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A SADDLE-POINT THEOREM

FOR CONSTRAINED MARKOV CONTROL

PROCESSES ∗

Raquiel R. López-Mart́ınez 1

Abstract

This paper considers constrained Markov control processes in Borel
spaces, with unbounded costs. The criterion to be minimized is a
long-run expected average cost, and the constraints are imposed
on similar average costs. We first give conditions under which the
constrained problem is equivalent to a convex programming pro-
blem, and then we present a saddle-point theorem for the Lagrange
function associated with the convex program. This theorem gives
the existence of an optimal solution to the constrained problem.
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1 Introduction

Constrained Markov control processes (MCPs) form an important class
of stochastic control problems with applications in many areas; see, for
instance, [2, 4-6, 11-14, 17-19], as well as the books [1] and [16] and
their extensive bibliographies.

In this paper we study constrained MCPs in Borel spaces, with un-
bounded costs. The criterion to be minimized is a long-run expected
average cost, and the constraints are imposed on similar average cost
functionals. This constrained problem (CP) was studied in [9] using
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the so-called “direct method” and also infinite-dimensional linear pro-
gramming. In particular, that paper gives conditions under which CP
is solvable and equivalent to an equality-constrained linear program.
Here, on the other hand, we shall consider CP as a convex programming
problem . This approach has been previously used assuming that the
state space is compact [13] or countable [18].

In this paper, we begin in §2 by introducing some basic terminology
and notation. In §3 we define the concept of stable policy, and state
Lemma 3.4, which ensures that we can consider CP as a convex pro-
gramming problem. Finally, in §4 we study the convex problem and we
give a saddle-point theorem for the associated Lagrange function, which
gives an optimal solution for CP.

2 Constrained MCPs

The constrained Markov control model is of the form

(2.1) (X, A, {A(x) |x ∈ X}, Q, c,d,k),

where X and A are the state space and the control space, respectively.
We shall assume that X and A are Borel spaces, endowed with the
corresponding Borel σ-algebras B(X), B(A). For each x ∈ X, A(x) in
B(A) denotes the nonempty set of feasible controls or actions when the
system is in state x ∈ X. We suppose that the set

(2.2) IK := {(x, a) |x ∈ X, a ∈ A(x)}

of feasible state-action pairs is a closed (hence Borel measurable) subset
of X × A. Moreover, Q stands for the transition law, and c : IK → IR
is a measurable function that denotes the cost-per-stage . Finally, d =
(d1, . . . , dq) : IK→ IRq is a given function and k = (k1, . . . , kq) is a given
vector in IRq, which are used to define the constrained problem (CP) in
(2.3) and (2.4), below.

Let Π be set of all (randomized, history-dependent) admisible con-
trol policies. If necessary, see [1, 3, 7, 8, 10] for further information on
policies. To guarantee that Π is nonempty, we shall assume that the set
Φ of all stochastic kernels ϕ such that ϕ(A(x)| x) = 1 for all x ∈ X is
nonempty.

Let c and d = (d1, . . . , dq) be as in (2.1), and let IP(X) be the set of
probabilty measures (p.m.’s) on X. For each control policy π ∈ Π and
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initial distribution ν ∈ IP(X), consider the long-run expected average
costs

J0(π, ν) := lim sup
n→∞

1

n
Eπν

[
n−1∑
t=0

c(xt, at)

]
and

Ji(π, ν) := lim sup
n→∞

1

n
Eπν

[
n−1∑
t=0

di(xt, at)

]
for i = 1, . . . , q.

Furthermore, letting k = (k1, . . . , kq) be the q-vector in (2.1), define
a subset ∆ of Π× IP(X) as

(2.3) ∆ := {(π, ν)|J0(π, ν) <∞ and Ji(π, ν) ≤ ki (i = 1, . . . , q)}.

With this notation, we may then define the constrained problem
(CP) we are concerned with as follows:

CP : Minimize J0(π, ν)(2.4)

subject to: (π, ν) ∈ ∆.

If there exists a pair (π∗, ν∗) in ∆ such that

(2.5) J0(π∗, ν∗) = inf{J0(π, ν) | (π, ν) ∈ ∆} =: ρ∗,

then (π∗, ν∗) is called a constrained optimal pair, and ρ∗ is called the
optimal value of CP.

3 Reduction of CP to stable policies

The following conditions are used to reduce CP to a problem on a
set of stable policies.

