4,\xi_2)$	$ko_m(BZ_4,\xi_3)$
m = 8k	*	*	$\mathbb{Z}_{2^{2k+1}}$
m = 8k + 2	$\mathbb{Z}_{2^{2k+2}}\oplus\mathbb{Z}_2$	$\mathbb{Z}_{2^{2k+2}}$	*
m = 8k + 4	*	*	$\mathbb{Z}_{2^{2k+2}}$
m = 8k + 6	$\mathbb{Z}_{2^{2k+2}}$	$\mathbb{Z}_{2^{2k+2}}$	*

Before proving Theorem 4.0.3, we must establish some technical results. Suppose that $\vec{a} = (a_1, \ldots, a_k)$ is a collection of odd integers. Let $\tau = \tau(\vec{a}) := \rho_{a_1} \oplus \cdots \oplus \rho_{a_k}$ define a fixed point free representation of \mathbb{Z}_{ℓ} in U(k). The lens space associated with this representation is:

$$L^{2k-1}(\ell; \vec{a}) := S^{2k-1}/\tau(\mathbb{Z}_{\ell}).$$

Let $H^{\otimes 2}$ be the tensor square of the Hopf line bundle over \mathbb{CP}^1 which we identify with S^2 . Let $\beta_k = H^{\otimes 2} \oplus (k-1)1_{\mathbb{C}}$ be a complex vector bundle of fiber dimension k over \mathbb{CP}^1 . Let $S(\beta_k)$ be the associated sphere bundle, extend τ to a fixed point free action on $S(\beta_k)$. Let

$$X^{2k+1}(\ell; \vec{a}) := S(\beta_k) / \tau(\mathbb{Z}_\ell)$$

be the associated lens space bundle bundle over S^2 . Both the lens spaces $L^{2k-1}(\ell; \vec{a})$ and the lens space bundles $X^{2k+1}(\ell; \vec{a})$ admit natural $spin^c$ structures for $k \geq 2$; they are spin if and only if k is even. We refer to [7] for further details. Define:

- 1. If k is even, let $\mathcal{F}_L(\vec{a}; \lambda) = \lambda^{-\|\vec{a}\|/2} \det(I \tau(\lambda)).$
- 2. If k is odd, let $\mathcal{F}_L(\vec{a}; \lambda) = \lambda^{-(\|\vec{a}\|+1)/2} \det(I \tau(\lambda)).$
- 3. If $\lambda \neq 1$, let $\mathcal{G}_L(\vec{a}; \lambda) = \mathcal{F}_L(\vec{a}; \lambda)^{-1}$. If $\lambda = 1$, let $\mathcal{G}_L(\vec{a}; \lambda) = 0$.
- 4. Let $\mathcal{G}_X(\vec{a};\lambda) = (1+\lambda^{a_1})(1-\lambda^{a_1})^{-1}\mathcal{G}_L(\vec{a};\lambda).$

The following combinatorial formulas for the eta invariant of lens spaces and lens space bundles follow from work of Donnelly [8], see also [7].

Lemma 4.0.4 We have:

1.
$$\eta(L^{2k-1}(\ell; \vec{a}))(\rho) = \ell^{-1} \sum_{\lambda \in \mathbb{Z}_{\ell}, \lambda \neq 1} Tr(\rho) \mathcal{G}_{L}(\vec{a}; \lambda) \in \mathbb{Q}.$$

2. $\eta(X^{2k+1}(\ell; \vec{a}))(\rho) = \ell^{-1} \sum_{\lambda \in \mathbb{Z}_{\ell}, \lambda \neq 1} Tr(\rho) \mathcal{G}_{X}(\vec{a}; \lambda) \in \mathbb{Q}.$

Let $\vec{a}_{2k} = (1, -1, \dots, 1, -1)$. We have $L^{4k+3}(\cdot)$ and $X^{4k+1}(\cdot)$ are *spin*; we have $L^{4k+1}(\cdot)$ and $X^{4k+3}(\cdot)$ are *spin^c*. We define the following elements of equivariant connective K-theory.