Assumption 3.1

(a) CP is consistent; that is, the set ∆ in (2.3) is nonempty.

(b) c(x, a) is nonnegative and inf-compact, which means that for each
r ∈ IR the set {(x, a) ∈ IK | c(x, a) ≤ r} is compact.

(c) di(x, a) is nonnegative and lower semicontinuous (l.s.c), for i =
1, . . . , q.
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(d) The transition law Q is weakly continuous, that is (denoting by
C b(S) the space of continuous bounded functions on a topological
spaces S), Q is such that

∫
X u(y)Q(dy|· ) belongs to Cb(IK) for each

function u in Cb(X).

Remark 3.2 (a) (See, for instance, pp. 88-89 in [3], or pp. 89 in [10].)
If µ is a p.m. on X×A concentrated on IK, then there exists ϕ ∈ Φ such
that µ can be “disintegrated” as

(3.1) µ(B× C) =

∫
B
ϕ(C|x)µ̂(dx) ∀ B ∈ B(X),C ∈ B(A),

where µ̂(B) := µ(B×A) for all B in B(X) is the marginal (or projection)
of µ on X. Conversely, for each φ ∈ Φ and ν ∈ IP(X), the p.m. µ on X×
A defined by

(3.2) µ(B× C) :=

∫
B
ϕ(C|x)ν(dx) ∀ B ∈ B(X),C ∈ B(A)

is concentrated on IK and its marginal on X is µ̂ = ν. The p.m. µ in
(3.1) and (3.2) will be written as µ = µ̂·ϕ and µ = ν·ϕ, respectively.

(b) For each ϕ ∈ Φ and x ∈ X we write

c(x, ϕ) :=

∫
A
c(x, a)ϕ(da|x) and Q(x, ϕ) :=

∫
A
Q(x, a)ϕ(da|x),

and similarly for di(x, ϕ).

Definition 3.3 (Stable policies) Let µ = µ̂·ϕ be as in (3.1). Then
the p.m. µ (or the randomized stationary policy ϕ ∈ Φ) is said to be
stable if

(a) 〈µ, c〉 :=
∫
c(x, a)µ(d(x, a)) =

∫
c(x, ϕ)µ̂(dx) <∞, and

(b) the marginal µ̂ is an invariant probablity measure ( i.p.m.) for the
transition kernel Q(· |· , ϕ), that is,

µ̂(B) =

∫
X
Q(B|x, ϕ)µ̂(dx) ∀ B ∈ B(X).

We shall denote by IP(IK) the family of p.m.’s on X×A concentrated
on IK, and by IPs(IK) ⊂ IP(IK) the subset of stable p.m.’s

By the Individual Ergodic Theorem (see, for instance, p. 388 in
[20] or Theorem E.11 in [7]), if µ = µ̂·ϕ is stable, then the long-run
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expected average cost J0(ϕ, µ̂) when using the policy ϕ ∈ Φ and the
initial distribution is µ̂ is given by

J0(ϕ, µ̂) = lim
n→∞

1

n
Eϕµ̂

[
n−1∑
t=0

c(xt, at)

]
= 〈µ, c〉.

Thus, for µ = µ̂·ϕ in IPs(IK) we have

J0(ϕ, µ̂) = 〈µ, c〉 =

∫
X
c(x, ϕ)µ̂(dx),

and, similarly,

Ji(ϕ, µ̂) = 〈µ, di〉 =

∫
X
di(x, ϕ)µ̂(dx) for i = 1, . . . , q.

With this notation we can now state the following key fact.

Lemma 3.4 (Reduction of CP to stable policies) Under Assump-
tion 3.1, for each feasible pair (π, ν) ∈ ∆ for CP there exists a stable
p.m. µ = µ̂·ϕ such that
(a) (ϕ, µ̂) is in ∆ , and
(b) J0(π, ν) ≥ J0(ϕ, µ̂) = 〈µ, c〉.
Hence, we can write ρ∗ in (2.5) as

(3.3) ρ∗ = inf{〈µ, c〉|µ ∈ ∆s},

where

∆s := {µ ∈ IPs(IK)| if µ = µ̂·ϕ, then (ϕ, µ̂) ∈ ∆}
= {µ ∈ IPs(IK)| 〈µ, di〉 ≤ ki , i = 1, . . . , q}.

Proof. See the proof of Lemma 3.5 in [9].

4 The problem CP as a convex programming
problem

In this section we see that CP is equivalent to a convex programming
problem, which is shown to have an optimal solution. This solution is
then used to obtain a constrained optimal pair for CP.

Consider the functions

f : IPs(IK)→ IR and G : IPs(IK)→ IRq
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defined as f(µ) := 〈µ, c〉 , andG(µ) := (G1(µ), . . . , Gq(µ)) withGi(µ) :=
〈µ, di〉−ki for i = 1, . . . , q. Obviously, f and G are convex functions and
IPs(IK) is a convex set. Thus, by Lemma 3.4 we can to represent CP as
the convex problem

Minimize f(µ)
(4.1)

subject to: µ ∈ IPs(IK) and G(µ) ≤ θ,

where θ is the vector zero in IRq, and G(µ) ≤ θ means that Gi(µ) ≤ 0,
for all i = 1, . . . , q.

The Lagrangian L : IPs(IK)×IRq
+ → IR associated with problem (4.1)

is given by

(4.2) L(µ,α) := f(µ) + (G(µ),α),

where α = (α1, . . . , αq) is in IRq
+, and (·, ·) denote the inner product in

IRq.

The following saddle-point result gives conditions for problem (4.1)
to have a solution.

Theorem 4.1 Suppose that there exists (µ∗,α∗) ∈ IPs(IK) × IRq
+ such

that the Lagrangian L has a saddle point at (µ∗,α∗), i.e.,

(4.3) L(µ∗,α) ≤ L(µ∗,α∗) ≤ L(µ,α∗),

for all (µ,α) in IPs(IK) × IRq
+. Then (a) µ∗ solves problem (4.1), and

(b) the disintegration µ∗ = µ̂∗ · ϕ∗ of µ∗ satisfies that (ϕ∗, µ∗) is a
constrained optimal pair for CP.

Proof. The proof of the part (a) is similar to that of Theorem 2 in
[15], p. 221 and, therefore, is omitted. Part (b) follows from (a) and
the equivalence of CP and Problem (4.1) �

In view of Theorem 4.1, to prove that problem (4.1) is solvable it
suffices to show the existence of a saddle point for L. To do this, we
shall suppose the following.

Assumption 4.2 ( Slater condition) There exists µ1 ∈ IPs(IK) such
that G(µ1) < θ, that is, Gi(µ1) < 0 for i = 1, . . . , q.
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Let us now consider the functions

(4.4) L1(α) := inf
µ∈IPs(IK)

L(µ,α),

(4.5) L2(µ) := sup
α≥θ

L(µ,α),

Remark 4.3 Note that for all α ∈ IRq
+

L1(α) ≤ inf
µ∈∆s

L(µ,α) ≤ inf
µ∈∆s

〈µ, c〉 = ρ∗,

that is, L1(α) ≤ ρ∗ for all α ∈ IRq
+, and, similarly, ρ∗ ≤ L2(µ) for all

µ ∈ ∆s. It is also clear that

sup
α≥θ

L1(α) ≤ inf
µ∈IPs(IK)

L2(µ).

Theorem 4.4 Under Assumptions 3.1 and 4.2, there exists a saddle
point (µ∗,α∗) for the Lagrangian L.

Before proving Theorem 4.4, let us first prove the following.

Lemma 4.5 Under Assumption 4.2 , there exists α∗ in IRq
+ such that

L1(α∗) = sup
α≥θ

L1(α) = ρ∗,

with ρ∗ as in (2.5) or (3.3).

Proof. In the space IR× IRq define the sets

B1 := {(x,α)| x ≥ f(µ),α ≥ G(µ) for some µ ∈ IPs(IK) }
B2 := {(x,α)| x ≤ ρ∗,α ≤ θ }.

The set B2 is obviously convex, and so is B1 because f and G are convex.
By (3.3), B1 contains no interior points of B2. On other hand, since
G(µ1) is an interior point of IRq

− (Slater condition), the set B2 contains
an interior point. Thus, by the Separating Hyperplane Theorem (see,
for example [15], p. 133, Theorem 3), there is a vector (x∗,α∗) ∈ IR×IRq

such that

x∗x1 + (α1,α
∗) ≥ x∗x2 + (α2,α

∗)
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for all (x1,α1) ∈ B1 and all (x2,α2) ∈ B2. From the nature of B2 it
follows that x∗ ≥ 0 and α∗ ≥ θ. We next show that in fact x∗ > 0.
Indeed, as the vector (ρ∗, θ) is in B2, we have

(4.6) x∗x+ (α,α∗) ≥ x∗ρ∗

for all (x,α) ∈ B1. Thus, if x∗ = 0, then taking α = G(µ1) we obtain
(G(µ1),α∗) ≥ 0. Therefore, Gi(µ1) ≥ 0 for some i = 1, . . . , q, which
contradicts Assumption 4.2. It follows that x∗ > 0 and, without loss of
generality, we may assume x∗ = 1.