1. $M_1 = M_1^{4k+3} = L^{4k+3}(4; \vec{a}_{2k}, 1, 1) \in ko_{4k+3}(B\mathbb{Z}_4, \xi_0).$ 2. $M_2 = M_2^{4k+3} = L^{4k+3}(4; \vec{a}_{2k}, 1, 3) \in ko_{4k+3}(B\mathbb{Z}_4, \xi_0).$ 3. $M_3 = M_3^{4k+1} = X^{4k+1}(4; \vec{a}_{2k-2}, 1, 1) \in ko_{4k+1}(B\mathbb{Z}_4, \xi_0).$ 4. $N_1 = N_1^{4k+1} = L^{4k+1}(4; \vec{a}_{2k}, 1) \in ko_{4k+1}(B\mathbb{Z}_4, \xi_1).$ 5. $N_2 = N_2^{4k+1} = L^{4k+1}(4; \vec{a}_{2k}, 3) \in ko_{4k+1}(B\mathbb{Z}_4, \xi_1).$ 6. $N_3 = N_3^{4k+3} = X^{4k+3}(4; \vec{a}_{2k}, 1) \in ko_{4k+3}(B\mathbb{Z}_4, \xi_1).$

By Theorem 2.6.1 $\eta(\cdot)(\rho)$ defines an \mathbb{R}/\mathbb{Z} or $\mathbb{R}/2\mathbb{Z}$ valued invariant of $ko_*(B\mathbb{Z}_4,\xi_i)$ for i = 0, 1. We use the formulas from Lemma 4.0.4 to compute the eta invariant of these manifolds.

	ρ_0	ρ_1	ρ_2	ρ_3
M_1	$-2^{-2k-4}-2^{-k-2}$	2^{-2k-4}	$-2^{-2k-4}+2^{-k-2}$	2^{-2k-4}
M_2	$2^{-2k-4} - 2^{-k-2}$	-2^{-2k-4}	$2^{-2k-4} + 2^{-k-2}$	-2^{-2k-4}
M_3	0	-2^{-k-1}	0	2^{-k-1}
N_1	$-2^{-2k-3}-2^{-k-2}$	$2^{-2k-3} - 2^{-k-2}$	$-2^{-2k-3}+2^{-k-2}$	$2^{-2k-3} + 2^{-k-2}$
N_2	$2^{-2k-3} - 2^{-k-2}$	$-2^{-2k-3} - 2^{-k-2}$	$2^{-2k-3} + 2^{-k-2}$	$-2^{-2k-3}+2^{-k-2}$
N_3	-2^{-k-2}	2^{-k-2}	2^{-k-2}	-2^{-k-2}

Tał	ble	А
-----	-----	---

We also use a computation of the orders of the equivariant connective K-theory groups by Botvinnik and Gilkey, see [5] for details of the following result:

	$ \widetilde{ko}_m(B\mathbb{Z}_\ell,\xi_0) $	$ ko_m(B\mathbb{Z}_\ell,\xi_1) $	$ ko_m(B\mathbb{Z}_\ell,\xi_2) $	$ ko_m(B\mathbb{Z}_\ell,\xi_3) $
m = 8k	2	1	2^{2k+1}	2^{2k+1}
m = 8k + 1	$2(\ell/2)^{2k+1}$	$(2\ell)^{2k+1}$	2	1
m = 8k + 2	2	1	2^{2k+3}	2^{2k+1}
m = 8k + 3	$2(2\ell)^{2k+1}$	$(\ell/2)^{2k+1}$	2	1
m = 8k + 4	1	1	2^{2k+2}	2^{2k+2}
m = 8k + 5	$(\ell/2)^{2k+2}$	$(2\ell)^{2k+2}$	1	1
m = 8k + 6	1	1	2^{2k+2}	2^{2k+2}
m = 8k + 7	$(2\ell)^{2k+2}$	$(\ell/2)^{2k+2}$	1	1