Now, since the point (ρ∗, θ) is in the closure of both B1 and B2, we
have (with x∗ = 1 in (4.6))

ρ∗ = inf
(x,α)∈B1

[x+ (α,α∗)] ≤ inf
µ∈IPs(IK)

[f(µ) + (G(µ),α∗)]

= L1(α∗) ≤ inf
µ∈∆s

f(u) = ρ∗;

see Remark 4.3. Hence the lemma is proved. �
The following Lemma 4.6 is a minimax result.

Lemma 4.6 Under Assumptions 3.1 and 4.2, we have

(4.7) sup
α≥θ

L1(α) = inf
µ∈IPs(IK)

L2(µ) = ρ∗.

Proof. Since (G(µ),α) ≤ θ for all µ ∈ ∆s, we see that

L2(µ) = sup
α≥θ

L(µ,α) = 〈µ, c〉 for all µ ∈ ∆s.

Hence, by (3.3),

inf
µ∈∆s

L2(µ) = ρ∗.

Therefore,

inf
µ∈IPs(IK)

L2(µ) ≤ ρ∗,

so that, by Remark 4.3 and Lemma 4.5, the equality (4.7) holds. �

Lemma 4.7 Under Assumptions 3.1 and 4.2, there exists a p.m. µ∗ in
IPs(IK) such that

L2(µ∗) = inf
µ∈IPs(IK)

L2(µ) = ρ∗.



CONSTRAINED MCPs. 77

Proof. If µ is in IPs(IK) but not in ∆s, then there exists i0 in {1, . . . , q}
such that Gi0(µ) > 0, which implies that L2(µ) = +∞. Therefore,

inf
µ∈IPs(IK)

L2(µ) = inf
µ∈∆s

L2(µ) = inf
µ∈∆s

〈µ, c〉.

On the other hand, for all µ ∈ ∆s and α ≥ θ, we have (G(µ),α) ≤ 0,
and so it follows that

L2(µ) = sup
α≥θ

L(µ,α) = 〈µ, c〉 ∀ µ ∈ ∆s.

Therefore, from the latter equality and Corollary 3.6 in [9], the desired
conclusion follows. �
Proof of Theorem 4.4. From lemma 4.6 we have that

L(µ∗,α∗) = ρ∗,

where ρ∗ is the optimal value of CP —see (2.5) or (3.3). Now, by the
latter equality, together with Lemma 4.5, (4.7) and the definition of
L1 and L2, it follows that

L(µ∗,α∗) = L1(α∗) ≤ L(µ,α∗) for all µ ∈ IPs(IK),

and, similarly,

L(µ∗,α∗) = L2(µ∗) ≥ L(µ∗,α) for all α ≥ θ.

Therefore, the pair (µ∗,α∗) is a saddle point. �
To summarize, Theorem 4.4 gives the existence of a saddle point

(µ∗,α∗) for L, which, by Theorem 4.1 yields a constrained optimal pair
(ϕ∗, µ̂∗) for CP. It turns out the converse is also true, as we next show.

Proposition 4.8 If µ∗ = µ̂∗ · ϕ∗ ∈ ∆s is such that (ϕ∗, µ̂∗) is a con-
strained optimal pair for CP and Assumption 4.2 holds, then the La-
grangian L has a saddle point.

Proof. Let α∗ be as in Lemma 4.5. By the definition of L1, we have
that

L(µ∗,α∗) ≤ L(µ,α∗) for all µ ∈ IPs(IK),

which gives the second inequality in (4.3). On other hand, (G(µ∗),α∗) =
0 because, as G(µ∗) ≤ θ, we have

ρ∗ ≤ f(µ∗) + (G(µ∗),α∗) ≤ f(µ∗) = ρ∗
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and hence (G(µ∗),α∗) = 0. Therefore,

L(µ∗,α)− L(µ∗,α∗) = (G(µ∗),α)− (G(µ∗),α∗) = (G(µ∗),α) ≤ 0,

and the first inequality in (4.3) follows. �
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