Table B

Proof: [Proof of Theorem 4.0.3] Since the manifolds M_i and N_i admit metrics of positive scalar curvature, the $\hat{A}(M_i) = 0$ and $\hat{A}(N_i) = 0$ and these manifolds belong to to_m . We apply Gaussian elimination to Table A to determine the range of the eta invariant applied to these manifolds and to obtain a lower bound of the subgroups of the appropriate connective K theory groups which are spanned by these manifolds. We compare this lower bound with the upper bound given in Table B for $\ell = 4$ to establish the second assertion. The only difference between $to_m(B\mathbb{Z}_4, \xi_0)$ and $\tilde{k}o_m(B\mathbb{Z}_4, \xi_0)$ is in dimension m = 8k + 1; the extra factor of \mathbb{Z}_2 arises because the extension in equation (3) splits. This completes the proof of Theorem 4.0.3 for m odd.

The twisted products of real projective spaces are the non-orientable manifolds that we use to compute the equivariant connective K-theory groups $ko_m(B\mathbb{Z}_{\ell},\xi_i)$ for i = 2,3; $N(\mathbb{RP}^{2k}) \in ko_{4k}^+(B\mathbb{Z}_4,\xi_3)$ and $N(\mathbb{RP}^{2k+1}) \in ko_{4k+2}^+(B\mathbb{Z}_4,\xi_2)$. We use Corollary 3.2.2 to compute the eta invariant of the manifolds $N(\mathbb{RP}^j)$ and obtain a lower estimate of the order of the subgroup of to_m generated thereby. We use the upper estimate of the orders of the equivariant connective K-theory groups given in Table B for $\ell = 4$. This establishes the result for $to_m(B\mathbb{Z}_4,\xi_2)$ and $ko_m(B\mathbb{Z}_4,\xi_3)$. Since the short exact sequence in equation (3) splits we have the final result.

5 The Gromov-Lawson-Rosenberg conjecture

We can prove this conjecture for some special cases in the non-orientable setting.

Theorem 5.0.5 Let M be a connected closed non-orientable manifold of dimension m with $\pi_1(M) = \mathbb{Z}_4$. Assume that M admits a flat pin^c structure.

- 1. If $m = 4k \ge 8$ and if $\omega_2(M) \ne 0$, then M admits a metric of positive scalar curvature.
- 2. If $m = 4k + 2 \ge 6$ and if $\omega_2(M) = 0$, then M admits a metric of positive scalar curvature.

Proof: We use results from [2, 5] to see that to prove the theorem, it suffices to show that $ko_m^+(B\mathbb{Z}_\ell,\xi) = ker(\alpha_\pi) \cap ko_m(B\mathbb{Z}_\ell,\xi)$. Recall

that we have

(10)
$$to_{8k+2}(B\mathbb{Z}_4,\xi_2) := ko_{8k+2}(B\mathbb{Z}_4,\xi_2) \cap ker(A).$$
$$= ko_{8k+2}(B\mathbb{Z}_4,\xi_2) \cap ker(\alpha_{\pi}).$$

It suffices to show $ko_{8k+2}^+(B\mathbb{Z}_4,\xi_2) = to_{8k+2}(B\mathbb{Z}_4,\xi_2)$. This follows from Theorem 4.0.3. This proves the second assertion; the first one is similar.

Egidio Barrera Yañez Departmento de Matemáticas, CINVESTAV-IPN Apartado Postal 14-740 07000 México D. F. ebarrera@math.cinvestav.mx

References

- M. F. Atiyah, V. K. Patodi and I. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambr. Phil. Soc., Vol. 77, 1975, 43–69.
- [2] E. Barrera-Yanez, The Eta Invariant, Equivariant Bordism, Connective Ktheory and Manifolds of Positive Scalar Curvature, Ph. D. Thesis (University of Oregon, June 1997).
- [3] E. Barrera-Yanez, The eta invariant of twisted products of even dimensional manifolds whose fundamental group is a cyclic 2 group, to appear in Differential Geometry and Its Applications.
- [4] E. Barrera-Yanez and P. Gilkey, The eta invariant and the connective K-theory of cyclic 2 groups, Annals of Global Analysis and Geometry, Vol. 17, 1999, 289– 299.
- [5] B. Botvinnik and P. Gilkey, The Gromov-Lawson-Rosenberg conjecture: the twisted case, Houston Math J., Vol. 23, 1997, 143–160.
- [6] B. Botvinnik and P. Gilkey, The eta invariant and metrics of positive scalar curvature, Math. Ann., Vol. 302, 1995, 507-517.
- [7] B. Botvinnik, P. Gilkey, and S. Stolz, The Gromov-Lawson-Rosenberg conjecture for groups with periodic cohomology, J. Differential Geometry, Vol. 46, 1997, 374–405.
- [8] H. Donnelly, Eta invariant for G spaces, Indiana Univ. Math. J., Vol. 27, 1978, 889–918.
- P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, (2nd edition), CRC Press, Boca Raton, Florida, ISBN 0-8493-7874-4, 1994.
- [10] P. Gilkey, The eta invariant of pin manifolds with cylic fundamental group, Periodica Math. Hungarica, Vol. 36, 1998, 139–170.
- [11] P. Gilkey, J. V. Leahy and J. H. Park, Spectral Geometry, Riemannian Submersions and the Gromov-Lawson Conjecture, CRS Press, Boca Raton, Florida, ISBN 0-8493-8277-7, 1999.

THE ETA INVARIANT

- [12] M. Gromov and H. B. Lawson Jr., Spin and scalar curvature in the presence of a fundamental group I, Annals of Math., Vol. 111, 1980, 209–230.
- [13] M. Gromov and H. B. Lawson Jr., The clasification of simply connected manifolds of positive scalar curvature, Annals of Math., Vol. 111, 1980, 423–434.
- [14] S. Kawasik and R. Schultz, Positive scalar curvature and periodic fundamental groups, Comment. Math. Helv., Vol. 65, 1990, 271–286.
- [15] S. Kawasik and R. Schultz, Fake spherical space forms of constant positive scalar curvature, Comment. Math. Helv., Vol. 71, 1996, 1–40.
- [16] A. Lichnerowicz, Spineurs harmonique, C. R. Sci. Paris, Vol. 257, 1963, 7–9.
- [17] T. Miyazaki, On the existence of positive curvature metric on non simply connected manifolds, J. Fac. Sci. Univ. Tokyo, Sect IA, Vol. 30, 1984, 549–561.
- [18] J. Rosenberg, C*-algebras, positive scalar curvature and the Novikov Conjecture III, Topology, Vol. 25, 1986, 319–336.
- [19] J. Rosenbeg and S. Stolz Manifolds of positive scalar curvature, Algebraic Topology and Applications (G. Carlson, R. Cohen, W.-C. Hisang, and J. D. S. Jones, eds), M. S. R. I. Publications, Vol. 27, Springer, New York, 1994, 241–267.
- [20] J. Rosenbeg and S. Stolz, A "stable" version of the Gromov-Lawson conjecture, Contemp. Math., Vol. 181, 1995, 405–418.
- [21] T. Schick, A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology, Vol. 37, 1998, 1165-1168.
- [22] R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscr. Math., Vol. 28, 1969, 159–183.
- [23] R. Schultz, Positive scalar curvature and odd order Abelian fundamental groups, Proc. Amer. Math. Soc., Vol. 125, 1997, 907–915.
- [24] S. Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math., Vol. 136, 1992, 511–540.
- [25] S. Stolz, Splitting certain MSpin module spectra, Topology, Vol. 33, 1994, 159– 180.